1
|
Yang L, Yang Y, Liu X, Chen Y, Chen Y, Lin Y, Sun Y, Shen B. CHDGKB: a knowledgebase for systematic understanding of genetic variations associated with non-syndromic congenital heart disease. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5865522. [PMID: 32608479 PMCID: PMC7327432 DOI: 10.1093/database/baaa048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Congenital heart disease (CHD) is one of the most common birth defects, with complex genetic and environmental etiologies. The reports of genetic variation associated with CHD have increased dramatically in recent years due to the revolutionary development of molecular technology. However, CHD is a heterogeneous disease, and its genetic origins remain inconclusive in most patients. Here we present a database of genetic variations for non-syndromic CHD (NS-CHD). By manually literature extraction and analyses, 5345 NS-CHD-associated genetic variations were collected, curated and stored in the public online database. The objective of our database is to provide the most comprehensive updates on NS-CHD genetic research and to aid systematic analyses of pathogenesis of NS-CHD in molecular level and the correlation between NS-CHD genotypes and phenotypes. Database URL: http://www.sysbio.org.cn/CHDGKB/.
Collapse
Affiliation(s)
- Lan Yang
- Center for Systems Biology, Soochow University, Suzhou 215006, China.,Center of Prenatal Diagnosis, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China
| | - Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Xingyun Liu
- Center for Systems Biology, Soochow University, Suzhou 215006, China.,Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongquan Chen
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Yalan Chen
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yuxin Lin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yan Sun
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
The caveolar-mitochondrial interface: regulation of cellular metabolism in physiology and pathophysiology. Biochem Soc Trans 2020; 48:165-177. [PMID: 32010944 DOI: 10.1042/bst20190388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/15/2022]
Abstract
The plasma membrane is an important cellular organelle that is often overlooked in terms of a primary factor in regulating physiology and pathophysiology. There is emerging evidence to suggest that the plasma membrane serves a greater purpose than a simple barrier or transporter of ions. New paradigms suggest that the membrane serves as a critical bridge to connect extracellular to intracellular communication particularly to regulate energy and metabolism by forming physical and biochemical associations with intracellular organelles. This review will focus on the relationship of a particular membrane microdomain - caveolae - with mitochondria and the particular implication of this to physiology and pathophysiology.
Collapse
|
3
|
Mohamed A, Robinson H, Erramouspe PJ, Hill MM. Advances and challenges in understanding the role of the lipid raft proteome in human health. Expert Rev Proteomics 2018; 15:1053-1063. [PMID: 30403891 DOI: 10.1080/14789450.2018.1544895] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Phase separation as a biophysical principle drives the formation of liquid-ordered 'lipid raft' membrane microdomains in cellular membranes, including organelles. Given the critical role of cellular membranes in both compartmentalization and signaling, clarifying the roles of membrane microdomains and their mutual regulation of/by membrane proteins is important in understanding the fundamentals of biology, and has implications for health. Areas covered: This article will consider the evidence for lateral membrane phase separation in model membranes and organellar membranes, critically evaluate the current methods for lipid raft proteomics and discuss the biomedical implications of lipid rafts. Expert commentary: Lipid raft homeostasis is perturbed in numerous chronic conditions; hence, understanding the precise roles and regulation of the lipid raft proteome is important for health and medicine. The current technical challenges in performing lipid raft proteomics can be overcome through well-controlled experimental design and careful interpretation. Together with technical developments in mass spectrometry and microscopy, our understanding of lipid raft biology and function will improve through recognition of the similarity between organelle and plasma membrane lipid rafts and considered integration of published lipid raft proteomics data.
Collapse
Affiliation(s)
- Ahmed Mohamed
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Harley Robinson
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,b Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Pablo Joaquin Erramouspe
- c Department of Emergency Medicine , University of California, Davis Medical Center , Sacramento , CA , USA
| | - Michelle M Hill
- a Precision & Systems Biomedicine Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia.,d The University of Queensland Diamantina Institute, Faculty of Medicine , Translational Research Institute, The University of Queensland , Brisbane , Australia
| |
Collapse
|
4
|
Foster DB, Liu T, Kammers K, O'Meally R, Yang N, Papanicolaou KN, Talbot CC, Cole RN, O'Rourke B. Integrated Omic Analysis of a Guinea Pig Model of Heart Failure and Sudden Cardiac Death. J Proteome Res 2016; 15:3009-28. [PMID: 27399916 DOI: 10.1021/acs.jproteome.6b00149] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we examine key regulatory pathways underlying the transition from compensated hypertrophy (HYP) to decompensated heart failure (HF) and sudden cardiac death (SCD) in a guinea pig pressure-overload model by integrated multiome analysis. Relative protein abundances from sham-operated HYP and HF hearts were assessed by iTRAQ LC-MS/MS. Metabolites were quantified by LC-MS/MS or GC-MS. Transcriptome profiles were obtained using mRNA microarrays. The guinea pig HF proteome exhibited classic biosignatures of cardiac HYP, left ventricular dysfunction, fibrosis, inflammation, and extravasation. Fatty acid metabolism, mitochondrial transcription/translation factors, antioxidant enzymes, and other mitochondrial procsses, were downregulated in HF but not HYP. Proteins upregulated in HF implicate extracellular matrix remodeling, cytoskeletal remodeling, and acute phase inflammation markers. Among metabolites, acylcarnitines were downregulated in HYP and fatty acids accumulated in HF. The correlation of transcript and protein changes in HF was weak (R(2) = 0.23), suggesting post-transcriptional gene regulation in HF. Proteome/metabolome integration indicated metabolic bottlenecks in fatty acyl-CoA processing by carnitine palmitoyl transferase (CPT1B) as well as TCA cycle inhibition. On the basis of these findings, we present a model of cardiac decompensation involving impaired nuclear integration of Ca(2+) and cyclic nucleotide signals that are coupled to mitochondrial metabolic and antioxidant defects through the CREB/PGC1α transcriptional axis.
