1
|
Lei H, Liu W, Si J, Wang J, Zhang T. Analyzing the regulation of miRNAs on protein-protein interaction network in Hodgkin lymphoma. BMC Bioinformatics 2019; 20:449. [PMID: 31477006 PMCID: PMC6720096 DOI: 10.1186/s12859-019-3041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Hodgkin Lymphoma (HL) is a type of aggressive malignancy in lymphoma that has high incidence in young adults and elderly patients. Identification of reliable diagnostic markers and efficient therapeutic targets are especially important for the diagnosis and treatment of HL. Although many HL-related molecules have been identified, our understanding on the molecular mechanisms underlying the disease is still far from complete due to its complex and heterogeneous characteristics. In such situation, exploring the molecular mechanisms underlying HL via systems biology approaches provides a promising option. In this study, we try to elucidate the molecular mechanisms related to the disease and identify potential pharmaceutical targets from a network-based perspective. Results We constructed a series of network models. Based on the analysis of these networks, we attempted to identify the biomarkers and elucidate the molecular mechanisms underlying HL. Initially, we built three different but related protein networks, i.e., background network, HL-basic network and HL-specific network. By analyzing these three networks, we investigated the connection characteristic of the HL-related proteins. Subsequently, we explored the miRNA regulation on HL-specific network and analyzed three kinds of simple regulation patterns, i.e., co-regulation of protein pairs, as well as the direct and indirect regulation of triple proteins. Finally, we constructed a simplified protein network combined with the regulation of miRNAs on proteins to better understand the relation between HL-related proteins and miRNAs. Conclusions We find that the HL-related proteins are more likely to connect with each other compared to other proteins. Moreover, the HL-specific network can be further divided into five sub-networks and 49 proteins as the backbone of HL-specific network make up and connect these 5 sub-networks. Thus, they may be closely associated with HL. In addition, we find that the co-regulation of protein pairs is the main regulatory pattern of miRNAs on the protein network in the HL-specific network. According to the regulation of miRNA on protein network, we have identified 5 core miRNAs as the potential biomarkers for diagnostic of HL. Finally, several protein pathways have been identified to closely associated with HL, which provides deep insights into underlying mechanism of HL. Electronic supplementary material The online version of this article (10.1186/s12859-019-3041-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Lei
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,School of Continuation Education, Tianjin Medical University, Tianjin, China
| | - Wenxu Liu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jiarui Si
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tao Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
2
|
Psatha K, Kollipara L, Voutyraki C, Divanach P, Sickmann A, Rassidakis GZ, Drakos E, Aivaliotis M. Deciphering lymphoma pathogenesis via state-of-the-art mass spectrometry-based quantitative proteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1047:2-14. [PMID: 27979587 DOI: 10.1016/j.jchromb.2016.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/18/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022]
Abstract
Mass spectrometry-based quantitative proteomics specifically applied to comprehend the pathogenesis of lymphoma has incremental value in deciphering the heterogeneity in complex deregulated molecular mechanisms/pathways of the lymphoma entities, implementing the current diagnostic and therapeutic strategies. Essential global, targeted and functional differential proteomics analyses although still evolving, have been successfully implemented to shed light on lymphoma pathogenesis to discover and explore the role of potential lymphoma biomarkers and drug targets. This review aims to outline and appraise the present status of MS-based quantitative proteomic approaches in lymphoma research, introducing the current state-of-the-art MS-based proteomic technologies, the opportunities they offer in biological discovery in human lymphomas and the related limitation issues arising from sample preparation to data evaluation. It is a synopsis containing information obtained from recent research articles, reviews and public proteomics repositories (PRIDE). We hope that this review article will aid, assimilate and assess all the information aiming to accelerate the development and validation of diagnostic, prognostic or therapeutic targets for an improved and empowered clinical proteomics application in lymphomas in the nearby future.
Collapse
Affiliation(s)
- Konstantina Psatha
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece; School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathology, School of Medicine, University of Crete, Heraklion, Greece
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | | | - Peter Divanach
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom; Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum, Germany
| | - George Z Rassidakis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Department of Pathology and Cytology, Karolinska University Hospital and Karolinska Institute, Radiumhemmet, Stockholm, SE-17176, Sweden
| | - Elias Drakos
- Department of Pathology, School of Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
3
|
Staal JA, Pei Y, Rood BR. A Proteogenomic Approach to Understanding MYC Function in Metastatic Medulloblastoma Tumors. Int J Mol Sci 2016; 17:ijms17101744. [PMID: 27775567 PMCID: PMC5085772 DOI: 10.3390/ijms17101744] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/23/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022] Open
Abstract
Brain tumors are the leading cause of cancer-related deaths in children, and medulloblastoma is the most prevalent malignant childhood/pediatric brain tumor. Providing effective treatment for these cancers, with minimal damage to the still-developing brain, remains one of the greatest challenges faced by clinicians. Understanding the diverse events driving tumor formation, maintenance, progression, and recurrence is necessary for identifying novel targeted therapeutics and improving survival of patients with this disease. Genomic copy number alteration data, together with clinical studies, identifies c-MYC amplification as an important risk factor associated with the most aggressive forms of medulloblastoma with marked metastatic potential. Yet despite this, very little is known regarding the impact of such genomic abnormalities upon the functional biology of the tumor cell. We discuss here how recent advances in quantitative proteomic techniques are now providing new insights into the functional biology of these aggressive tumors, as illustrated by the use of proteomics to bridge the gap between the genotype and phenotype in the case of c-MYC-amplified/associated medulloblastoma. These integrated proteogenomic approaches now provide a new platform for understanding cancer biology by providing a functional context to frame genomic abnormalities.
