1
|
Teubner M, Fuß J, Kühn K, Krause K, Schmitz-Linneweber C. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:472-485. [PMID: 27743418 DOI: 10.1111/tpj.13396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Chloroplast RNA metabolism depends on a multitude of nuclear-encoded RNA-binding proteins (RBPs). Most known chloroplast RBPs address specific RNA targets and RNA-processing functions. However, members of the small chloroplast ribonucleoprotein family (cpRNPs) play a global role in processing and stabilizing chloroplast RNAs. Here, we show that the cpRNP CP33A localizes to a distinct sub-chloroplastic domain and is essential for chloroplast development. The loss of CP33A yields albino seedlings that exhibit aberrant leaf development and can only survive in the presence of an external carbon source. Genome-wide RNA association studies demonstrate that CP33A associates with all chloroplast mRNAs. For a given transcript, quantification of CP33A-bound versus free RNAs demonstrates that CP33A associates with the majority of most mRNAs analyzed. Our results further show that CP33A is required for the accumulation of a number of tested mRNAs, and is particularly relevant for unspliced and unprocessed precursor mRNAs. Finally, CP33A fails to associate with polysomes or to strongly co-precipitate with ribosomal RNA, suggesting that it defines a ribodomain that is separate from the chloroplast translation machinery. Collectively, these findings suggest that CP33A contributes to globally essential RNA processes in the chloroplasts of higher plants.
Collapse
Affiliation(s)
- Marlene Teubner
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Janina Fuß
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | - Kristina Kühn
- Humboldt-Universität Berlin, Institut für Biologie, Chausseestrasse 117, 10115, Berlin, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Dramsvegen 201, 9037, Tromsø, Norway
| | | |
Collapse
|
2
|
Chen YB, Wang D, Ge XL, Zhao BG, Wang XC, Wang BC. Comparative proteomics of leaves found at different stem positions of maize seedlings. JOURNAL OF PLANT PHYSIOLOGY 2016; 198:116-28. [PMID: 27176136 DOI: 10.1016/j.jplph.2016.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 05/11/2023]
Abstract
To better understand the roles of leaves at different stem positions during plant development, we measured the physiological properties of leaves 1-4 on maize seedling stems, and performed a proteomics study to investigate the differences in protein expression in the four leaves using two-dimensional difference gel electrophoresis and tandem mass spectrometry in conjunction with database searching. A total of 167 significantly differentially expressed protein spots were found and identified. Of these, 35% are involved in photosynthesis. By further analysis of the data, we speculated that in leaf 1 the seedling has started to transition from a heterotroph to an autotroph, development of leaf 2 is the time at which the seedling fully transitions from a heterotroph to an autotroph, and leaf maturity was reached only with fully expanded leaves 3 and 4, although there were still some protein expression differences in the two leaves. These results suggest that the different leaves make different contributions to maize seedling growth via modulation of the expression of the photosynthetic proteins. Together, these results provide insight into the roles of the different maize leaves as the plant develops from a heterotroph to an autotroph.
Collapse
Affiliation(s)
- Yi-Bo Chen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Dan Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Xuan-Liang Ge
- Institute of Cultivation and Tillage of Heilongjiang Academy of Agricultural Sciences, Haerbin, Heilongjiang, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China
| | - Xu-Chu Wang
- Key Laboratory of Biology and Genetic Resources for Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, China.
