1
|
Heidari S, Hajjaran H, Mohebali M, Akhoundi B, Gharechahi J. Recognition of Immunoreactive Proteins in Leishmania infantum Amastigote-Like and Promastigote Using Sera of Visceral Leishmaniasis Patients: a Preliminary Study. Acta Parasitol 2024; 69:533-540. [PMID: 38227109 DOI: 10.1007/s11686-023-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE Visceral leishmaniasis (VL) is a systemic and parasitic disease that is usually fatal if left untreated. VL is endemic in different parts of Iran and is caused mainly by Leishmania infantum. This study aimed to recognition immunoreactive proteins in amastigote-like and promastigote stages of L. infantum (Iranian strain) by antibodies present in the sera of VL patients. METHODS Total protein extract from amastigote-like and promastigote cells was separated by two-dimensional electrophoresis (2DE). To detect the immunoreactive proteins, 2DE immunoblotting method was performed using different pools of VL patients' sera. RESULTS Approximately 390 and 430 protein spots could be separated in 2DE profiles of L. infantum amastigote-like and promastigote stages, respectively. In immunoblotting method, approximately 295 and 135 immunoreactive proteins of amastigotes-like reacted with high antibody titer serum pool and low antibody titer serum pool, respectively. Approximately 120 and 85 immunoreactive proteins of promastigote extract were recognized using the high antibody titer sera pool and low antibody titer sera, respectively. CONCLUSION The present study has recognized a number of antigenic diversity proteins based on the molecular weight and pH in amastigote-like and promastigote stages of L. infantum. These results provide us a new concept for further analysis development in the field of diagnosis biomarkers and vaccine targets.
Collapse
Affiliation(s)
- Soudabeh Heidari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran.
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Identification of immunodominant proteins of Leishmania infantum by immunoproteomics to evaluate a recombinant multi-epitope designed antigen for serodiagnosis of human visceral leishmaniasis. Exp Parasitol 2021; 222:108065. [PMID: 33428893 DOI: 10.1016/j.exppara.2021.108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 01/07/2021] [Indexed: 11/23/2022]
Abstract
Visceral leishmaniasis (VL) is a protozoan disease caused by Leishmania infantum in the Mediterranean region including Iran. In 95% of cases, the disease can be fatal if not rapidly diagnosed and left untreated. We aimed to identify immunoreactive proteins of L. infantum (Iranian strain), and to design and evaluate a recombinant multi-epitope antigen for serodiagnosis of human VL. To detect the immunoreactive proteins of L. infantum promastigotes, 2DE immunoblotting technique was performed using different pooled sera of VL patients. The candidate immunoreactive proteins were identified using MALDI-TOF/TOF mass spectrophotometry. Among 125 immunoreactive spots detected in 2-DE gels, glucose-regulated protein 78 (GRP78), ubiquitin-conjugating enzyme E2, calreticulin, mitochondrial heat shock 70-related protein 1 (mtHSP70), heat shock protein 70-related protein, i/6 autoantigen-like protein, ATPase beta subunit, and proteasome alpha subunit 5 were identified. The potent epitopes from candidate immunodominant proteins including GRP78, mtHSP70 and ubiquitin-conjugating enzyme E2 were then selected to design a recombinant antigenic protein (GRP-UBI-HSP). The recombinant antigen was evaluated by ELISA and compared to direct agglutination test for detection of anti L. infantum human antibodies. We screened 34 sera of VL patients from endemic areas and 107 sera of individuals without L. infantum infection from non-endemic area of VL. The recombinant protein-based ELISA provided a sensitivity of 70.6% and a specificity of 84.1%. These results showed that GRP78, ubiquitin-conjugating enzyme E2, and mtHSP70 proteins are potential immunodominant targets of the host immune system in response to the parasite and they can be considered as potential candidate markers for diagnosis purposes.
Collapse
|
3
|
Khan MAA, Ami JQ, Faisal K, Chowdhury R, Ghosh P, Hossain F, Abd El Wahed A, Mondal D. An immunoinformatic approach driven by experimental proteomics: in silico design of a subunit candidate vaccine targeting secretory proteins of Leishmania donovani amastigotes. Parasit Vectors 2020; 13:196. [PMID: 32295617 PMCID: PMC7160903 DOI: 10.1186/s13071-020-04064-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) caused by dimorphic Leishmania species is a parasitic disease with high socioeconomic burden in endemic areas worldwide. Sustaining control of VL in terms of proper and prevailing immunity development is a global necessity amid unavailability of a prophylactic vaccine. Screening of experimental proteome of the human disease propagating form of Leishmania donovani (amastigote) can be more pragmatic for in silico mining of novel vaccine candidates. Methods By using an immunoinformatic approach, CD4+ and CD8+ T cell-specific epitopes from experimentally reported L. donovani proteins having secretory potential and increased abundance in amastigotes were screened. A chimera linked with a Toll-like receptor 4 (TLR4) peptide adjuvant was constructed and evaluated for physicochemical characteristics, binding interaction with TLR4 in simulated physiological condition and the trend of immune response following hypothetical immunization. Results Selected epitopes from physiologically important L. donovani proteins were found mostly conserved in L. infantum, covering theoretically more than 98% of the global population. The multi-epitope chimeric vaccine was predicted as stable, antigenic and non-allergenic. Structural analysis of vaccine-TLR4 receptor docked complex and its molecular dynamics simulation suggest sufficiently stable binding interface along with prospect of non-canonical receptor activation. Simulation dynamics of immune response following hypothetical immunization indicate active and memory B as well as CD4+ T cell generation potential, and likely chance of a more Th1 polarized response. Conclusions The methodological approach and results from this study could facilitate more informed screening and selection of candidate antigenic proteins for entry into vaccine production pipeline in future to control human VL.![]()
Collapse
Affiliation(s)
- Md Anik Ashfaq Khan
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Jenifar Quaiyum Ami
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Khaledul Faisal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Rajashree Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Prakash Ghosh
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Faria Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh
| | - Ahmed Abd El Wahed
- Microbiology and Animal Hygiene Division, Georg-August-University Goettingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| | - Dinesh Mondal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, 1212, Bangladesh.