Collapse
Affiliation(s)
- D Brian Foster
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kai Kammers
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States
| | - Robert O'Meally
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Ni Yang
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Robert N Cole
- Proteomics Core Facility, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
Wypijewski KJ, Tinti M, Chen W, Lamont D, Ashford MLJ, Calaghan SC, Fuller W. Identification of caveolar resident proteins in ventricular myocytes using a quantitative proteomic approach: dynamic changes in caveolar composition following adrenoceptor activation. Mol Cell Proteomics 2015; 14:596-608. [PMID: 25561500 PMCID: PMC4349980 DOI: 10.1074/mcp.m114.038570] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The lipid raft concept proposes that membrane environments enriched in cholesterol and sphingolipids cluster certain proteins and form platforms to integrate cell signaling. In cardiac muscle, caveolae concentrate signaling molecules and ion transporters, and play a vital role in adrenergic regulation of excitation–contraction coupling, and consequently cardiac contractility. Proteomic analysis of cardiac caveolae is hampered by the presence of contaminants that have sometimes, erroneously, been proposed to be resident in these domains. Here we present the first unbiased analysis of the proteome of cardiac caveolae, and investigate dynamic changes in their protein constituents following adrenoreceptor (AR) stimulation. Rat ventricular myocytes were treated with methyl-β-cyclodextrin (MβCD) to deplete cholesterol and disrupt caveolae. Buoyant caveolin-enriched microdomains (BCEMs) were prepared from MβCD-treated and control cell lysates using a standard discontinuous sucrose gradient. BCEMs were harvested, pelleted, and resolubilized, then alkylated, digested, and labeled with iTRAQ reagents, and proteins identified by LC-MS/MS on a LTQ Orbitrap Velos Pro. Proteins were defined as BCEM resident if they were consistently depleted from the BCEM fraction following MβCD treatment. Selective activation of α-, β1-, and β2-AR prior to preparation of BCEMs was achieved by application of agonist/antagonist pairs for 10 min in populations of field-stimulated myocytes. We typically identified 600–850 proteins per experiment, of which, 249 were defined as high-confidence BCEM residents. Functional annotation clustering indicates cardiac BCEMs are enriched in integrin signaling, guanine nucleotide binding, ion transport, and insulin signaling clusters. Proteins possessing a caveolin binding motif were poorly enriched in BCEMs, suggesting this is not the only mechanism that targets proteins to caveolae. With the notable exception of the cavin family, very few proteins show altered abundance in BCEMs following AR activation, suggesting signaling complexes are preformed in BCEMs to ensure a rapid and high fidelity response to adrenergic stimulation in cardiac muscle.
Collapse
Affiliation(s)
- Krzysztof J Wypijewski
- From the ‡Division of Cardiovascular and Diabetes Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- §College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Wenzhang Chen
- §College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Douglas Lamont
- §College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael L J Ashford
- From the ‡Division of Cardiovascular and Diabetes Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, United Kingdom
| | - Sarah C Calaghan
- ¶School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - William Fuller
- From the ‡Division of Cardiovascular and Diabetes Medicine, College of Medicine, Dentistry and Nursing, University of Dundee, Dundee, United Kingdom;
| |
Collapse
|
6
|
Analysis of long- and short-range contribution to adhesion work in cardiac fibroblasts: an atomic force microscopy study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 49:217-224. [PMID: 25686942 DOI: 10.1016/j.msec.2014.12.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 11/28/2014] [Accepted: 12/24/2014] [Indexed: 12/27/2022]
Abstract
Atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) and Poisson statistic were used to analyze the detachment work recorded during the removal of gold-covered microspheres from cardiac fibroblasts. The effect of Cytochalasin D, a disruptor of the actin cytoskeleton, on cell adhesion was also tested. The adhesion work was assessed using a Poisson analysis also derived from single-cell force spectroscopy retracting curves. The use of Poisson analysis to get adhesion work from AFM curves is quite a novel method, and in this case, proved to be effective to study the short-range and long-range contributions to the adhesion work. This method avoids the difficult identification of minor peaks in the AFM retracting curves by creating what can be considered an average adhesion work. Even though the effect of actin depolymerisation is well documented, its use revealed that control cardiac fibroblasts (CT) exhibit a work of adhesion at least 5 times higher than that of the Cytochalasin treated cells. However, our results indicate that in both cells short-range and long-range contributions to the adhesion work are nearly equal and the same heterogeneity index describes both cells. Therefore, we infer that the different adhesion behaviors might be explained by the presence of fewer membrane adhesion molecules available at the AFM tip-cell interface under circumstances where the actin cytoskeleton has been disrupted.