| |
Collapse
|
3
|
Ning DL, Liu KH, Liu CC, Liu JW, Qian CR, Yu Y, Wang YF, Wang YC, Wang BC. Large-scale comparative phosphoprotein analysis of maize seedling leaves during greening. PLANTA 2016; 243:501-517. [PMID: 26497871 DOI: 10.1007/s00425-015-2420-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023]
Abstract
MAIN CONCLUSION : Large-scale comparative phosphoprotein analysis in maize seedlings reveals a complicated molecular regulation mechanism at the phosphoproteomic level during de-etiolation. In the present study we report a phosphoproteomic study conducted on Zea mays etiolated leaves harvested at three time points during greening (etiolated seedlings and seedlings exposed to light for 6 or 12 h). We identified a total of 2483 phosphopeptides containing 2389 unambiguous phosphosites from 1339 proteins. The abundance of nearly 692 phosphorylated peptides containing 783 phosphosites was reproducible and profiled with high confidence among treatments. Comparisons with other large-scale phosphoproteomic studies revealed that 473 of the phosphosites are novel to this study. Of the 783 phosphosites identified, 171, 79, and 138 were identified in 0, 6, and 12 h samples, respectively, which suggest that regulation of phosphorylation plays important roles during maize seedling de-etiolation. Our experimental methods included enrichment of phosphoproteins, allowing the identification of a great number of low abundance proteins, such as transcription factors, protein kinases, and photoreceptors. Most of the identified phosphoproteins were involved in gene transcription, post-transcriptional regulation, or signal transduction, and only a few were involved in photosynthesis and carbon metabolism. It is noteworthy that tyrosine phosphorylation and calcium signaling pathways might play important roles during maize seedling de-etiolation. Taken together, we have elucidated a new level of complexity in light-induced reversible protein phosphorylation during maize seedling de-etiolation.
Collapse
|
4
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:1210. [PMID: 26858725 PMCID: PMC4729941 DOI: 10.3389/fpls.2015.01210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 05/19/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet-Tolosan, France
- *Correspondence: Valérie Cotelle,
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS–CEA–Université Aix-MarseilleSaint-Paul-lez-Durance, France
| |
Collapse
|
5
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26858725 DOI: 10.3389/fpis.2015.01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS Castanet-Tolosan, France
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille Saint-Paul-lez-Durance, France
| |
Collapse
|
6
|
Chao Q, Liu XY, Mei YC, Gao ZF, Chen YB, Qian CR, Hao YB, Wang BC. Light-regulated phosphorylation of maize phosphoenolpyruvate carboxykinase plays a vital role in its activity. PLANT MOLECULAR BIOLOGY 2014; 85:95-105. [PMID: 24435212 DOI: 10.1007/s11103-014-0171-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/02/2014] [Indexed: 05/21/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.
Collapse
Affiliation(s)
- Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
A systematic proteomic analysis of NaCl-stressed germinating maize seeds. Mol Biol Rep 2014; 41:3431-43. [PMID: 24700167 DOI: 10.1007/s11033-014-3205-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
Abstract
Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.
Collapse
|
8
|
Grimmer J, Rödiger A, Hoehenwarter W, Helm S, Baginsky S. The RNA-binding protein RNP29 is an unusual Toc159 transport substrate. FRONTIERS IN PLANT SCIENCE 2014; 5:258. [PMID: 24982663 PMCID: PMC4059279 DOI: 10.3389/fpls.2014.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/20/2014] [Indexed: 05/08/2023]
Abstract
The precursors of RNP29 and Ferredoxin (Fd2) were previously identified in the cytosol of ppi2 plant cells with their N-terminal amino acid acetylated. Here, we explore whether precursor accumulation in ppi2 is characteristic for Toc159 client proteins, by characterizing the import properties of the RNP29 precursor in comparison to Fd2 and other Toc159-dependent or independent substrates. We find specific accumulation of the RNP29 precursor in ppi2 but not in wild type or ppi1 protoplasts. With the exception of Lhcb4, precursor accumulation is also detected with all other tested constructs in ppi2. However, RNP29 is clearly different from the other proteins because only precursor but almost no mature protein is detectable in protoplast extracts. Co-transformation of RNP29 with Toc159 complements its plastid import, supporting the hypothesis that RNP29 is a Toc159-dependent substrate. Exchange of the second amino acid in the RNP29 transit peptide to Glu or Asn prevents methionine excision but not N-terminal acetylation, suggesting that different N-acetyltransferases may act on chloroplast precursor proteins in vivo. All different RNP29 constructs are efficiently imported into wild type but not into ppi2 plastids, arguing for a minor impact of the N-terminal amino acid on the import process.