Collapse
Affiliation(s)
- Jerome A Staal
- Multiple Sclerosis Department, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia.
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Yanxin Pei
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Brian R Rood
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
4
|
Hofmann A, Thiesler T, Gerrits B, Behnke S, Sobotzki N, Omasits U, Bausch-Fluck D, Bock T, Aebersold R, Moch H, Tinguely M, Wollscheid B. Surfaceome of classical Hodgkin and non-Hodgkin lymphoma. Proteomics Clin Appl 2016; 9:661-70. [PMID: 26076441 DOI: 10.1002/prca.201400146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/09/2015] [Accepted: 06/10/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE Classical Hodgkin lymphoma (cHL) is characterized by a low percentage of tumor cells in a background of diverse, reactive immune cells. cHL cells commonly derive from preapoptotic germinal-center B cells and are characterized by the loss of B-cell markers and the varying expression of other hematopoietic lineage markers. This phenotypic variability and the scarcity of currently available cHL-specific cell surface markers can prevent clear distinction of cHL from related lymphomas. EXPERIMENTAL DESIGN We applied the cell surface capture technology to directly measure the pool of cell surface exposed proteins in four cHL and four non-Hodgkin lymphoma (NHL) cell lines. RESULTS More than 1000 membrane proteins, including 178 cluster of differentiation annotated proteins, were identified and allowed the generation of lymphoma surfaceome maps. The functional properties of identified cell surface proteins enable, but also limit the information exchange of lymphoma cells with their microenvironment. CONCLUSION AND CLINICAL RELEVANCE Selected candidate proteins with potential diagnostic value were evaluated on a tissue microarray (TMA). Primary lymphoma tissues of 126 different B cell-derived lymphoma cases were included in the TMA analysis. The TMA analysis indicated gamma-glutamyltranspeptidase 1 as a potential additional marker that can be included in a panel of markers for differential diagnosis of cHL versus NHL.
Collapse
Affiliation(s)
- Andreas Hofmann
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Ph.D. Program in Molecular Life Sciences, University of Zurich (UZH)/ETH Zurich, Zurich, Switzerland
| | - Thore Thiesler
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bertran Gerrits
- Functional Genomics Center Zurich, UZH/ETH Zurich, Zurich, Switzerland
| | - Silvia Behnke
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Nadine Sobotzki
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ulrich Omasits
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Damaris Bausch-Fluck
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Thomas Bock
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Faculty of Science, UZH, Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Marianne Tinguely
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Wu R, Nijland M, Rutgers B, Veenstra R, Langendonk M, van der Meeren LE, Kluin PM, Li G, Diepstra A, Chiu JF, van den Berg A, Visser L. Proteomics Based Identification of Proteins with Deregulated Expression in B Cell Lymphomas. PLoS One 2016; 11:e0146624. [PMID: 26752561 PMCID: PMC4708982 DOI: 10.1371/journal.pone.0146624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 02/05/2023] Open
Abstract
Follicular lymphoma and diffuse large B cell lymphomas comprise the main entities of adult B cell malignancies. Although multiple disease driving gene aberrations have been identified by gene expression and genomic studies, only a few studies focused at the protein level. We applied 2 dimensional gel electrophoresis to compare seven GC B cell non Hodgkin lymphoma (NHL) cell lines with a lymphoblastoid cell line (LCL). An average of 130 spots were at least two folds different in intensity between NHL cell lines and the LCL. We selected approximately 38 protein spots per NHL cell line and linked them to 145 unique spots based on the location in the gel. 34 spots that were found altered in at least three NHL cell lines when compared to LCL, were submitted for LC-MS/MS. This resulted in 28 unique proteins, a substantial proportion of these proteins were involved in cell motility and cell metabolism. Loss of expression of B2M, and gain of expression of PRDX1 and PPIA was confirmed in the cell lines and primary lymphoma tissue. Moreover, inhibition of PPIA with cyclosporine A blocked cell growth of the cell lines, the effect size was associated with the PPIA expression levels. In conclusion, we identified multiple differentially expressed proteins by 2-D proteomics, and showed that some of these proteins might play a role in the pathogenesis of NHL.