Collapse
|
7
|
Pattini L, Sassi R, Cerutti S. Dissecting Heart Failure Through the Multiscale Approach of Systems Medicine. IEEE Trans Biomed Eng 2014; 61:1593-603. [DOI: 10.1109/tbme.2014.2307758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Codan B, Del Favero G, Martinelli V, Long CS, Mestroni L, Sbaizero O. Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:427-34. [PMID: 24857511 DOI: 10.1016/j.msec.2014.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/28/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022]
Abstract
AFM was used to collect the whole force-deformation cell curves. They provide both the elasticity and adhesion behavior of mouse primary cardiac fibroblasts. To confirm the hypothesis that a link exists between the membrane receptors and the cytoskeletal filaments causing therefore changing in both elasticity and adhesion behavior, actin-destabilizing Cytochalsin D was administrated to the fibroblasts. From immunofluorescence observation and AFM loading/unloading curves, cytoskeletal reorganization as well as a change in the elasticity and adhesion was indeed observed. Elasticity of control fibroblasts is three times higher than that for fibroblasts treated with 0.5 μM Cytochalasin. Moreover, AFM loading-unloading curves clearly show the different mechanical behavior of the two different cells analyzed: (i) for control cells the AFM cantilever rises during the dwell time while cells with Cytochalasin fail to show such an active resistance; (ii) the maximum force to deform control cells is quite higher and as far as adhesion is concern (iii) the maximum separation force, detachment area and the detachment process time are much larger for control compared to the Cytochalasin treated cells. Therefore, alterations in the cytoskeleton suggest that a link must exist between the membrane receptors and the cytoskeletal filaments beneath the cellular surface and inhibition of actin polymerization has effects on the whole cell mechanical behavior as well as adhesion.
Collapse
Affiliation(s)
- B Codan
- Department of Engineering and Architecture, University of Trieste, Italy
| | - G Del Favero
- Department of Engineering and Architecture, University of Trieste, Italy
| | - V Martinelli
- Department of Engineering and Architecture, University of Trieste, Italy; International Center for Genetic Engineering and Biotechnology, Trieste, Italy
| | - C S Long
- University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora, CO, USA
| | - L Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Denver, Aurora, CO, USA
| | - O Sbaizero
- Department of Engineering and Architecture, University of Trieste, Italy.
| |
Collapse
|
9
|
Recent advances in cardiovascular proteomics. J Proteomics 2012; 81:3-14. [PMID: 23153792 DOI: 10.1016/j.jprot.2012.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases (CVDs) are the major source of global morbidity and death and more people die annually from CVDs than from any other cause. These diseases can occur quickly, as seen in acute myocardial infarction (AMI), or progress slowly over years as with chronic heart failure. Advances in mass spectrometry detection and analysis, together with improved isolation and enrichment techniques allowing for the separation of organelles and membrane proteins, now allow for the indepth analysis of the cardiac proteome. Here we outline current insights that have been provided through cardiovascular proteomics, and discuss studies that have developed innovative technologies which permit the examination of the protein complement in specific organelles including exosomes and secreted proteins. We highlight these foundational studies and illustrate how they are providing the technologies and tools which are now being applied to further study cardiovascular disease; provide new diagnostic markers and potentially new methods of cardiac patient management with identification of novel drug targets. This article is part of a Special Issue entitled: From protein structures to clinical applications.
Collapse
|
10
|
Li W, Rong R, Zhao S, Zhu X, Zhang K, Xiong X, Yu X, Cui Q, Li S, Chen L, Cai J, Du J. Proteomic analysis of metabolic, cytoskeletal and stress response proteins in human heart failure. J Cell Mol Med 2012; 16:59-71. [PMID: 21545686 PMCID: PMC3823093 DOI: 10.1111/j.1582-4934.2011.01336.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human heart failure is a complex syndrome and a primary cause of morbidity and mortality in the world. However, the molecular pathways involved in the remodelling process are poorly understood. In this study, we performed exhaustive global proteomic surveys of cardiac ventricle isolated from failing and non-failing human hearts, and determined the regulatory pathway to uncover the mechanism underlying heart failure. Two-dimensional gel electrophoresis (2-DE) coupled with tandem mass spectrometry was used to identify differentially expressed proteins in specimens from failing (n = 9) and non-failing (n = 6) human hearts. A total of 25 proteins with at least 1.5-fold change in the failing heart were identified; 15 proteins were up-regulated and 10 proteins were down-regulated. The altered proteins belong to three broad functional categories: (i) metabolic [e.g. NADH dehydrogenase (ubiquinone), dihydrolipoamide dehydrogenase, and the cytochrome c oxidase subunit]; (ii) cytoskeletal (e.g. myosin light chain proteins, troponin I type 3 and transthyretin) and (iii) stress response (e.g. αB-crystallin, HSP27 and HSP20). The marked differences in the expression of selected proteins, including HSP27 and HSP20, were further confirmed by Western blot. Thus, we carried out full-scale screening of the protein changes in human heart failure and profiled proteins that may be critical in cardiac dysfunction for future mapping.