Collapse
Affiliation(s)
- Julia Grimmer
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Anja Rödiger
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | | | - Stefan Helm
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
| | - Sacha Baginsky
- Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-WittenbergHalle (Saale), Germany
- *Correspondence: Sacha Baginsky, Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany e-mail:
| |
Collapse
|
9
|
Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C. Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-α-acetylation features. Mol Cell Proteomics 2012; 11:M111.015131. [PMID: 22223895 DOI: 10.1074/mcp.m111.015131] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
N-terminal modifications play a major role in the fate of proteins in terms of activity, stability, or subcellular compartmentalization. Such modifications remain poorly described and badly characterized in proteomic studies, and only a few comparison studies among organisms have been made available so far. Recent advances in the field now allow the enrichment and selection of N-terminal peptides in the course of proteome-wide mass spectrometry analyses. These targeted approaches unravel as a result the extent and nature of the protein N-terminal modifications. Here, we aimed at studying such modifications in the model plant Arabidopsis thaliana to compare these results with those obtained from a human sample analyzed in parallel. We applied large scale analysis to compile robust conclusions on both data sets. Our data show strong convergence of the characterized modifications especially for protein N-terminal methionine excision, co-translational N-α-acetylation, or N-myristoylation between animal and plant kingdoms. Because of the convergence of both the substrates and the N-α-acetylation machinery, it was possible to identify the N-acetyltransferases involved in such modifications for a small number of model plants. Finally, a high proportion of nuclear-encoded chloroplast proteins feature post-translational N-α-acetylation of the mature protein after removal of the transit peptide. Unlike animals, plants feature in a dedicated pathway for post-translational acetylation of organelle-targeted proteins. The corresponding machinery is yet to be discovered.
Collapse
Affiliation(s)
- Willy V Bienvenut
- CNRS, Centre de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Narsai R, Law SR, Carrie C, Xu L, Whelan J. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1342-62. [PMID: 21908688 PMCID: PMC3252162 DOI: 10.1104/pp.111.183129] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 05/20/2023]
Abstract
Germination represents a rapid transition from dormancy to a high level of metabolic activity. In-depth transcriptomic profiling at 10 time points in Arabidopsis (Arabidopsis thaliana), including fresh seed, ripened seed, during stratification, germination, and postgermination per se, revealed specific temporal expression patterns that to our knowledge have not previously been identified. Over 10,000 transcripts were differentially expressed during cold stratification, with subequal numbers up-regulated as down-regulated, revealing an active period in preparing seeds for germination, where transcription and RNA degradation both play important roles in regulating the molecular sequence of events. A previously unidentified transient expression pattern was observed for a group of genes, whereby a significant rise in expression was observed at the end of stratification and significantly lower expression was observed 6 h later. These genes were further defined as germination specific, as they were most highly expressed at this time in germination, in comparison with all developmental tissues in the AtGenExpress data set. Functional analysis of these genes using genetic inactivation revealed that they displayed a significant enrichment for embryo-defective or -arrested phenotype. This group was enriched in genes encoding mitochondrial and nuclear RNA-processing proteins, including more than 45% of all pentatricopeptide domain-containing proteins expressed during germination. The presence of mitochondrial DNA replication factors and RNA-processing functions in this germination-specific subset represents the earliest events in organelle biogenesis, preceding any changes associated with energy metabolism. Green fluorescent protein analysis also confirmed organellar localization for 65 proteins, largely showing germination-specific expression. These results suggest that mitochondrial biogenesis involves a two-step process to produce energetically active organelles: an initial phase at the end of stratification involving mitochondrial DNA synthesis and RNA processing, and a later phase for building the better-known energetic functions. This also suggests that signals with a mitochondrial origin and retrograde signals may be crucial for successful germination.
Collapse
Affiliation(s)
- Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
11
|
Ruwe H, Kupsch C, Teubner M, Schmitz-Linneweber C. The RNA-recognition motif in chloroplasts. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1361-71. [PMID: 21330002 DOI: 10.1016/j.jplph.2011.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 05/10/2023]
Abstract
Chloroplast RNA metabolism is characterized by multiple RNA processing steps that require hundreds of RNA binding proteins. A growing number of RNA binding proteins have been shown to mediate specific RNA processing steps in the chloroplast, but little do we know about their regulatory importance or mode of molecular action. This review summarizes knowledge on chloroplast proteins that contain an RNA recognition motif, a classical RNA binding domain widespread in pro- and eukaryotes. Several members of this family respond to external and internal stimuli by changes in their expression levels and protein modification state. They therefore appear as ideal candidates for regulating chloroplast RNA processing under shifting environmental conditions.