| |
Collapse
|
4
|
Rashidi S, Mojtahedi Z, Shahriari B, Kalantar K, Ghalamfarsa G, Mohebali M, Hatam G. An immunoproteomic approach to identifying immunoreactive proteins in Leishmania infantum amastigotes using sera of dogs infected with canine visceral leishmaniasis. Pathog Glob Health 2019; 113:124-132. [PMID: 31099725 DOI: 10.1080/20477724.2019.1616952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, is caused by Leishmania donovani and Leishmania infantum. The infected dogs with canine visceral leishmaniasis (CVL) are important reservoirs for VL in humans, so the diagnosis, treatment and vaccination of the infected dogs will ultimately decrease the rate of human VL. Proteomics and immunoproteomics techniques have facilitated the introduction of novel drug, vaccine and diagnostic targets. Our immunoproteomic study was conducted to identify new immunoreactive proteins in amastigote form of L. infantum. The strain of L. infantum (MCAN/IR/07/Moheb-gh) was obtained from CVL-infected dogs. J774 macrophage cells were infected with the L. infantum promastigotes. The infected macrophages were ruptured, and pure amastigotes were extracted from the macrophages. After protein extraction, two-dimensional gel electrophoresis was employed for protein separation followed by Western blotting. Western blotting was performed, using symptomatic and asymptomatic sera of the infected dogs with CVL. Thirteen repeatable immunoreactive spots were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Some, including prohibitin, ornithine aminotransferase, annexin A4, and apolipoprotein A-I, have been critically involved in metabolic pathways, survival, and pathogenicity of Leishmania parasites. Further investigations are required to confirm our identified immunoreactive proteins as a biomarker for CVL.
Collapse
Affiliation(s)
- Sajad Rashidi
- a Department of Parasitology and Mycology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Mojtahedi
- b Institute for Cancer Research, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Bahador Shahriari
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kurosh Kalantar
- d Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Ghasem Ghalamfarsa
- e Medicinal Plants Research Center, Faculty of Medicine , Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mehdi Mohebali
- f Department of Medical Parasitology and Mycology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Hatam
- c Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
5
|
Using proteomics as a powerful tool to develop a vaccine against Mediterranean visceral leishmaniasis. J Parasit Dis 2018; 42:162-170. [PMID: 29844618 DOI: 10.1007/s12639-018-0986-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022] Open
Abstract
Visceral leishmaniasis (VL) is a tropical infectious disease, which is called Mediterranean visceral leishmaniasis (MVL) in the Mediterranean area. In spite of many attempts, no effective commercial vaccine exists for MVL. To find new targets for developing antileishmanial vaccines, knowing parasite antigens that provoke the immune system are on demand. Nowadays, proteomics methods are defined as approaches for analysis of protein profiling of different cells. Within this framework, detection of new antigens is becoming more facilitated. In this review, we aimed to introduce possible targets using proteomics so; they could be used as candidates for developing vaccines against MVL. It can shed new light in the near future on the development of promising vaccines for MVL.
Collapse
|
6
|
Aoki JI, Coelho AC, Muxel SM, Zampieri RA, Sanchez EMR, Nerland AH, Floeter-Winter LM, Cotrim PC. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major. PLoS Negl Trop Dis 2016; 10:e0004972. [PMID: 27606425 PMCID: PMC5015992 DOI: 10.1371/journal.pntd.0004972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/11/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. CONCLUSIONS/SIGNIFICANCE This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how TRP mediates TUB resistance and whether purine metabolism is affected by this protein in the parasite. Finally, these findings may be helpful for the development of alternative anti-leishmanial drugs that target purine pathway.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano Cappellazzo Coelho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Sandra Marcia Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo Andrade Zampieri
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Paulo Cesar Cotrim
- Instituto de Medicina Tropical, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis. PLoS One 2016; 11:e0149894. [PMID: 26906226 PMCID: PMC4764335 DOI: 10.1371/journal.pone.0149894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022] Open
Abstract
Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests.