Collapse
Affiliation(s)
- Weiming Li
- Department of Cardiology, Chaoyang Hospital, The Key Laboratory of Remodelling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kotlo K, Johnson KR, Grillon JM, Geenen DL, deTombe P, Danziger RS. Phosphoprotein abundance changes in hypertensive cardiac remodeling. J Proteomics 2012; 77:1-13. [PMID: 22659219 DOI: 10.1016/j.jprot.2012.05.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/02/2012] [Accepted: 05/24/2012] [Indexed: 01/21/2023]
Abstract
There is over-whelming evidence that protein phosphorylations regulate cardiac function and remodeling. A wide variety of protein kinases, e.g., phosphoinositide 3-kinase (PI3K), Akt, GSK-3, TGFβ, and PKA, MAPKs, PKC, Erks, and Jaks, as well as phosphatases, e.g., phosphatase I (PP1) and calcineurin, control cardiomyocyte growth and contractility. In the present work, we used global phosphoprotein profiling to identify phosphorylated proteins associated with pressure overload (PO) cardiac hypertrophy and heart failure. Phosphoproteins from hypertrophic and systolic failing hearts from male hypertensive Dahl salt-sensitive rats, trans-aortic banded (TAC), and spontaneously hypertensive heart failure (SHHF) rats were analyzed. Profiling was performed by 2-dimensional difference in gel electrophoresis (2D-DIGE) on phospho-enriched proteins. A total of 25 common phosphoproteins with differences in abundance in (1) the 3 hypertrophic and/or (2) the 2 systolic failure heart models were identified (CI>99%) by matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) and Mascot analysis. Among these were (1) myofilament proteins, including alpha-tropomyosin and myosin regulatory light chain 2, cap Z interacting protein (cap ZIP), and tubulin β5; (2) mitochondrial proteins, including pyruvate dehydrogenase α, branch chain ketoacid dehydrogenase E1, and mitochondrial creatine kinase; (3) phosphatases, including protein phosphatase 2A and protein phosphatase 1 regulatory subunit; and (4) other proteins including proteosome subunits α type 3 and β type 7, and eukaryotic translation initiation factor 1A (eIF1A). The results include previously described and novel phosphoproteins in cardiac hypertrophy and systolic failure.
Collapse
Affiliation(s)
- Kumar Kotlo
- Department of Medicine, University of Illinois at Chicago, 840 South Wood Street, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
12
|
Raimondo F, Morosi L, Chinello C, Perego R, Bianchi C, Albo G, Ferrero S, Rocco F, Magni F, Pitto M. Protein profiling of microdomains purified from renal cell carcinoma and normal kidney tissue samples. ACTA ACUST UNITED AC 2012; 8:1007-16. [DOI: 10.1039/c2mb05372a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Rucevic M, Hixson D, Josic D. Mammalian plasma membrane proteins as potential biomarkers and drug targets. Electrophoresis 2011; 32:1549-64. [PMID: 21706493 DOI: 10.1002/elps.201100212] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented.
Collapse
Affiliation(s)
- Marijana Rucevic
- COBRE Center for Cancer Research Development, Rhode Island Hospital, Providence, RI, USA
| | | | | |
Collapse
|
14
|
Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 2011; 52:376-87. [PMID: 21888911 DOI: 10.1016/j.yjmcc.2011.08.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/11/2011] [Accepted: 08/17/2011] [Indexed: 11/23/2022]
Abstract
Influx of Ca(2+) through L-type Ca(2+) channels (LTCCs) contributes to numerous cellular processes in cardiomyocytes including excitation-contraction (EC) coupling, membrane excitability, and transcriptional regulation. Distinct subpopulations of LTCCs have been identified in cardiac myocytes, including those at dyadic junctions and within different plasma membrane microdomains such as lipid rafts and caveolae. These subpopulations of LTCCs exhibit regionally distinct functional properties and regulation, affording precise spatiotemporal modulation of L-type Ca(2+) current (I(Ca,L)). Different subcellular LTCC populations demonstrate variable rates of Ca(2+)-dependent inactivation and sometimes coupled gating of neighboring channels, which can lead to focal, persistent I(Ca,L). In addition, the assembly of spatially defined macromolecular signaling complexes permits compartmentalized regulation of I(Ca,L) by a variety of neurohormonal pathways. For example, β-adrenergic receptor subtypes signal to different LTCC subpopulations, with β(2)-adrenergic activation leading to enhanced I(Ca,L) through caveolar LTCCs and β(1)-adrenergic stimulation modulating LTCCs outside of caveolae. Disruptions in the normal subcellular targeting of LTCCs and associated signaling proteins may contribute to the pathophysiology of a variety of cardiac diseases including heart failure and certain arrhythmias. Further identifying the characteristic functional properties and array of regulatory molecules associated with specific LTCC subpopulations will provide a mechanistic framework to understand how LTCCs contribute to diverse cellular processes in normal and diseased myocardium. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
|
15
|
Hammer E, Goritzka M, Ameling S, Darm K, Steil L, Klingel K, Trimpert C, Herda LR, Dörr M, Kroemer HK, Kandolf R, Staudt A, Felix SB, Völker U. Characterization of the Human Myocardial Proteome in Inflammatory Dilated Cardiomyopathy by Label-free Quantitative Shotgun Proteomics of Heart Biopsies. J Proteome Res 2011; 10:2161-71. [DOI: 10.1021/pr1008042] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Elke Hammer
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Michelle Goritzka
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Sabine Ameling
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Katrin Darm
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Karin Klingel
- Abteilung Molekulare Pathologie, Universitätsklinikum Tübingen, Germany
| | | | - Lars R. Herda
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Marcus Dörr
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Heyo K. Kroemer
- Institut für Pharmakologie, Universitätsmedizin Greifswald, Germany
| | - Reinhard Kandolf
- Abteilung Molekulare Pathologie, Universitätsklinikum Tübingen, Germany
| | - Alexander Staudt
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Stephan B. Felix
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| |
Collapse
|
16
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. Cardiovascular translational medicine (III). Genomics and proteomics in heart failure research. Rev Esp Cardiol 2010; 62:305-13. [PMID: 19268076 DOI: 10.1016/s1885-5857(09)71561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart failure is a complex syndrome and is one of the main causes of morbidity and mortality in developed countries. Despite considerable research effort in recent years, heart failure prevention and treatment strategies still suffer significant limitations. New theoretical and technical approaches are, therefore, required. It is in this context that the "omic" sciences have a role to play in heart failure. The incorporation of "omic" methodologies into the study of human disease has substantially changed biological approaches to disease and has given an enormous impetus to the search for new disease mechanisms, as well as for novel biomarkers and therapeutic targets. The application of genomics, proteomics and metabonomics to heart failure research could increase our understanding of the origin and development of the different processes contributing to this syndrome, thereby enabling the establishment of specific diagnostic profiles and therapeutic templates that could help improve the poor prognosis associated with heart failure. This brief review contains a short description of the fundamental principles of the "omic" sciences and an evaluation of how these new techniques are currently contributing to research into human heart failure. The focus is mainly on the analysis of gene expression microarrays in the field of genomics and on studies using two-dimensional electrophoresis with mass spectrometry in the area of proteomics.