Collapse
Affiliation(s)
- Hannes Ruwe
- Institute of Biology, Humboldt University of Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | | | |
Collapse
|
12
|
Abstract
Cotranslational protein N-terminal modifications, including proteolytic maturation such as initiator methionine excision by methionine aminopeptidases and N-terminal blocking, occur universally. Protein alpha-N-acetylation, or the transfer of the acetyl moiety of acetyl-coenzyme A to nascent protein N-termini, catalysed by multisubunit N-terminal acetyltransferase complexes, generally takes place during protein translation. Nearly all protein modifications are known to influence different protein aspects such as folding, stability, activity and localization, and several studies have indicated similar functions for protein alpha-N-acetylation. However, until recently, protein alpha-N-acetylation remained poorly explored, mainly due to the absence of targeted proteomics technologies. The recent emergence of N-terminomics technologies that allow isolation of protein N-terminal peptides, together with proteogenomics efforts combining experimental and informational content have greatly boosted the field of alpha-N-acetylation. In this review, we report on such emerging technologies as well as on breakthroughs in our understanding of protein N-terminal biology.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, VIB, Ghent, Belgium.
| | | | | |
Collapse
|
13
|
Arginine methylation mediated by the Arabidopsis homolog of PRMT5 is essential for proper pre-mRNA splicing. Proc Natl Acad Sci U S A 2010; 107:19114-9. [PMID: 20956294 DOI: 10.1073/pnas.1009669107] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein arginine methylation, one of the most abundant and important posttranslational modifications, is involved in a multitude of biological processes in eukaryotes, such as transcriptional regulation and RNA processing. Symmetric arginine dimethylation is required for snRNP biogenesis and is assumed to be essential for pre-mRNA splicing; however, except for in vitro evidence, whether it affects splicing in vivo remains elusive. Mutation in an Arabidopsis symmetric arginine dimethyltransferase, AtPRMT5, causes pleiotropic developmental defects, including late flowering, but the underlying molecular mechanism is largely unknown. Here we show that AtPRMT5 methylates a wide spectrum of substrates, including some RNA binding or processing factors and U snRNP AtSmD1, D3, and AtLSm4 proteins, which are involved in RNA metabolism. RNA-seq analyses reveal that AtPRMT5 deficiency causes splicing defects in hundreds of genes involved in multiple biological processes. The splicing defects are identified in transcripts of several RNA processing factors involved in regulating flowering time. In particular, splicing defects at the flowering regulator flowering locus KH domain (FLK) in atprmt5 mutants reduce its functional transcript and protein levels, resulting in the up-regulation of a flowering repressor flowering locus C (FLC) and consequently late flowering. Taken together, our findings uncover an essential role for arginine methylation in proper pre-mRNA splicing that impacts diverse developmental processes.