Collapse
|
8
|
Ribeiro RAN, Teixeira-Neto RG, Belo VS, Ferreira EC, Schallig HDFH, Silva ES. Ability of immunodiagnostic tests to differentiate between dogs naturally infected with Leishmania infantum and Leishmune(®)-vaccinated dogs. Vet Res Commun 2015; 39:87-95. [PMID: 25874857 DOI: 10.1007/s11259-015-9625-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 01/06/2015] [Indexed: 11/24/2022]
Abstract
Visceral leishmaniasis (VL) is a serious chronic disease with a lethality rate of up to 10% in humans. In urban areas of Brazil, dogs are the main reservoirs of the etiological agent (Leishmania infantum) of VL, and the Brazilian Ministry of Health recommends the euthanasia of animals that are seropositive in both the immunochromatographic dual path platform rapid test (DPP(®); Bio-Manguinhos) and the enzyme-linked immunosorbent assay (ELISA) with an L. major-like antigen (Bio-Manguinhos). Vaccination is an additional tool in the control of canine VL, but the use of Leishmune(®) (Zoetis Indústria de Produtos Veterinários, São Paulo, SP, Brazil), which contains the fucose mannose ligand (FML) isolated from L. donovani, is not currently recommended by the Brazilian Ministry of Health because vaccinated animals may exhibit positive serology and there are reservations regarding the efficacy of the vaccine. The aims of the present study were: (i) to verify the abilities of the fast agglutination screening test (FAST), the direct agglutination test (DAT), the indirect fluorescent-antibody test (IFAT), the DPP rapid test, and ELISA tests with L. major-like and FML antigens to differentiate between L. infantum-infected and Leishmune(®)-vaccinated dogs, and (ii) to analyze the sensitivities and specificities of the different methods. The reactivities to these tests of Leishmune(®)-vaccinated dogs (n = 71), asymptomatic (n = 20) and symptomatic (n = 20) naturally infected dogs, and unvaccinated healthy control dogs (n = 5) were compared. None of the Leishmune(®)-vaccinated dogs tested seropositive in FAST and DAT, although one dog was reactive to DPP and four dogs to ELISA/L. major-like and IFAT tests. While 69 (97%) of vaccinated dogs reacted to ELISA/FML, only one was seropositive in both ELISA/L. major-like and IFAT tests. Individually, all immunodiagnostic tests presented high specificities and positive likelihood ratios (LR+), and high specificity values were obtained when the tests were considered in pairs. However, sensitivity and LR- values were low for ELISA/L. major-like and IFAT tests individually, and for all pair combinations of tests except for FAST with DPP.
Collapse
Affiliation(s)
- R A N Ribeiro
- Campus Centro-Oeste Dona Lindu, Universidade Federal de São João del Rei, Av. Sebastião Gonçalves Coelho 400, Chanadour, 35501-296, Divinópolis, MG, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Teixeira PC, Velasquez LG, Lepique AP, de Rezende E, Bonatto JMC, Barcinski MA, Cunha-Neto E, Stolf BS. Regulation of Leishmania (L.) amazonensis protein expression by host T cell dependent responses: differential expression of oligopeptidase B, tryparedoxin peroxidase and HSP70 isoforms in amastigotes isolated from BALB/c and BALB/c nude mice. PLoS Negl Trop Dis 2015; 9:e0003411. [PMID: 25692783 PMCID: PMC4333223 DOI: 10.1371/journal.pntd.0003411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022] Open
Abstract
Leishmaniasis is an important disease that affects 12 million people in 88 countries, with 2 million new cases every year. Leishmania amazonensis is an important agent in Brazil, leading to clinical forms varying from localized (LCL) to diffuse cutaneous leishmaniasis (DCL). One interesting issue rarely analyzed is how host immune response affects Leishmania phenotype and virulence. Aiming to study the effect of host immune system on Leishmania proteins we compared proteomes of amastigotes isolated from BALB/c and BALB/c nude mice. The athymic nude mice may resemble patients with diffuse cutaneous leishmaniasis, considered T-cell hyposensitive or anergic to Leishmania's antigens. This work is the first to compare modifications in amastigotes' proteomes driven by host immune response. Among the 44 differentially expressed spots, there were proteins related to oxidative/nitrosative stress and proteases. Some correspond to known Leishmania virulence factors such as OPB and tryparedoxin peroxidase. Specific isoforms of these two proteins were increased in parasites from nude mice, suggesting that T cells probably restrain their posttranslational modifications in BALB/c mice. On the other hand, an isoform of HSP70 was increased in amastigotes from BALB/c mice. We believe our study may allow identification of potential virulence factors and ways of regulating their expression.
Collapse
Affiliation(s)
| | - Leonardo Garcia Velasquez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Lepique
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Edecio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, São Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
de Jesus JB, Mesquita-Rodrigues C, Cuervo P. Proteomics advances in the study of Leishmania parasites and leishmaniasis. Subcell Biochem 2014; 74:323-349. [PMID: 24264252 DOI: 10.1007/978-94-007-7305-9_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leishmania spp. are digenetic parasites which cause a broad spectrum of fatal diseases in humans. These parasites, as well as the other trypanosomatid, regulate gene expression at the post-transcriptional and post-translational levels, so that a poor correlation is observed between mRNA content and translated proteins. The completion of the genomic sequencing of several Leishmania species has enormous relevance to the study of the leishmaniasis pathogenesis. The combination of the available genomic resources of these parasites with powerful high-throughput proteomic analysis has shed light on various aspects of Leishmania biology as well as on the mechanisms underlying the disease. Diverse proteomic approaches have been used to describe and catalogue global protein profiles of Leishmania spp., reveal changes in protein expression during development, determine the subcellular localization of gene products, evaluate host-parasite interactions and elucidate drug resistance mechanisms. The characterization of these proteins has advanced, although many fundamental questions remain unanswered. Here, we present a historic review summarizing the different proteomic technologies applied to the study of Leishmania parasites during the last decades and we discuss the proteomic discoveries that have contributed to the understanding of Leishmania parasites biology and leishmaniasis.