Collapse
Affiliation(s)
- Arantxa González
- Area de Ciencias Cardiovasculares, Centro de Investigación Médica, Universidad de Navarra, 31008 Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Role of caveolin-3 and glucose transporter-4 in isoflurane-induced delayed cardiac protection. Anesthesiology 2010; 112:1136-45. [PMID: 20418694 DOI: 10.1097/aln.0b013e3181d3d624] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Caveolae are small, flask-like invaginations of the plasma membrane. Caveolins are structural proteins found in caveolae that have scaffolding properties to allow organization of signaling. The authors tested the hypothesis that delayed cardiac protection induced by volatile anesthetics is caveolae or caveolin dependent. METHODS An in vivo mouse model of ischemia-reperfusion injury with delayed anesthetic preconditioning (APC) was tested in wild-type, caveolin-1 knockout, and caveolin-3 knockout mice. Mice were exposed to 30 min of oxygen or isoflurane and allowed to recover for 24 h. After 24 h recovery, mice underwent 30-min coronary artery occlusion followed by 2 h of reperfusion at which time infarct size was determined. Biochemical assays were also performed in excised hearts. RESULTS Infarct size as a percent of the area at risk was reduced by isoflurane in wild-type (24.0 +/- 8.8% vs. 45.1 +/- 10.1%) and caveolin-1 knockout mice (27.2 +/- 12.5%). Caveolin-3 knockout mice did not show delayed APC (41.5 +/- 5.0%). Microscopically distinct caveolae were observed in wild-type and caveolin-1 knockout mice but not in caveolin-3 knockout mice. Delayed APC increased the amount of caveolin-3 protein but not caveolin-1 protein in discontinuous sucrose-gradient buoyant fractions. In addition, glucose transporter-4 was increased in buoyant fractions, and caveolin-3/glucose transporter-4 colocalization was observed in wild-type and caveolin-1 knockout mice after APC. CONCLUSIONS These results show that delayed APC involves translocation of caveolin-3 and glucose transporter-4 to caveolae, resulting in delayed protection in the myocardium.
Collapse
|
18
|
Kim BW, Lee JW, Choo HJ, Lee CS, Jung SY, Yi JS, Ham YM, Lee JH, Hong J, Kang MJ, Chi SG, Hyung SW, Lee SW, Kim HM, Cho BR, Min DS, Yoon G, Ko YG. Mitochondrial oxidative phosphorylation system is recruited to detergent-resistant lipid rafts during myogenesis. Proteomics 2010; 10:2498-515. [DOI: 10.1002/pmic.200900826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Moseley FL, Bicknell KA, Marber MS, Brooks G. The use of proteomics to identify novel therapeutic targets for the treatment of disease. J Pharm Pharmacol 2010; 59:609-28. [PMID: 17524226 DOI: 10.1211/jpp.59.5.0001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
The completion of the Human Genome Project has revealed a multitude of potential avenues for the identification of therapeutic targets. Extensive sequence information enables the identification of novel genes but does not facilitate a thorough understanding of how changes in gene expression control the molecular mechanisms underlying the development and regulation of a cell or the progression of disease. Proteomics encompasses the study of proteins expressed by a population of cells, and evaluates changes in protein expression, post-translational modifications, protein interactions, protein structure and splice variants, all of which are imperative for a complete understanding of protein function within the cell. From the outset, proteomics has been used to compare the protein profiles of cells in healthy and diseased states and as such can be used to identify proteins associated with disease development and progression. These candidate proteins might provide novel targets for new therapeutic agents or aid the development of assays for disease biomarkers. This review provides an overview of the current proteomic techniques available and focuses on their application in the search for novel therapeutic targets for the treatment of disease.
