1
|
Rezaie-Tavirani M, Hasanzadeh H, Seyyedi S, Zali H. Proteomic Analysis of the Effect of Extremely Low-Frequency Electromagnetic Fields (ELF-EMF) With Different Intensities in SH-SY5Y Neuroblastoma Cell Line. J Lasers Med Sci 2017; 8:79-83. [PMID: 28652900 DOI: 10.15171/jlms.2017.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Introduction: During the last 3 decades, human is exposed to extremely low frequency electromagnetic fields (ELF-EMF) emitted by power lines and electronic devices. It is now well accepted that ELF-EMF are able to produce a variety of biological effects, although the molecular mechanism is unclear and controversial. Investigation of different intensities effects of 50 Hz ELF-EMF on cell morphology and protein expression is the aim of this study. Methods: SH-SY5Y human neuroblastoma cell line was exposed to 0.5 and 1 mT 50 Hz (ELF-EMF) for 3 hours. Proteomics techniques were used to determine the effects of these fields on protein expression. Bioinformatic and statistical analysis of proteomes were performed using Progensis SameSpots software. Results: Our results showed that exposure to ELF-EMF changes cell morphology and induces a dose-dependent decrease in the proliferation rate of the cells. The proteomic studies and bioinformatic analysis indicate that exposure to 50 Hz ELF-EMF leads to alteration of cell protein expression in both dose-dependent and intensity dependent manner, but the later is more pronounced. Conclusion: Our data suggests that increased intensity of ELF-EMF may be associated with more alteration in cell protein expression, as well as effect on cell morphology and proliferation.
Collapse
Affiliation(s)
| | - Hadi Hasanzadeh
- Cancer Research Center and Department of Medical Physics, Semnan University of Medical Sciences, Semnan, Iran
| | - Samaneh Seyyedi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hakimeh Zali
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Leszczynski D. Radiation proteomics: A brief overview. Proteomics 2014; 14:481-8. [DOI: 10.1002/pmic.201300390] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/30/2013] [Accepted: 12/01/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Dariusz Leszczynski
- STUK - Radiation and Nuclear Safety Authority; Helsinki Finland
- Department of Biosciences and Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
3
|
Grellier J, Ravazzani P, Cardis E. Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe. ENVIRONMENT INTERNATIONAL 2014; 62:55-63. [PMID: 24161447 DOI: 10.1016/j.envint.2013.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 05/16/2023]
Abstract
Over the last two decades residential exposure to extremely low frequency magnetic fields (ELF MF) has been associated with childhood leukaemia relatively consistently in epidemiological studies, though causality is still under investigation. We aimed to estimate the cases of childhood leukaemia that might be attributable to exposure to ELF MF in the European Union (EU27), if the associations seen in epidemiological studies were causal. We estimated distributions of ELF MF exposure using studies identified in the existing literature. Individual distributions of exposure were integrated using a probabilistic mixture distribution approach. Exposure-response functions were estimated from the most recently published pooled analysis of epidemiological data. Probabilistic simulation was used to estimate population attributable fractions (AFP) and attributable cases of childhood leukaemia in the EU27. By assigning the literature review-based exposure distribution to all EU27 countries, we estimated the total annual number of cases of leukaemia attributable to ELF MF at between ~50 (95% CIs: -14, 132) and ~60 (95% CIs: -9, 610), depending on whether exposure-response was modelled categorically or continuously, respectively, for a non-threshold effect. This corresponds to between ~1.5% and ~2.0% of all incident cases of childhood leukaemia occurring annually in the EU27. Considerable uncertainties are due to scarce data on exposure and the choice of exposure-response model, demonstrating the importance of further research into better understanding mechanisms of the potential association between ELF MF exposure and childhood leukaemia and the need for improved monitoring of residential exposures to ELF MF in Europe.
Collapse
Affiliation(s)
- James Grellier
- Centre for Research in Environmental Epidemiology (CREAL), PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), PRBB, Doctor Aiguader, 88, 08003 Barcelona, Spain; Department of Epidemiology and Biostatistics, Imperial College, St. Mary's Campus, Norfolk Place, London W2 1PG, UK.
| | | | | |
Collapse
|
4
|
Chen G, Xu Z. Global protein expression in response to extremely low frequency magnetic fields. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 990:107-10. [PMID: 23378006 DOI: 10.1007/978-94-007-5896-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Daily exposure to extremely low frequency magnetic fields (ELF MF) in the environment has raised public concerns on human health. Epidemiological studies suggest that exposure to ELF MF might associate with an elevated risk of cancer and other diseases in humans. To explain and/or support epidemiological observations, many laboratory studies have been conducted to elucidate the biological effects of ELF MF exposure and the underlying mechanisms of action. In order to reveal the global effects of ELF MF on protein expression, the proteomics approaches has been employed in this research field. In 2005, WHO organized a Workshop on Application of Proteomics and Transcriptomics in electromagnetic fields (EMF) Research in Helsinki, Finland to discuss the related problems and solutions. Later the journal Proteomics published a special issue devoted to the application of proteomics to EMF research. This chapter aims to summarize the current research progress and discuss the applicability of proteomics approaches in studying on ELF MF induced biological effects and the underlying mechanisms.