Collapse
Affiliation(s)
- Jose Batista de Jesus
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil,
| | | | | |
Collapse
|
11
|
Pridgeon J, Yildirim-Aksoy M, Klesius P, Kojima K, Mobley J, Srivastava K, Reddy P. Identification of gyrB and rpoB gene mutations and differentially expressed proteins between a novobiocin-resistant Aeromonas hydrophila catfish vaccine strain and its virulent parent strain. Vet Microbiol 2013; 166:624-30. [DOI: 10.1016/j.vetmic.2013.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/12/2013] [Accepted: 07/20/2013] [Indexed: 10/26/2022]
|
12
|
Santarém N, Silvestre R, Tavares J, Silva M, Cabral S, Maciel J, Cordeiro-da-Silva A. Immune response regulation by leishmania secreted and nonsecreted antigens. J Biomed Biotechnol 2012; 2007:85154. [PMID: 17710243 PMCID: PMC1940321 DOI: 10.1155/2007/85154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/06/2007] [Accepted: 04/29/2007] [Indexed: 11/17/2022] Open
Abstract
Leishmania infection consists in two sequential events, the host cell colonization followed by the proliferation/dissemination of the parasite. In this review, we discuss the importance of two distinct sets of molecules, the secreted and/or surface and the nonsecreted antigens. The importance of the immune response against secreted and surface antigens is noted in the establishment of the infection and we dissect the contribution of the nonsecreted antigens in the immunopathology associated with leishmaniasis, showing the importance of these panantigens during the course of the infection. As a further example of proteins belonging to these two different groups, we include several laboratorial observations on Leishmania Sir2 and LicTXNPx as excreted/secreted proteins and LmS3arp and
LimTXNPx as nonsecreted/panantigens. The role of these two groups of antigens in the immune response observed during the infection is discussed.
Collapse
Affiliation(s)
- Nuno Santarém
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Ricardo Silvestre
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Tavares
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Marta Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sofia Cabral
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Maciel
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- *Anabela Cordeiro-da-Silva:
| |
Collapse
|
13
|
Martín-Martín I, Molina R, Jiménez M. An insight into the Phlebotomus perniciosus saliva by a proteomic approach. Acta Trop 2012; 123:22-30. [PMID: 22445778 DOI: 10.1016/j.actatropica.2012.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/05/2012] [Accepted: 03/07/2012] [Indexed: 01/14/2023]
Abstract
Sand fly saliva is known to play an important role in the establishment of Leishmania spp. infection. As a consequence, identifying antigenic salivary proteins of different leishmaniasis vectors has currently become a major task in the field of anti-Leishmania vaccine development. The purpose of this work was to improve the knowledge of Phlebotomus perniciosus salivary proteins by combining two-dimensional gel electrophoresis (2DE) methodology, mass spectrometry and Western blotting (WB). Salivary protein profiles of three P. perniciosus colonies from different geographic origins in Spain were compared through SDS-PAGE, leading to a similar pattern with no qualitatively noticeable differences. A gradual increase of the protein content was significantly detected with the age of sand flies, reaching the complete salivary protein profiles at day four. The 2DE revealed a reproducible protein profile that matched the classic monodimensional SDS-PAGE pattern (1DE). More spots rather than protein bands (19 versus 11) were visualized by 2DE and 1DE, respectively, suggesting the presence of either protein isoforms or posttranslational modifications. Sera of mice and hamsters immunized through exposure to sand fly bites following different immunization schedules showed elevated anti-saliva IgG levels. These sera allowed the detection of 5 bands and 16 immunogenic spots in 1DE and 2DE, respectively, followed by WB. These antigens were identified by MALDITOF/TOF as SP03, SP03B, SP08, SP01, SP01B, SP04, SP04B, SP02, Phlebotomus ariasi SP16, and Phlebotomus argentipes SP13. This work is assumed to be the first attempt to establish 2DE proteomic maps of P. perniciosus saliva. All spots were identified as salivary proteins, confirming this technology as an interesting tool to improve sand fly salivary knowledge.
Collapse
|
14
|
Coelho VTS, Oliveira JS, Valadares DG, Chávez-Fumagalli MA, Duarte MC, Lage PS, Soto M, Santoro MM, Tavares CAP, Fernandes AP, Coelho EAF. Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Negl Trop Dis 2012; 6:e1430. [PMID: 22272364 PMCID: PMC3260309 DOI: 10.1371/journal.pntd.0001430] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL). METHODOLOGY/PRINCIPAL FINDINGS Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. CONCLUSIONS/SIGNIFICANCE The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.