Collapse
|
14
|
Liu X, Feng R, Du L. The role of enoyl-CoA hydratase short chain 1 and peroxiredoxin 3 in PP2-induced apoptosis in human breast cancer MCF-7 cells. FEBS Lett 2010; 584:3185-92. [DOI: 10.1016/j.febslet.2010.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 11/27/2022]
|
15
|
Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 2010; 9:2019-33. [PMID: 20525998 DOI: 10.1074/mcp.m110.000349] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The quality of cotton fiber is determined by its final length and strength, which is a function of primary and secondary cell wall deposition. Using a comparative proteomics approach, we identified 104 proteins from cotton ovules 10 days postanthesis with 93 preferentially accumulated in the wild type and 11 accumulated in the fuzzless-lintless mutant. Bioinformatics analysis indicated that nucleotide sugar metabolism was the most significantly up-regulated biochemical process during fiber elongation. Seven protein spots potentially involved in pectic cell wall polysaccharide biosynthesis were specifically accumulated in wild-type samples at both the protein and transcript levels. Protein and mRNA expression of these genes increased when either ethylene or lignoceric acid (C24:0) was added to the culture medium, suggesting that these compounds may promote fiber elongation by modulating the production of cell wall polymers. Quantitative analysis revealed that fiber primary cell walls contained significantly higher amounts of pectin, whereas more hemicellulose was found in ovule samples. Significant fiber growth was observed when UDP-L-rhamnose, UDP-D-galacturonic acid, or UDP-D-glucuronic acid, all of which were readily incorporated into the pectin fraction of cell wall preparations, was added to the ovule culture medium. The short root hairs of Arabidopsis uer1-1 and gae6-1 mutants were complemented either by genetic transformation of the respective cotton cDNA or by adding a specific pectin precursor to the growth medium. When two pectin precursors, produced by either UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase 4-reductase or by UDP-D-glucose dehydrogenase and UDP-D-glucuronic acid 4-epimerase successively, were used in the chemical complementation assay, wild-type root hair lengths were observed in both cut1 and ein2-5 Arabidopsis seedlings, which showed defects in C24:0 biosynthesis or ethylene signaling, respectively. Our results suggest that ethylene and C24:0 may promote cotton fiber and Arabidopsis root hair growth by activating the pectin biosynthesis network, especially UDP-L-rhamnose and UDP-D-galacturonic acid synthesis.
Collapse
Affiliation(s)
- Chao-You Pang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gao X, Zhang X, Zheng J, He F. Proteomics in China: Ready for prime time. SCIENCE CHINA-LIFE SCIENCES 2010; 53:22-33. [DOI: 10.1007/s11427-010-0027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 12/28/2009] [Indexed: 12/27/2022]
|
17
|
Dong HX, Li HX, Xie GS, Zeng HL. Identification of Differentially Expressed Proteins Associated with Chlorophyll-Deficient Mutant Rice. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/ajps.2009.344.352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Ni RJ, Shen Z, Yang CP, Wu YD, Bi YD, Wang BC. Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column. Mol Biol Rep 2009; 37:637-41. [PMID: 19288221 DOI: 10.1007/s11033-009-9478-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 02/18/2009] [Indexed: 12/01/2022]
Abstract
Proteins could be well separated and further identified by the use of 2-DE and related techniques. Yet, there are many proteins could not be detected even by more effective dyes because of their inherent low abundance or their low resolution. As a result, polyA-affinity column was used as a method to enrich polyA-binding proteins and then identified by MALDI-TOF-MS. In this study, 23 Arabidopsis chloroplast protein spots coded by 18 genes were identified, and majority of these proteins were classified into three related categories according to their annotations in the Swiss-Prot database, including NAD-, RNA-, and ATP-binding motifs, respectively. The major goal of the present Arabidopsis chloroplast proteomics project was to identify novel polyA-binding proteins or protein isoforms located in Arabidopsis chloroplasts and the specific research of cellular proteins with extremely low transcription levels could be fulfilled.
Collapse
Affiliation(s)
- Rui-Juan Ni
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology, Ministry of Education, Northeast Forestry University, 150040, Harbin, China
| | | | | | | | | | | |
Collapse
|
19
|
Han P, Li Q, Zhu YX. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. THE PLANT CELL 2008; 20:1482-93. [PMID: 18591352 PMCID: PMC2483370 DOI: 10.1105/tpc.108.058867] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/02/2008] [Accepted: 06/14/2008] [Indexed: 05/18/2023]
Abstract
Stem cell fate in the Arabidopsis thaliana shoot apical meristem (SAM) is controlled by WUSCHEL (WUS) and CLAVATA. Here, we examine BARD1 (for BRCA1-associated RING domain 1), which had previously been implicated in DNA repair functions; we find that it also regulates WUS expression. We observed severe SAM defects in the knockout mutant bard1-3. WUS transcripts accumulated >238-fold in bard1-3 compared with the wild type and were located mainly in the outermost cell layers instead of the usual organizing center. A specific WUS promoter region was recognized by nuclear protein extracts obtained from wild-type plants, and this protein-DNA complex was recognized by antibodies against BARD1. The double mutant (wus-1 bard1-3) showed prematurely terminated SAM structures identical to those of wus-1, indicating that BARD1 functions through regulation of WUS. BARD1 overexpression resulted in reduced WUS transcript levels, giving a wus-1-like phenotype. Either full-length BARD1 or a clone that encoded the C-terminal domain (BARD1:C-ter;bard1-3) was sufficient to complement the bard1-3 phenotype, indicating that BARD1 functions through its C-terminal domain. Our data suggest that BARD1 regulates SAM organization and maintenance by limiting WUS expression to the organizing center.
