1
|
Sato J, Motai Y, Yamagami S, Win SY, Horio F, Saeki H, Maekawa N, Okagawa T, Konnai S, Ohashi K, Murata S. Programmed Cell Death-1 Expression in T-Cell Subsets in Chickens Infected with Marek's Disease Virus. Pathogens 2025; 14:431. [PMID: 40430752 PMCID: PMC12114408 DOI: 10.3390/pathogens14050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Marek's disease virus (MDV) causes Marek's disease (MD) in chickens, characterized by malignant lymphomas and immunosuppression. Sporadic MD outbreaks continue to occur even among vaccinated flocks in certain regions due to the increased virulence of the field strains. However, the mechanisms of tumorigenesis and immunosuppression caused by MDV remain to be fully elucidated. We previously reported that the mRNA expression of programmed cell death 1 (PD-1), an immune checkpoint molecule, was increased in tumor lesions caused by MDV, and its expression was positively correlated with the mRNA expression of Meq, an MDV-specific oncogene. In this study, we characterized PD-1-expressing T-cell subsets in the spleen and tissues of chickens that developed tumors to investigate the association between PD-1 expression and immunosuppression. Flow cytometric analysis revealed that the proportion of PD-1-expressing CD4+ T-cells, which are targets of MDV tumorigenesis, increased in the spleen and tumor tissues of chickens with MD. The proportion of PD-1+ CD4+ T-cells was higher in Meq-expressing cells than in those that were not. In the spleens of chickens with MD, the proportions of PD-1-expressing cells were increased in CD8+ and γδ T-cells, which play pivotal roles in defense against MD pathogenesis, relative to those of spleens from uninfected chickens. Moreover, the proportion of PD-1+ CD8+ T-cells expressing interferon (IFN)-γ did not increase in the spleen of chickens with MD. Additionally, no difference in the proportion of IFN-γ+ γδ T-cells expressing and not expressing PD-1 was observed in the spleens of chickens with MD, although the proportion of IFN-γ+ γδ T-cells expressing PD-1 in the spleens of uninfected chickens was higher. The function of PD-1-expressing CD8+ and γδ T-cells in chickens may be impaired after developing MD, which may cause MDV-induced immunosuppression.
Collapse
Affiliation(s)
- Jumpei Sato
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yoshinosuke Motai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shunsuke Yamagami
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shwe Yee Win
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Fumiya Horio
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hikaru Saeki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naoya Maekawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo 001-0021, Japan
- Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
- Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
2
|
Volkening JD, Spatz SJ, Ponnuraj N, Akbar H, Arrington JV, Vega-Rodriguez W, Jarosinski KW. Viral proteogenomic and expression profiling during productive replication of a skin-tropic herpesvirus in the natural host. PLoS Pathog 2023; 19:e1011204. [PMID: 37289833 PMCID: PMC10284419 DOI: 10.1371/journal.ppat.1011204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Efficient transmission of herpesviruses is essential for dissemination in host populations; however, little is known about the viral genes that mediate transmission, mostly due to a lack of natural virus-host model systems. Marek's disease is a devastating herpesviral disease of chickens caused by Marek's disease virus (MDV) and an excellent natural model to study skin-tropic herpesviruses and transmission. Like varicella zoster virus that causes chicken pox in humans, the only site where infectious cell-free MD virions are efficiently produced is in epithelial skin cells, a requirement for host-to-host transmission. Here, we enriched for heavily infected feather follicle epithelial skin cells of live chickens to measure both viral transcription and protein expression using combined short- and long-read RNA sequencing and LC/MS-MS bottom-up proteomics. Enrichment produced a previously unseen breadth and depth of viral peptide sequencing. We confirmed protein translation for 84 viral genes at high confidence (1% FDR) and correlated relative protein abundance with RNA expression levels. Using a proteogenomic approach, we confirmed translation of most well-characterized spliced viral transcripts and identified a novel, abundant isoform of the 14 kDa transcript family via IsoSeq transcripts, short-read intron-spanning sequencing reads, and a high-quality junction-spanning peptide identification. We identified peptides representing alternative start codon usage in several genes and putative novel microORFs at the 5' ends of two core herpesviral genes, pUL47 and ICP4, along with strong evidence of independent transcription and translation of the capsid scaffold protein pUL26.5. Using a natural animal host model system to examine viral gene expression provides a robust, efficient, and meaningful way of validating results gathered from cell culture systems.