Collapse
Affiliation(s)
- Vinicio T. S. Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo G. Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC, UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marcelo M. Santoro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
15
|
Lee MR, Kim YJ, Kim DW, Yoo WG, Cho SH, Hwang KY, Ju JW, Lee WJ. The identification of antigenic proteins: 14-3-3 protein and propionyl-CoA carboxylase in Clonorchis sinensis. Mol Biochem Parasitol 2011; 182:1-6. [PMID: 22119288 DOI: 10.1016/j.molbiopara.2011.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 11/16/2022]
Abstract
Clonorchis sinensis, the causative agent of clonorchiasis, is widespread in East and Southeast Asia, including China, Vietnam and the Republic of Korea. We identified antigenic proteins from adult C. sinensis liver flukes using immunoproteomic analysis. In this study, we found 23 candidate antigenic proteins with a pI in the range of 5.4-6.2 in total lysates of C. sinensis. The antigenic protein spots reacted against sera from clonorchiasis patients and were identified as cysteine proteases, glutathione transferases, gelsolin, propionyl-CoA carboxylase (PCC), prohibitin and 14-3-3 protein (14-3-3) using LC-coupled ESI-MS/MS and an EST database for C. sinensis. PCC and 14-3-3 were identified for the first time as serological antigens for the diagnosis of C. sinensis. To validate the antigenicity of PCC and 14-3-3, recombinant proteins were immunoblotted with sera from clonorchiasis patients. The structural, functional and immunological characteristics of the putative amino acid sequence were predicted by bioinformatics analysis. Our novel finding will contribute to the development of diagnostics for clonorchiasis. These results suggest that immunoproteomic approaches are valuable tools to identify antigens that could be used as targets for effective parasitic infection control strategies.
Collapse
Affiliation(s)
- Myoung-Ro Lee
- Division of Malaria and Parasitic Diseases, Korea National Institute of Health, Osong, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R. Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One 2011; 6:e26660. [PMID: 22046323 PMCID: PMC3203147 DOI: 10.1371/journal.pone.0026660] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/30/2011] [Indexed: 02/03/2023] Open
Abstract
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis (VL) and is responsible for significant mortality and morbidity. Increasing resistance towards antimonial drugs poses a great challenge in chemotherapy of VL. Paromomycin is an aminoglycosidic antibiotic and is one of the drugs currently being used in the chemotherapy of cutaneous and visceral leishmaniasis. To understand the mode of action of this antibiotic at the molecular level, we have investigated the global proteome differences between the wild type AG83 strain and a paromomycin resistant (PRr) strain of L. donovani. Stable isotope labeling of amino acids in cell culture (SILAC) followed by quantitative mass spectrometry of the wild type AG83 strain and the paromomycin resistant (PRr) strain identified a total of 226 proteins at ≥95% confidence. Data analysis revealed upregulation of 29 proteins and down-regulation of 21 proteins in the PRr strain. Comparative proteomic analysis of the wild type and the paromomycin resistant strains showed upregulation of the ribosomal proteins in the resistant strain indicating role in translation. Elevated levels of glycolytic enzymes and stress proteins were also observed in the PRr strain. Most importantly, we observed upregulation of proteins that may have a role in intracellular survival and vesicular trafficking in the PRr strain. Furthermore, ultra-structural analysis by electron microscopy demonstrated increased number of vesicular vacuoles in PRr strain when compared to the wild-type strain. Drug affinity pull-down assay followed by mass spectrometery identified proteins in L. donovani wild type strain that were specifically and covalently bound to paromomycin. These results provide the first comprehensive insight into the mode of action and underlying mechanism of resistance to paromomycin in Leishmania donovani.
Collapse
Affiliation(s)
- Bhavna Chawla
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anupam Jhingran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
17
|
Paape D, Aebischer T. Contribution of proteomics of Leishmania spp. to the understanding of differentiation, drug resistance mechanisms, vaccine and drug development. J Proteomics 2011; 74:1614-24. [PMID: 21621022 DOI: 10.1016/j.jprot.2011.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022]
Abstract
Leishmania spp., protozoan parasites with a digenetic life cycle, cause a spectrum of diseases in humans. Recently several Leishmania spp. have been sequenced which significantly boosted the number and quality of proteomic studies conducted. Here a historic review will summarize work of the pre-genomic era and then focus on studies after genome information became available. Firstly works comparing the different life cycle stages, in order to identify stage specific proteins, will be discussed. Identifying post-translational modifications by proteomics especially phosphorylation events will be discussed. Further the contribution of proteomics to the understanding of the molecular mechanism of drug resistance and the investigation of immunogenic proteins for the identification of vaccine candidates will be summarized. Approaches of how potentially secreted proteins were identified are discussed. So far 30-35% of the total predicted proteome of Leishmania spp. have been identified. This comprises mainly the abundant proteins, therefore the last section will look into technological approaches on how this coverage may be increased and what the gel-free and gel-based proteomics have to offer will be compared.
Collapse
Affiliation(s)
- Daniel Paape
- Centre for Immunology and Infection, Department of Biology/Hull York Medical School, University of York, YO10 5DD, UK.