Collapse
Affiliation(s)
- Pei Han
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
20
|
Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS One 2008; 3:e1994. [PMID: 18431481 PMCID: PMC2291561 DOI: 10.1371/journal.pone.0001994] [Citation(s) in RCA: 508] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 03/06/2008] [Indexed: 01/24/2023] Open
Abstract
Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP). The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that ‘spectral counting’ can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components) and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence was found for suggested targeting via the secretory system. This study provides the most comprehensive chloroplast proteome analysis to date and an expanded Plant Proteome Database (PPDB) in which all MS data are projected on identified gene models.
Collapse
Affiliation(s)
- Boris Zybailov
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Heidi Rutschow
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Andrea Rudella
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Olof Emanuelsson
- Stockholm Bioinformatics Center, AlbaNova, Stockholm University, Stockholm, Sweden
| | - Qi Sun
- Computation Biology Service Unit, Cornell Theory Center, Cornell University, Ithaca, New York, United States of America
| | - Klaas J. van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Li Q, Wang BC, Xu Y, Zhu YX. Systematic studies of 12S seed storage protein accumulation and degradation patterns during Arabidopsis seed maturation and early seedling germination stages. BMB Rep 2007; 40:373-81. [PMID: 17562289 DOI: 10.5483/bmbrep.2007.40.3.373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seed storage proteins (SSPs) are important for seed germination and early seedling growth. We studied the accumulation and degradation profiles of four major Arabidopsis 12S SSPs using a 2-DE scheme combined with mass spectrometric methods. On the 2-DE map of 23 dpa (days post anthesis) siliques, 48 protein spots were identified as putative full-length or partial alpha, beta subunits. Only 9 of them were found in 12 dpa siliques with none in younger than 8 dpa siliques, indicating that the accumulation of 12S SSPs started after the completion of cell elongation processes both in siliques and in developing seeds. The length and strength of transcription activity for each gene determined the final contents of respective SSP. At the beginning of imbibition, 68 SSP spots were identified while only 2 spots were found at the end of the 4 d germination period, with alpha subunits degraded more rapidly than the beta subunits. The CRC alpha subunit was found to degrade from its C-terminus with conserved sequence motifs. Our data provide an important basis for understanding the nutritional value of developing plant seeds and may serve as a useful platform for other species.
Collapse
Affiliation(s)
- Qing Li
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
22
|
Xu Y, Wang BC, Zhu YX. Identification of proteins expressed at extremely low level in Arabidopsis leaves. Biochem Biophys Res Commun 2007; 358:808-12. [PMID: 17511964 DOI: 10.1016/j.bbrc.2007.04.189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 11/30/2022]
Abstract
2-DE related techniques have been broadly used for protein separation and identification in recent years. However, many important cellular components often escape detection by 2-DE due to its inherent low resolution. Here we use a polyU-affinity column to enrich proteins with nucleotide-binding motifs. As a result, 26 enriched protein spots, including three new Arabidopsis RNA-binding proteins cp31A, cp31B, and CSP41, are identified by MALDI-TOF-MS. In the sum, 15 protein spots encoded by 12 individual genes are observed on the 2-DE only after binding to the polyU-affinity column. Two of these genes are expressed at lower than 0.1% the level of TUB4 that were considered mainly as non-expressed genes in several ATH1 microarray analysis of Arabidopsis leaf samples. Our results suggest that polyU or similar media may be combined with 2-DE techniques to identify cellular proteins with extremely low transcription levels to fulfill specific research needs.