Collapse
Affiliation(s)
- Rui Wu
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Biochemistry, Open laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | - Marcel Nijland
- Department of Hematology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rianne Veenstra
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Myra Langendonk
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Lotte E. van der Meeren
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Philip M. Kluin
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Guanwu Li
- Department of Biochemistry, Open laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jen-Fu Chiu
- Department of Biochemistry, Open laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Proteomics in cancer biomarkers discovery: challenges and applications. DISEASE MARKERS 2015; 2015:321370. [PMID: 25999657 PMCID: PMC4427011 DOI: 10.1155/2015/321370] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/15/2015] [Accepted: 02/18/2015] [Indexed: 01/28/2023]
Abstract
With the introduction of recent high-throughput technologies to various fields of science and medicine, it is becoming clear that obtaining large amounts of data is no longer a problem in modern research laboratories. However, coherent study designs, optimal conditions for obtaining high-quality data, and compelling interpretation, in accordance with the evidence-based systems biology, are critical factors in ensuring the emergence of good science out of these recent technologies. This review focuses on the proteomics field and its new perspectives on cancer research. Cornerstone publications that have tremendously helped scientists and clinicians to better understand cancer pathogenesis; to discover novel diagnostic and/or prognostic biomarkers; and to suggest novel therapeutic targets will be presented. The author of this review aims at presenting some of the relevant literature data that helped as a step forward in bridging the gap between bench work results and bedside potentials. Undeniably, this review cannot include all the work that is being produced by expert research groups all over the world.
Collapse
|
7
|
Lion N, Tissot JD. Application of proteomics to hematology: the revolution is starting. Expert Rev Proteomics 2014; 5:375-9. [DOI: 10.1586/14789450.5.3.375] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Fujii K, Suzuki N, Ikeda K, Hamada T, Yamamoto T, Kondo T, Iwatsuki K. Proteomic study identified HSP 70 kDa protein 1A as a possible therapeutic target, in combination with histone deacetylase inhibitors, for lymphoid neoplasms. J Proteomics 2011; 75:1401-10. [PMID: 22123078 DOI: 10.1016/j.jprot.2011.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 11/09/2011] [Accepted: 11/13/2011] [Indexed: 01/07/2023]
Abstract
Histone deacetylase inhibitors (HDACi) demonstrate possible anticancer activities in various malignancies including lymphoid neoplasms. However, the anticancer effects of HDACi are often limited, and combination therapy with other drugs has been undertaken to improve the outcome of patients. Here we conducted proteomic investigation of 33 lymphoid cell lines to identify novel therapeutic targets for enhancing the effects of HDACi. Using the proteomic data in our published 2D-DIGE database, we examined the proteins associated with resistance to valproic acid (VPA). The lymphoid neoplasm cell lines in the database were grouped according to their sensitivity to VPA treatment. A comparative proteomic study of the cell line groups resulted in the identification of 10 protein spots, whose intensity was associated with chemosensitivity. Among the identified proteins, HSPA1A showed higher expression in cell lines with resistance to VPA, and the results were validated by Western blotting. In vitro experiments demonstrated that treatment with KNK-437, an inhibitor of HSPA1A, enhanced the cytotoxic effects of VPA, as well as vorinostat, in the lymphoid neoplasm cell line. Treatment with KNK-437 facilitated the apoptotic effects of VPA. In conclusion, we identified HSPA1A as a possible therapeutic target, in combination with HDACi, for lymphoid neoplasms.
Collapse
Affiliation(s)
- Kazuyasu Fujii
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry Pharmaceutical Sciences,Okayama 700-0815, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Boyd RS, Dyer MJ, Cain K. Proteomic analysis of B-cell malignancies. J Proteomics 2010; 73:1804-22. [DOI: 10.1016/j.jprot.2010.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/25/2022]
|
10
|
Abstract
The quest to decipher protein alterations in cancer has spanned well over half a century. The vast dynamic range of protein abundance coupled with a plethora of isoforms and disease heterogeneity have been formidable challenges. Progress in cancer proteomics has substantially paralleled technological developments. Advances in analytical techniques and the implementation of strategies to de-complex the proteome into manageable components have allowed proteins across a wide dynamic range to be explored. The massive amounts of data that can currently be collected through proteomics allow the near-complete definition of cancer subproteomes, which reveals the alterations in signalling and developmental pathways. This allows the discovery of predictive biomarkers and the annotation of the cancer genome based on proteomic findings. There remains a considerable need for infrastructure development and the organized collaborative efforts to efficiently mine the cancer proteome.