| | | |
Collapse
|
18
|
Costa MM, Andrade HM, Bartholomeu DC, Freitas LM, Pires SF, Chapeaurouge AD, Perales J, Ferreira AT, Giusta MS, Melo MN, Gazzinelli RT. Analysis of Leishmania chagasi by 2-D Difference Gel Eletrophoresis (2-D DIGE) and Immunoproteomic: Identification of Novel Candidate Antigens for Diagnostic Tests and Vaccine. J Proteome Res 2011; 10:2172-84. [DOI: 10.1021/pr101286y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Míriam M. Costa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
| | - Hélida M. Andrade
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Daniella C. Bartholomeu
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Leandro M. Freitas
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Simone F. Pires
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Alexander D. Chapeaurouge
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jonas Perales
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - André T. Ferreira
- Fundação Oswaldo Cruz, Instituto Oswaldo cruz, Laboratório de Toxinologia, 21040360 Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mário S. Giusta
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
| | - Maria N. Melo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, 31279-910 Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo T. Gazzinelli
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, 31270-910 Belo Horizonte, Minas Gerais, Brasil
- Centro de Pesquisas René Rachou−Fundação Oswaldo Cruz, 30190-002 Belo Horizonte, Minas Gerais, Brasil
- University of Massachusetts Medical School, Division of Infectious Diseases and Immunology, Worcester 01605-2324, Massachusetts, United States
| |
Collapse
|
19
|
Beltran S, Gourbal B, Boissier J, Duval D, Kieffer-Jaquinod S, Pierce RJ, Grunau C, Théron A, Mitta G. Vertebrate host protective immunity drives genetic diversity and antigenic polymorphism in Schistosoma mansoni. J Evol Biol 2010; 24:554-72. [PMID: 21159003 DOI: 10.1111/j.1420-9101.2010.02190.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Schistosomes are gonochoric blood parasites with a complex life cycle responsible for a disease of considerable medical and veterinary importance in tropical and subtropical regions. Understanding the evolution of schistosome genetic diversity is clearly of fundamental importance to interpreting schistosomiasis epidemiology and disease transmission patterns of this parasite. In this article, we investigated the putative role of the host immune system in the selection of male genetic diversity. We demonstrated the link between genetic dissimilarity and the protective effect among male worms. We then compared the proteomes of three male clones with different genotypes and differing by their capacity to protect against reinfection. The identified differences correspond mainly to antigens known or supposed to be involved in the induction of protective immunity. These results underline the role played by host immune system in the selection of schistosome genetic diversity that is linked to antigenic diversity. We discuss the evolutionary consequences in the context of schistosome infection.
Collapse
Affiliation(s)
- S Beltran
- Parasitologie Fonctionnelle et Evolutive, CNRS Université de Perpignan, Perpignan Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ndao M, Rainczuk A, Rioux MC, Spithill TW, Ward BJ. Is SELDI-TOF a valid tool for diagnostic biomarkers? Trends Parasitol 2010; 26:561-7. [PMID: 20708969 DOI: 10.1016/j.pt.2010.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 01/25/2023]
Abstract
The genome revolution is providing fresh insights into host and parasite genomes, and new tools are becoming available for examining host-parasite interactions at the proteome level. Technologies such as surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrometry (MS) can be applied to discover biomarkers (alterations in both host and parasite proteomes) associated with parasitic diseases. Such biomarkers can represent host proteins, fragments of host proteins or parasite proteins that appear in body fluids or tissues following infection. Individual biomarkers or biomarker patterns not only have diagnostic utility (e.g. in active disease, prognosis, tests of cure) but can also provide unique insights into the mechanisms underlying host responses and pathogenesis.
Collapse
Affiliation(s)
- Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
21
|
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010; 5:1733-54. [DOI: 10.2217/fmb.10.127] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost–effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
Collapse
Affiliation(s)
- Piseth Seng
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Marc Rolain
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Edouard Fournier
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Bernard La Scola
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Michel Drancourt
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | |
Collapse
|
22
|
Brotherton MC, Racine G, Foucher AL, Drummelsmith J, Papadopoulou B, Ouellette M. Analysis of Stage-Specific Expression of Basic Proteins in Leishmania infantum. J Proteome Res 2010; 9:3842-53. [DOI: 10.1021/pr100048m] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marie-Christine Brotherton
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Gina Racine
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Aude L. Foucher
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jolyne Drummelsmith
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHUL and Département de Microbiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
23
|
Cuervo P, Domont GB, De Jesus JB. Proteomics of trypanosomatids of human medical importance. J Proteomics 2010; 73:845-67. [PMID: 20056176 DOI: 10.1016/j.jprot.2009.12.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 12/18/2009] [Indexed: 12/31/2022]
Abstract
Leishmania spp., Trypanosoma cruzi, and Trypanosoma brucei are protozoan parasites that cause a spectrum of fatal human diseases around the world. Recent completion of the genomic sequencing of these parasites has enormous relevance to the study of their biology and the pathogenesis of the diseases they cause because it opens the door to high-throughput proteomic technologies. This review encompasses studies using diverse proteomic approaches with these organisms to describe and catalogue global protein profiles, reveal changes in protein expression during development, elucidate the subcellular localisation of gene products, and evaluate host-parasite interactions.
Collapse
Affiliation(s)
- Patricia Cuervo
- Laboratorio de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
24
|
Abstract
Amastin is a transmembrane glycoprotein found on the cell surfaces of trypanosomatid parasites. Encoded by a large, diverse gene family, amastin was initially described from the intracellular, amastigote stage of Trypanosoma cruzi and Leishmania donovani. Genome sequences have subsequently shown that the amastin repertoire is much larger in Leishmania relative to Trypanosoma. However, it is not known when this expansion occurred, whether it is associated with the origins of Leishmania and vertebrate parasitism itself, or prior to this. To examine the timing of amastin diversification, as well as the evolutionary mechanisms regulating gene repertoire and sequence diversity, this study sequenced the genomic regions containing amastin loci from two related insect parasites (Leptomonas seymouri and Crithidia sp.) and estimated a phylogeny for these and other amastin sequences. The phylogeny shows that amastin includes four subfamilies with distinct genomic positions, secondary structures, and evolution, which were already differentiated in the ancestral trypanosomatid. Diversification in Leishmania was initiated from a single ancestral locus on chromosome 34, with rapid derivation of novel loci through transposition and accelerated sequence divergence. This is absent from related organisms showing that diversification occurred after the origin of Leishmania. These results describe a substantial elaboration of amastin repertoire directly associated with the origin of Leishmania, suggesting that some amastin genes evolved novel functions crucial to cell function in leishmanial parasites after the acquisition of a vertebrate host.