Collapse
Affiliation(s)
- Fleur L Moseley
- School of Pharmacy, The University of Reading, Whiteknights, Reading, Berkshire, RG6 6AP, UK
| | | | | | | |
Collapse
|
20
|
Ali I, Aboul-Enein HY, Singh P, Singh R, Sharma B. Separation of biological proteins by liquid chromatography. Saudi Pharm J 2010; 18:59-73. [PMID: 23960722 DOI: 10.1016/j.jsps.2010.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023] Open
Abstract
After the success of human genome project, proteome is a new emerging field of biochemistry as it provides the knowledge of enzymes (proteins) interactions with different body organs and medicines administrated into human body. Therefore, the study of proteomics is very important for the development of new and effective drugs to control many lethal diseases. In proteomics study, analyses of proteome is essential and significant from the pathological point of views, i.e., in several serious diseases such as cancer, Alzheimer's disease and aging, heart diseases and also for plant biology. The separation and identification of proteomics is a challenging job due to their complex structures and closely related physico-chemical behaviors. However, the recent advances in liquid chromatography make this job easy. Various kinds of liquid chromatography, along with different detectors and optimization strategies, have been discussed in this article. Besides, attempts have been made to include chirality concept in proteomics for understanding mechanism and medication of various disease controlled by different body proteins.
Collapse
Key Words
- 2D-nano LC, two-dimensional nano liquid chromatography quadrupole
- ACN, acetonitrile
- AIEC, anion exchange chromatography
- CEC, capillary electro-chromatography
- CIEF, capillary isoelectric focusing
- CSF, cerebrospinal fluid
- Chirality
- EC, electro-chromatography
- ESI-LC–MS, electrospray ionization liquid chromatography–mass spectrometry
- FA, formic acid
- FLP, FMRF amide-like peptide
- FT-ICR-MS, ion cyclotron resonance-mass spectrometry
- GPI-APs, glycosylphosphadylinositol anchored proteins
- GSH, glutathione stimulating hormone
- GSTs, glutathione-S-transferase isoenzyme
- Gene
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ICAT, isotope coded affinity tag
- IEF-SEC, isoelectrofocussing size-exclusion chromatography
- IMCD, inner medullary collecting duct
- LC-Q-TOF, liquid chromatography-quadrupole time-of-flight tandem mass
- LC-dual ESI, liquid chromatography dual electrospray ionization-Fourier transform
- LC–MS, liquid chromatography–mass spectrometry
- Liquid chromatography
- MALDI-TOF, matrix-assisted laser desorption/ionization-time-of flight
- MFGM, milk fat globule membranes
- MMA, mass measurement accuracy
- MPC, mesenchymal progenitor cell
- MS/MS, spectrometry
- NLFs, Nasal lavage fluids
- NLP, neuropeptide like protein
- Nano detection
- PC2, prohormone convertase-2
- PS II, photosystem II
- Preparation
- Proteomics
- Q-TOFMS/MS, time-of-flight tandem-mass spectrometry
- RPLC, reversed phase liquid chromatography
- SCX, strong cation exchange
- SEC, size-exclusion chromatography
- TFA, trifluoroacetic acid
- TIC, total ion current
- TRAF, tumor necrosis factor receptor
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110 025, India
| | | | | | | | | |
Collapse
|
21
|
Zheng YZ, Foster LJ. Contributions of quantitative proteomics to understanding membrane microdomains. J Lipid Res 2009; 50:1976-85. [PMID: 19578161 PMCID: PMC2739763 DOI: 10.1194/jlr.r900018-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane microdomains, e.g., lipid rafts and caveolae, are crucial cell surface organelles responsible for many cellular signaling and communication events, which makes the characterization of their proteomes both interesting and valuable. They are large cellular complexes comprised of specific proteins and lipids, yet they are simple enough in composition to be amenable to modern LC/MS/MS methods for proteomics. However, the proteomic characterization of membrane microdomains by traditional qualitative mass spectrometry is insufficient for distinguishing true components of the microdomains from copurifying contaminants or for evaluating dynamic changes in the proteome compositions. In this review, we discuss the contributions quantitative proteomics has made to our understanding of the biology of membrane microdomains.
Collapse
Affiliation(s)
- Yu Zi Zheng
- Centre for High-Throughput Biology and Department of Biochemistry and Molecular Biology, 2125 East Mall, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
22
|
Chichili GR, Rodgers W. Cytoskeleton-membrane interactions in membrane raft structure. Cell Mol Life Sci 2009; 66:2319-28. [PMID: 19370312 PMCID: PMC2709161 DOI: 10.1007/s00018-009-0022-6] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/26/2009] [Accepted: 03/12/2009] [Indexed: 12/22/2022]
Abstract
Cell membranes are structurally heterogeneous, composed of discrete domains with unique physical and biological properties. Membrane domains can form through a number of mechanisms involving lipid-lipid and protein-lipid interactions. One type of membrane domain is the cholesterol-dependent membrane raft. How rafts form remains a current topic in membrane biology. We review here evidence of structuring of rafts by the cortical actin cytoskeleton. This includes evidence that the actin cytoskeleton associates with rafts, and that many of the structural and functional properties of rafts require an intact actin cytoskeleton. We discuss the mechanisms of the actin-dependent raft organization, and the properties of the actin cytoskeleton in regulating raft-associated signaling events. We end with a discussion of membrane rafts and the actin cytoskeleton in T cell activation, which function synergistically to initiate the adaptive immune response.