Collapse
Affiliation(s)
- Samir Hanash
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5-C800, PO BOX 19024, Seattle, Washington 98109, USA.
| | | |
Collapse
|
11
|
Kondo T. Cancer proteome-expression database: Genome Medicine Database of Japan Proteomics. Expert Rev Proteomics 2010; 7:21-27. [DOI: 10.1586/epr.09.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
12
|
Proteomic analysis of lymphoid and haematopoietic neoplasms: There's more than biomarker discovery. J Proteomics 2010; 73:508-20. [DOI: 10.1016/j.jprot.2009.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 12/29/2022]
|
13
|
Riederer BM. Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis. J Proteomics 2008; 71:231-44. [DOI: 10.1016/j.jprot.2008.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 05/03/2008] [Accepted: 05/06/2008] [Indexed: 12/16/2022]
|
14
|
Dupont A, Chwastyniak M, Beseme O, Guihot AL, Drobecq H, Amouyel P, Pinet F. Application of saturation dye 2D-DIGE proteomics to characterize proteins modulated by oxidized low density lipoprotein treatment of human macrophages. J Proteome Res 2008; 7:3572-82. [PMID: 18549265 DOI: 10.1021/pr700683s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Macrophages are believed to play a crucial role in atherogenesis and atherosclerotic plaque progression, mainly through their role in the accumulation of large amounts of cholesteryl ester and foam cell formation after the uptake into the arterial intima of oxidized LDL (oxLDL) particles known to be proatherogenic. The aim of this study was to use a differential proteomic approach to identify the response of human monocyte-derived macrophages after treatment with oxLDL for 24 h. Mass spectrometry analysis (MALDI-TOF) of 2D-DIGE gels made it possible to identify 9 intracellular and 3 secreted proteins that were up-regulated, 11 intracellular and 1 secreted proteins that were down-regulated, and 2 secreted proteins that were induced. This methodological approach not only confirmed the differential expression levels of proteins known to be regulated by oxLDL in macrophages, such as catalase and pyruvate kinase, but also identified oxLDL modulation of other proteins for the first time, including heat shock proteins (HSP) and Actin cytoskeletal proteins. Semiquantitative Western blot confirmed their role. The HSPs identified included heat shock cognate 71 kDa protein (Hsc70), 75 kDa glucose-regulated protein (GRP75), heat shock 70 kDa protein (Hsp70), and 60 kDa (Hsp60) proteins. These highly conserved intracellular protein chaperones, commonly seen in atherosclerotic plaques, appear to participate in protection against cellular stress. Interestingly, oxLDL also modulated several F-Actin capping proteins involved in Actin polymerization and motility: gelsolin, CapG, and CapZ. In conclusion, we have demonstrated the effects of oxLDL in the modulation of several proteins in human macrophages and established a functional profile of the human macrophage during the atherosclerotic process.
Collapse
Affiliation(s)
- Annabelle Dupont
- INSERM, U744, Lille, France, Institut Pasteur de Lille, Lille, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood 2008; 111:2339-46. [DOI: 10.1182/blood-2007-09-112128] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hodgkin and Reed-Sternberg (HRS) cells in Hodgkin lymphoma (HL) secrete factors that interact with inflammatory background cells and may serve as biomarkers for disease activity. To detect new proteins related to pathogenesis, we analyzed the secretome of HRS cells. Proteins in cell culture supernatant of 4 HL cell lines were identified using 1DGE followed by in-gel trypsin digestion and LC-MS/MS. In total, 1290 proteins, including 368 secreted proteins, were identified. Functional grouping of secreted proteins revealed 37 proteins involved in immune response. Sixteen of the 37 proteins (ie, ALCAM, Cathepsin C, Cathepsin S, CD100, CD150, CD26, CD44, CD63, CD71, Fractal-kine, IL1R2, IL25, IP-10, MIF, RANTES, and TARC) were validated in HL cell lines and patient material using immunohistochemistry and/or ELISA. Expression of all 16 proteins was confirmed in HL cell lines, and 15 were also confirmed in HL tissues. Seven proteins (ALCAM, cathepsin S, CD26, CD44, IL1R2, MIF, and TARC) revealed significantly elevated levels in patient plasma compared with healthy controls. Proteomics analyses of HL cell line supernatant allowed detection of new secreted proteins, which may add to our insights in the interaction between HRS cells and infiltrating lymphocytes and in some instances might serve as biomarkers.
Collapse
|
16
|
Gez S, Crossett B, Christopherson RI. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1173-83. [PMID: 17698427 DOI: 10.1016/j.bbapap.2007.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/05/2007] [Accepted: 06/15/2007] [Indexed: 12/18/2022]
Abstract
Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.
Collapse
Affiliation(s)
- Swetlana Gez
- School of Molecular and Microbial Biosciences G08, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
17
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2007; 42:689-700. [PMID: 17474104 DOI: 10.1002/jms.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|