Collapse
Affiliation(s)
- Yu Xu
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
23
|
Li HB, Qin YM, Pang Y, Song WQ, Mei WQ, Zhu YX. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. THE NEW PHYTOLOGIST 2007; 175:462-471. [PMID: 17635221 DOI: 10.1111/j.1469-8137.2007.02120.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) play important roles in multiple physiological processes such as cellular signalling and stress responses, whereas, the hydrogen peroxide (H(2)O(2)) scavenging enzyme ascorbate peroxidase (APX) participates in the regulation of intracellular ROS levels. Here, a cotton (Gossypium hirsutum) cytosolic APX1 (GhAPX1) was identified to be highly accumulated during cotton fibre elongation by proteomic analysis. GhAPX1 cDNA contained an open reading frame of 753-bp encoding a protein of 250 amino acid residues. When GhAPX1 was expressed in Escherichia coli, the purified GhAPX1 was a dimer consisting of two identical subunits with a molecular mass of 28 kDa. GhAPX1 showed the highest substrate specificity for ascorbate. Quantitative real-time polymerase chain reaction (PCR) analyses showed that GhAPX1 was highly expressed in wild-type 5-d postanthesis fibres with much lower transcript levels in the fuzzless-lintless mutant ovules. Treating in vitro cultured wild-type cotton ovules with exogenous H(2)O(2) or ethylene induced the expression of GhAPX1 and hence increased total APX activity proportionally, followed by extended fibre cell elongation. These data suggest that GhAPX1 expression is upregulated in response to an increase in cellular H(2)O(2) and ethylene. GhAPX1 encodes a functional enzyme that is involved in hydrogen peroxide homeostasis during cotton fibre development.
Collapse
Affiliation(s)
- Hong-Bin Li
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yong-Mei Qin
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu Pang
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wen-Qiang Song
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wen-Qian Mei
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Xian Zhu
- National Laboratory of Protein Engineering and Plant Genetic Engineering and Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
24
|
Veljanovski V, Vanderbeld B, Knowles VL, Snedden WA, Plaxton WC. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings. PLANT PHYSIOLOGY 2006; 142:1282-93. [PMID: 16963519 PMCID: PMC1630754 DOI: 10.1104/pp.106.087171] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 09/06/2006] [Indexed: 05/11/2023]
Abstract
A vacuolar acid phosphatase (APase) that accumulates during phosphate (Pi) starvation of Arabidopsis (Arabidopsis thaliana) suspension cells was purified to homogeneity. The final preparation is a purple APase (PAP), as it exhibited a pink color in solution (A(max) = 520 nm). It exists as a 100-kD homodimer composed of 55-kD glycosylated subunits that cross-reacted with an anti-(tomato intracellular PAP)-IgG. BLAST analysis of its 23-amino acid N-terminal sequence revealed that this PAP is encoded by At5g34850 (AtPAP26; one of 29 PAP genes in Arabidopsis) and that a 30-amino acid signal peptide is cleaved from the AtPAP26 preprotein during its translocation into the vacuole. AtPAP26 displays much stronger sequence similarity to orthologs from other plants than to other Arabidopsis PAPs. AtPAP26 exhibited optimal activity at pH 5.6 and broad substrate selectivity. The 5-fold increase in APase activity that occurred in Pi-deprived cells was paralleled by a similar increase in the amount of a 55-kD anti-(tomato PAP or AtPAP26)-IgG immunoreactive polypeptide and a >30-fold reduction in intracellular free Pi concentration. Semiquantitative reverse transcription-PCR indicated that Pi-sufficient, Pi-starved, and Pi-resupplied cells contain similar amounts of AtPAP26 transcripts. Thus, transcriptional controls appear to exert little influence on AtPAP26 levels, relative to translational and/or proteolytic controls. APase activity and AtPAP26 protein levels were also up-regulated in shoots and roots of Pi-deprived Arabidopsis seedlings. We hypothesize that AtPAP26 recycles Pi from intracellular P metabolites in Pi-starved Arabidopsis. As AtPAP26 also exhibited alkaline peroxidase activity, a potential additional role in the metabolism of reactive oxygen species is discussed.
Collapse
Affiliation(s)
- Vasko Veljanovski
- Department of Biology , Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|