Collapse
Affiliation(s)
- Gurunadh R. Chichili
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St., MS 45, Oklahoma City, OK 73104 USA
| | - William Rodgers
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St., MS 45, Oklahoma City, OK 73104 USA
| |
Collapse
|
23
|
Patel HH, Insel PA. Lipid rafts and caveolae and their role in compartmentation of redox signaling. Antioxid Redox Signal 2009; 11:1357-72. [PMID: 19061440 PMCID: PMC2757136 DOI: 10.1089/ars.2008.2365] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Membrane (lipid) rafts and caveolae, a subset of rafts, are cellular domains that concentrate plasma membrane proteins and lipids involved in the regulation of cell function. In addition to providing signaling platforms for G-protein-coupled receptors and certain tyrosine kinase receptors, rafts/caveolae can influence redox signaling. This review discusses molecular characteristics of and methods to study rafts/caveolae, determinants that contribute to the localization of molecules in these entities, an overview of signaling molecules that show such localization, and the contribution of rafts/caveolae to redox signaling. Of particular note is the evidence that endothelial nitric oxide synthase (eNOS), NADPH oxygenase, and heme oxygenase, along with other less well-studied redox systems, localize in rafts and caveolae. The precise basis for this localization and the contribution of raft/caveolae-localized redox components to physiology and disease are important issues for future studies.
Collapse
Affiliation(s)
- Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093-0636, USA
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Substantial evidence documents the key role of lipid (membrane) rafts and caveolae as microdomains that concentrate a wide variety of receptors and postreceptor components regulated by hormones, neurotransmitters and growth factors. RECENT FINDINGS Recent data document that these microdomains are important in regulating vascular endothelial and smooth muscle cells and renal epithelial cells, and particularly in signal transduction across the plasma membrane. SUMMARY Raft/caveolae domains are cellular regions, including in cardiovascular and renal epithelial cells, which organize a large number of signal transduction components, thereby providing spatially and temporally efficient regulation of cell function.
Collapse
|
25
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. La genómica y la proteómica en la investigación de la insuficiencia cardiaca. Rev Esp Cardiol (Engl Ed) 2009. [DOI: 10.1016/s0300-8932(09)70375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Zheng YZ, Foster LJ. Biochemical and proteomic approaches for the study of membrane microdomains. J Proteomics 2009; 72:12-22. [DOI: 10.1016/j.jprot.2008.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/14/2008] [Accepted: 09/18/2008] [Indexed: 01/08/2023]
|
27
|
Dormeyer W, van Hoof D, Mummery CL, Krijgsveld J, Heck AJR. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells. Proteomics 2008; 8:4036-53. [DOI: 10.1002/pmic.200800143] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Morales-García MG, Fournié JJ, Moreno-Altamirano MMB, Rodríguez-Luna G, Flores RM, Sánchez-García FJ. A flow-cytometry method for analyzing the composition of membrane rafts. Cytometry A 2008; 73:918-25. [DOI: 10.1002/cyto.a.20630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Charles RL, Eaton P. Redox signalling in cardiovascular disease. Proteomics Clin Appl 2008; 2:823-36. [PMID: 21136882 DOI: 10.1002/prca.200780104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Indexed: 01/02/2023]
Abstract
Oxidative stress has almost universally and unequivocally been implicated in the pathogenesis of all major diseases, including those of the cardiovascular system. Oxidative stress in cells and cardiovascular biology was once considered only in terms of injury, disease and dysfunction. However, it is now appreciated that oxidants are also produced in healthy tissues, and they function as signalling molecules transmitting information throughout the cell. Conversely, when cells move to a more reduced state, as can occur when oxygen is limiting, this can also result in alterations in the function of biomolecules and subsequently cells. At the centre of this 'redox signalling' are oxidoreductive chemical reactions involving oxidants or reductants post translationally modifying proteins. These structural alterations allow changes in cellular redox state to be coupled to alterations in cell function. In this review, we consider aspects of redox signalling in the cardiovascular system, focusing on the molecular basis of redox sensing by proteins and the array of post-translational oxidative modifications that can occur. In addition, we discuss studies utilising proteomic methods to identify redox-sensitive cardiac proteins, as well as those using this technology more broadly to assess redox signalling in cardiovascular disease.
Collapse
Affiliation(s)
- Rebecca L Charles
- King's College London, Department of Cardiology, Cardiovascular Division, The Rayne Institute, St Thomas' Hospital, London, UK
| | | |
Collapse
|
30
|
|
31
|
Lapolla A, Brioschi M, Banfi C, Tremoli E, Cosma C, Bonfante L, Cristoni S, Seraglia R, Traldi P. Nonenzymatically Glycated Lipoprotein ApoA-I in Plasma of Diabetic and Nephropathic Patients. Ann N Y Acad Sci 2008; 1126:295-9. [DOI: 10.1196/annals.1433.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 2008; 48:359-91. [PMID: 17914930 PMCID: PMC3083858 DOI: 10.1146/annurev.pharmtox.48.121506.124841] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caveolae, a subset of membrane (lipid) rafts, are flask-like invaginations of the plasma membrane that contain caveolin proteins, which serve as organizing centers for cellular signal transduction. Caveolins (-1, -2, and -3) have cytoplasmic N and C termini, palmitolylation sites, and a scaffolding domain that facilitates interaction and organization of signaling molecules so as to help provide coordinated and efficient signal transduction. Such signaling components include upstream entities (e.g., G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and steroid hormone receptors) and downstream components (e.g., heterotrimeric and low-molecular-weight G proteins, effector enzymes, and ion channels). Diseases associated with aberrant signaling may result in altered localization or expression of signaling proteins in caveolae. Caveolin-knockout mice have numerous abnormalities, some of which may reflect the impact of total body knockout throughout the life span. This review provides a general overview of caveolins and caveolae, signaling molecules that localize to caveolae, the role of caveolae/caveolin in cardiac and pulmonary pathophysiology, pharmacologic implications of caveolar localization of signaling molecules, and the possibility that caveolae might serve as a therapeutic target.