Collapse
Affiliation(s)
- Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | | |
Collapse
|
5
|
Chen G, Lu D, Chiang H, Leszczynski D, Xu Z. Using model organism Saccharomyces cerevisiae to evaluate the effects of ELF-MF and RF-EMF exposure on global gene expression. Bioelectromagnetics 2012; 33:550-60. [DOI: 10.1002/bem.21724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/07/2012] [Indexed: 11/07/2022]
|
6
|
Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C, Angelucci S. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem 2011; 112:3797-806. [DOI: 10.1002/jcb.23310] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Karhumaa K, Påhlman AK, Hahn-Hägerdal B, Levander F, Gorwa-Grauslund MF. Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast 2009; 26:371-82. [DOI: 10.1002/yea.1673] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Minden JS, Dowd SR, Meyer HE, Stühler K. Difference gel electrophoresis. Electrophoresis 2009; 30 Suppl 1:S156-61. [DOI: 10.1002/elps.200900098] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Huang HL, Cendan CM, Roza C, Okuse K, Cramer R, Timms JF, Wood JN. Proteomic profiling of neuromas reveals alterations in protein composition and local protein synthesis in hyper-excitable nerves. Mol Pain 2008; 4:33. [PMID: 18700027 PMCID: PMC2525634 DOI: 10.1186/1744-8069-4-33] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 08/12/2008] [Indexed: 12/22/2022] Open
Abstract
Neuropathic pain may arise following peripheral nerve injury though the molecular mechanisms associated with this are unclear. We used proteomic profiling to examine changes in protein expression associated with the formation of hyper-excitable neuromas derived from rodent saphenous nerves. A two-dimensional difference gel electrophoresis (2D-DIGE) profiling strategy was employed to examine protein expression changes between developing neuromas and normal nerves in whole tissue lysates. We found around 200 proteins which displayed a >1.75-fold change in expression between neuroma and normal nerve and identified 55 of these proteins using mass spectrometry. We also used immunoblotting to examine the expression of low-abundance ion channels Nav1.3, Nav1.8 and calcium channel alpha2delta-1 subunit in this model, since they have previously been implicated in neuronal hyperexcitability associated with neuropathic pain. Finally, S35methionine in vitro labelling of neuroma and control samples was used to demonstrate local protein synthesis of neuron-specific genes. A number of cytoskeletal proteins, enzymes and proteins associated with oxidative stress were up-regulated in neuromas, whilst overall levels of voltage-gated ion channel proteins were unaffected. We conclude that altered mRNA levels reported in the somata of damaged DRG neurons do not necessarily reflect levels of altered proteins in hyper-excitable damaged nerve endings. An altered repertoire of protein expression, local protein synthesis and topological re-arrangements of ion channels may all play important roles in neuroma hyper-excitability.
Collapse
Affiliation(s)
- Hong-Lei Huang
- Molecular Nociception Group, NPP Department, UCL, Gower Street, London, WC1E 6BT, UK
| | - Cruz-Miguel Cendan
- Molecular Nociception Group, NPP Department, UCL, Gower Street, London, WC1E 6BT, UK
| | - Carolina Roza
- Dpto. Fisiología Universidad de Alcalá Edificio de Medicina, Campus Universitario28871 Alcalá de Henares, Madrid, Spain
| | - Kenji Okuse
- Division of Cell & Molecular Biology Faculty of Natural Sciences Imperial College, London, SW7 2AZ, UK
| | - Rainer Cramer
- Department of Chemistry and The BioCentre, University of Reading, PO Box 221, Reading, RG6 6AS, UK
| | - John F Timms
- Cancer Proteomics Laboratory, EGA Institute for Women's Health, University College London, Gower Street, London, WC1E 6BT, UK
| | - John N Wood
- Molecular Nociception Group, NPP Department, UCL, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
10
|
Damodaran S, Wood TD, Nagarajan P, Rabin RA. Evaluating peptide mass fingerprinting-based protein identification. GENOMICS PROTEOMICS & BIOINFORMATICS 2008; 5:152-7. [PMID: 18267296 PMCID: PMC5054195 DOI: 10.1016/s1672-0229(08)60002-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identification of proteins by mass spectrometry (MS) is an essential step in proteomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.
Collapse
Affiliation(s)
- Senthilkumar Damodaran
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
11
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|