Collapse
Affiliation(s)
- Andrew P Jackson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, United Kingdom.
| |
Collapse
|
25
|
Vaidyanathan R, Kodukula K. Using a systems biology approach to dissect parasite-host interactions. Drug Dev Res 2009. [DOI: 10.1002/ddr.20307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Kinetoplastid genomics: the thin end of the wedge. INFECTION GENETICS AND EVOLUTION 2008; 8:901-6. [PMID: 18675383 DOI: 10.1016/j.meegid.2008.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/03/2008] [Accepted: 07/04/2008] [Indexed: 12/31/2022]
Abstract
The completion of the genome sequencing projects for major pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania major has enabled numerous studies that would have been difficult or impossible to perform otherwise. New technologies in sequencing and protein analyses promise further rapid expansion in our capabilities. The keys to successful use of these new tools are recognizing the power and limitations of studies performed thus far, grasping the unrealized potential of new and developing technologies, and creating access to a multidisciplinary set of skills that will facilitate research, particularly in the bioinformatic analysis of the reams of data that will be forthcoming. In this Discussion, we will provide an overview of kinetoplastid genomics studies with emphasis on studies advanced through genomic data, and a preview of what may come in the near future.
Collapse
|
27
|
Paape D, Lippuner C, Schmid M, Ackermann R, Barrios-Llerena ME, Zimny-Arndt U, Brinkmann V, Arndt B, Pleissner KP, Jungblut PR, Aebischer T. Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Mol Cell Proteomics 2008; 7:1688-701. [PMID: 18474515 DOI: 10.1074/mcp.m700343-mcp200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide. Here a method is presented that combines classic, isopycnic density centrifugation with fluorescent particle sorting for purification by exploiting transgenic, fluorescent parasites to allow direct proteome analysis of the purified organisms. By this approach the proteome of intracellular Leishmania mexicana amastigotes was compared with that of extracellular promastigotes that are transmitted by insect vectors. In total, 509 different proteins were identified by mass spectrometry and database search. This number corresponds to approximately 6% of gene products predicted from the reference genome of Leishmania major. Intracellular amastigotes synthesized significantly more proteins with basic pI and showed a greater abundance of enzymes of fatty acid catabolism, which may reflect their living in acidic habitats and metabolic adaptation to nutrient availability, respectively. Bioinformatics analyses of the genes corresponding to the protein data sets produced clear evidence for skewed codon usage and translational bias in these organisms. Moreover analysis of the subset of genes whose products were more abundant in amastigotes revealed characteristic sequence motifs in 3'-untranslated regions that have been linked to translational control elements. This suggests that proteome data sets may be used to identify regulatory elements in mRNAs. Last but not least, at 6% coverage the proteome identified all vaccine antigens tested to date. Thus, the present data set provides a valuable resource for selection of candidate vaccine antigens.
Collapse
Affiliation(s)
- Daniel Paape
- Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kumari S, Kumar A, Samant M, Sundar S, Singh N, Dube A. Proteomic approaches for discovery of new targets for vaccine and therapeutics against visceral leishmaniasis. Proteomics Clin Appl 2008; 2:372-86. [PMID: 21136840 DOI: 10.1002/prca.200780017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/06/2022]
Abstract
Visceral leishmaniasis (VL) is the most devastating type caused by Leishmania donovani, Leishmania infantum, and Leishmania chagasi. The therapeutic mainstay is still based on the antiquated pentavalent antimonial against which resistance is now increasing. Unfortunately, due to the digenetic life cycle of parasite, there is significant antigenic diversity. There is an urgent need to develop novel drug/vaccine targets against VL for which the primary goal should be to identify and characterize the structural and functional proteins. Proteomics, being widely employed in the study of Leishmania seems to be a suitable strategy as the availability of annotated sequenced genome of Leishmania major has opened the door for dissection of both protein expression/regulation and function. Advances in clinical proteomic technologies have enable to enhance our mechanistic understanding of virulence/pathogenicity/host-pathogen interactions, drug resistance thereby defining novel therapeutic/vaccine targets. Expression proteomics exploits the differential expression of leishmanial proteins as biomarkers for application towards early diagnosis. Further using immunoproteomics efforts were also focused on evaluating responses to define parasite T-cell epitopes as vaccine/diagnostic targets. This review has highlighted some of the relevant developments in the rapidly emerging field of leishmanial proteomics and focus on its future applications in drug and vaccine discovery against VL.