Collapse
Affiliation(s)
- Hemal H Patel
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
33
|
Lapolla A, Brioschi M, Banfi C, Tremoli E, Bonfante L, Cristoni S, Seraglia R, Traldi P. On the search for glycated lipoprotein ApoA-I in the plasma of diabetic and nephropathic patients. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:74-81. [PMID: 17721906 DOI: 10.1002/jms.1274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The analysis of plasma samples from healthy, diabetic and nephropathic subjects was carried out by 2D gel electrophoresis. This approach shows clear differences among the three classes of subjects. In the case of diabetic and nephropathic patients intense spots appear. Their enzymatic digestion followed by matrix assisted laser desorption ionization/mass spectrometry (MALDI/MS) analysis shows that an overexpression of unglycated and glycated ApoA-I is present in both pathological states. Interestingly, this trend is also observed for the retinol-binding protein (RBP). The data obtained can be relevant to assess possible risks associated either with the glycation level of ApoA-I or with the overexpression of RBP. In fact, in the former case possibly a different functionality of the glycated protein is to be expected, reflecting a different efficiency in cholesterol transport. In the latter case, the increase of RBP level can be related to the overweight of the diabetic subjects under investigation: it is known that obesity leads to RBP overexpression. In the case of nephropathic patients, the RBP level increases in parallel with serum creatinin.
Collapse
Affiliation(s)
- Annunziata Lapolla
- Dipartimento di Scienze Mediche e Chirurgiche, Cattedra di Malattie del Metabolismo, Università di Padova, Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Patel HH, Murray F, Insel PA. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol 2008:167-84. [PMID: 18491052 DOI: 10.1007/978-3-540-72843-6_7] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The efficiency of signal transduction in cells derives in part from subcellular, in particular plasma membrane, microdomains that organize signaling molecules and signaling complexes. Two related plasma membrane domains that compartmentalize G-protein coupled receptor (GPCR) signaling complexes are lipid (membrane) rafts, domains that are enriched in certain lipids, including cholesterol and sphingolipids, and caveolae, a subset of lipid rafts that are enriched in the protein caveolin. This review focuses on the properties of lipid rafts and caveolae, the mechanisms by which they localize signaling molecules and the identity of GPCR signaling components that are organized in these domains.
Collapse
Affiliation(s)
- H H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
35
|
Gramolini AO, Kislinger T, Alikhani-Koopaei R, Fong V, Thompson NJ, Isserlin R, Sharma P, Oudit GY, Trivieri MG, Fagan A, Kannan A, Higgins DG, Huedig H, Hess G, Arab S, Seidman JG, Seidman CE, Frey B, Perry M, Backx PH, Liu PP, MacLennan DH, Emili A. Comparative proteomics profiling of a phospholamban mutant mouse model of dilated cardiomyopathy reveals progressive intracellular stress responses. Mol Cell Proteomics 2007; 7:519-33. [PMID: 18056057 DOI: 10.1074/mcp.m700245-mcp200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defective mobilization of Ca2+ by cardiomyocytes can lead to cardiac insufficiency, but the causative mechanisms leading to congestive heart failure (HF) remain unclear. In the present study we performed exhaustive global proteomics surveys of cardiac ventricle isolated from a mouse model of cardiomyopathy overexpressing a phospholamban mutant, R9C (PLN-R9C), and exhibiting impaired Ca2+ handling and death at 24 weeks and compared them with normal control littermates. The relative expression patterns of 6190 high confidence proteins were monitored by shotgun tandem mass spectrometry at 8, 16, and 24 weeks of disease progression. Significant differential abundance of 593 proteins was detected. These proteins mapped to select biological pathways such as endoplasmic reticulum stress response, cytoskeletal remodeling, and apoptosis and included known biomarkers of HF (e.g. brain natriuretic peptide/atrial natriuretic factor and angiotensin-converting enzyme) and other indicators of presymptomatic functional impairment. These altered proteomic profiles were concordant with cognate mRNA patterns recorded in parallel using high density mRNA microarrays, and top candidates were validated by RT-PCR and Western blotting. Mapping of our highest ranked proteins against a human diseased explant and to available data sets indicated that many of these proteins could serve as markers of disease. Indeed we showed that several of these proteins are detectable in mouse and human plasma and display differential abundance in the plasma of diseased mice and affected patients. These results offer a systems-wide perspective of the dynamic maladaptions associated with impaired Ca2+ homeostasis that perturb myocyte function and ultimately converge to cause HF.
Collapse
Affiliation(s)
- Anthony O Gramolini
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Plasma membrane proteins serve essential functions for cells, interacting with both cellular and extracellular components, structures and signaling molecules. Additionally, plasma membrane proteins comprise more than two-thirds of the known protein targets for existing drugs. Consequently, defining membrane proteomes is crucial to understanding the role of plasma membranes in fundamental biological processes and for finding new targets for action in drug development. MS-based identification methods combined with chromatographic and traditional cell-biology techniques are powerful tools for proteomic mapping of proteins from organelles. However, the separation and identification of plasma membrane proteins remains a challenge for proteomic technology because of their hydrophobicity and microheterogeneity. Creative approaches to solve these problems and potential pitfalls will be discussed. Finally, a representative overview of the impressive achievements in this field will also be given.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Brown Medical School, Providence, RI, USA.
| | | |
Collapse
|