Collapse
Affiliation(s)
- Shraddha Kumari
- Division of Parasitology, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|
29
|
Kiel M, Josh P, Jones A, Windon R, Hunt P, Kongsuwan K. Identification of immuno-reactive proteins from a sheep gastrointestinal nematode, Trichostrongylus colubriformis, using two-dimensional electrophoresis and mass spectrometry. Int J Parasitol 2007; 37:1419-29. [PMID: 17561021 DOI: 10.1016/j.ijpara.2007.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/13/2007] [Accepted: 04/26/2007] [Indexed: 11/21/2022]
Abstract
Gastrointestinal nematode infections of livestock animals are prevalent and costly problems worldwide. Currently, infections are controlled by anthelmintic chemicals but increasing drug resistance has prompted research interest to shift towards alternative methods of control such as vaccine development and selection of worm-resistant animals. The present study analyses proteins from Trichostrongylus colubriformis infective L3s that are recognised by IgG of immune sheep. Following protein separation via two-dimensional electrophoresis and Western blot probing with plasma from sheep resistant to T. colubriformis, mass spectrometry-based proteomic analyses were used to identify immuno-reactive protein spots. We were able to identify 28 immune targets, including aspartyl protease inhibitor, enolase, chaperone proteins, galectin, glycolytic enzymes, kinase, phosphatase and structural muscle proteins such as myosin, paramyosin, calponin and DIM-1. The data suggest that immune responses to T. colubriformis are dispersed over a relatively large number of parasite antigens, including several cytoplasmically expressed proteins. The results have new implications for understanding the molecular mechanisms that underpin host-parasite interaction during gastrointestinal nematode infections.
Collapse
Affiliation(s)
- Markus Kiel
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Cuervo P, de Jesus JB, Junqueira M, Mendonça-Lima L, González LJ, Betancourt L, Grimaldi G, Domont GB, Fernandes O, Cupolillo E. Proteome analysis of Leishmania (Viannia) braziliensis by two-dimensional gel electrophoresis and mass spectrometry. Mol Biochem Parasitol 2007; 154:6-21. [PMID: 17499861 DOI: 10.1016/j.molbiopara.2007.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/12/2007] [Accepted: 03/21/2007] [Indexed: 10/23/2022]
Abstract
Leishmania (Viannia) braziliensis, a protozoan parasite widespread in the New World, is responsible for the infection of different mammal orders, including humans. This species is considered to be a major etiological agent of American cutaneous leishmaniasis. A proteomic study was carried out to identify proteins expressed by L. (V.) braziliensis. One hundred and one spots representing 75 protein entries were identified by MALDI-TOF-TOF. Isoelectric point values estimated by gel electrophoresis matched closely with predicted values, although some discrepancies existed suggesting that post-translational protein modifications may be common in L. braziliensis. Moreover, 20 hypothetical proteins were experimentally identified. Identified proteins were classified into 15 groups according to biological process. Among the proteins identified, approximately 40% have not been previously reported in a proteomic map of Leishmania. In addition, a number of potential virulence factors and drug targets were identified in this protein map, including some proteins associated with the metastatic phenotype. This study describes the first compilation of a proteomic reference map for L. braziliensis (pI 4-7, M(r) 10-130 kDa) and provides a very useful tool for comparative studies of strains isolated from patients presenting different clinical manifestations of leishmaniasis as well as a potential tool to identify markers for clinical diagnosis, therapeutics, and prognosis.
Collapse
Affiliation(s)
- Patricia Cuervo
- Departamento de Imunologia, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gupta SK, Sisodia BS, Sinha S, Hajela K, Naik S, Shasany AK, Dube A. Proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble antigens of Leishmania donovani promastigotes. Proteomics 2007; 7:816-23. [PMID: 17295358 DOI: 10.1002/pmic.200600725] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani is a major parasitic disease prevalent in endemic regions of Bihar in India. In the absence of good chemotherapeutic options, there is a need to develop an effective vaccine against VL which should be dependent on the generation of a T helper type 1 (Th1) immune response. We have shown that soluble proteins from promastigote of a new clinical isolate of L. donovani (2001) ranging from 68 to 97.4 kDa (F2 fraction), induce Th1 responses in the peripheral blood mononuclear cells of cured Leishmania patients and hamsters and also showed significant prophylactic potential. To understand the nature of F2 proteins, it was further characterized using 2-DE, MALDI-TOF and MALDI-TOF/TOF-MS. In all, 63 spots were cut from a CBB stained gel for analysis and data was retrieved for 52 spots. A total of 33 proteins were identified including six hypothetical/unknown proteins. Major immunostimulatory proteins were identified as elongation factor-2, p45, heat shock protein (HSP)70, HSP83, aldolase, enolase, triosephosphate isomerase, protein disulfideisomerase and calreticulin. This study substantiates the usefulness of proteomics in characterizing a complex protein fraction (F2) map of soluble L. donovani promastigote antigen identified as Th1 stimulatory for its potential as vaccine targets against VL.
Collapse
|
32
|
Abstract
The kinetoplastids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi are causative agents of a diverse spectrum of human diseases: leishmaniasis, sleeping sickness and Chagas' disease, respectively. These protozoa possess digenetic life cycles that involve development in mammalian and insect hosts. It is generally accepted that temperature is a triggering factor of the developmental programme allowing the adaptation of the parasite to the mammalian conditions. The heat shock response is a general homeostatic mechanism that protects cells from the deleterious effects of environmental stresses, such as heat. This response is universal and includes the synthesis of the heat-shock proteins (HSPs). In this review, we summarize the salient features of the different HSP families and describe their main cellular functions. In parallel, we analyse the composition of these families in kinetoplastids according to literature data and our understanding of genome sequence data. The genome sequences of these parasites have been recently completed. The HSP families described here are: HSP110, HSP104, group I chaperonins, HSP90, HSP70, HSP40 and small HSPs. All these families are widely represented in these parasites. In particular, kinetoplastids possess an unprecedented number of members of the HSP70, HSP60 and HSP40 families, suggesting key roles for these HSPs in their biology.
Collapse
Affiliation(s)
- Cristina Folgueira
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | |
Collapse
|