Collapse
Affiliation(s)
| | - Stephen J. Spatz
- US National Poultry Research Laboratory, ARS, USDA, Athens, Georgia, United States of America
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Justine V. Arrington
- Protein Sciences Facility, Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Widaliz Vega-Rodriguez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Stressed: The Unfolded Protein Response in T Cell Development, Activation, and Function. Int J Mol Sci 2019; 20:ijms20071792. [PMID: 30978945 PMCID: PMC6479341 DOI: 10.3390/ijms20071792] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022] Open
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows cells to respond to stress in the endoplasmic reticulum caused by an accumulation of misfolded and unfolded protein. This is of great importance to secretory cells because, in order for proteins to traffic from the endoplasmic reticulum (ER), they need to be folded appropriately. While a wealth of literature has implicated UPR in immune responses, less attention has been given to the role of UPR in T cell development and function. This review discusses the importance of UPR in T cell development, homeostasis, activation, and effector functions. We also speculate about how UPR may be manipulated in T cells to ameliorate pathologies.
Collapse
|
4
|
Hicks JA, Trakooljul N, Liu HC. Alterations in cellular and viral microRNA and cellular gene expression in Marek's disease virus-transformed T-cell lines treated with sodium butyrate. Poult Sci 2019; 98:642-652. [PMID: 30184155 DOI: 10.3382/ps/pey412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 11/20/2022] Open
Abstract
A shared feature of herpesviruses is their ability to enter a latent state following an initially lytic infection. Marek's disease virus serotype 1 (MDV-1) is an oncogenic avian herpesvirus. Small RNA profiling studies have suggested that microRNAs (miRNAs) are involved in viral latency. Sodium butyrate treatment is known to induce herpesvirus reactivation. The present study was undertaken to determine transcriptome and miRNome changes induced by sodium butyrate in 2 MDV-transformed cell lines, RP2 and CU115. In the first 24 h post-treatment, microarray analysis of transcriptional changes in cell lines RP2 and CU115 identified 137 and 114 differentially expressed genes, respectively. Small RNA deep-sequencing analysis identified 17 cellular miRNAs that were differentially expressed. The expression of MDV-encoded miRNAs was also altered upon treatment. Many of the genes and miRNAs that are differentially expressed are involved in regulation of the cell cycle, mitosis, DNA metabolism, and lymphocyte differentiation.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Nares Trakooljul
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Almeida AM, Bassols A, Bendixen E, Bhide M, Ceciliani F, Cristobal S, Eckersall PD, Hollung K, Lisacek F, Mazzucchelli G, McLaughlin M, Miller I, Nally JE, Plowman J, Renaut J, Rodrigues P, Roncada P, Staric J, Turk R. Animal board invited review: advances in proteomics for animal and food sciences. Animal 2015; 9:1-17. [PMID: 25359324 PMCID: PMC4301196 DOI: 10.1017/s1751731114002602] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/27/2014] [Indexed: 01/15/2023] Open
Abstract
Animal production and health (APH) is an important sector in the world economy, representing a large proportion of the budget of all member states in the European Union and in other continents. APH is a highly competitive sector with a strong emphasis on innovation and, albeit with country to country variations, on scientific research. Proteomics (the study of all proteins present in a given tissue or fluid - i.e. the proteome) has an enormous potential when applied to APH. Nevertheless, for a variety of reasons and in contrast to disciplines such as plant sciences or human biomedicine, such potential is only now being tapped. To counter such limited usage, 6 years ago we created a consortium dedicated to the applications of Proteomics to APH, specifically in the form of a Cooperation in Science and Technology (COST) Action, termed FA1002--Proteomics in Farm Animals: www.cost-faproteomics.org. In 4 years, the consortium quickly enlarged to a total of 31 countries in Europe, as well as Israel, Argentina, Australia and New Zealand. This article has a triple purpose. First, we aim to provide clear examples on the applications and benefits of the use of proteomics in all aspects related to APH. Second, we provide insights and possibilities on the new trends and objectives for APH proteomics applications and technologies for the years to come. Finally, we provide an overview and balance of the major activities and accomplishments of the COST Action on Farm Animal Proteomics. These include activities such as the organization of seminars, workshops and major scientific conferences, organization of summer schools, financing Short-Term Scientific Missions (STSMs) and the generation of scientific literature. Overall, the Action has attained all of the proposed objectives and has made considerable difference by putting proteomics on the global map for animal and veterinary researchers in general and by contributing significantly to reduce the East-West and North-South gaps existing in the European farm animal research. Future activities of significance in the field of scientific research, involving members of the action, as well as others, will likely be established in the future.
Collapse
Affiliation(s)
- A. M. Almeida
- Instituto de Investigação Científica Tropical, CVZ – Centro de Veterinária e Zootecnia, Av. Univ. Técnica, 1300-477 Lisboa, Portugal
- CIISA – Centro Interdisciplinar de Investigação em Sanidade Animal, 1300-477 Lisboa, Portugal
- ITQB – Instituto de Tecnologia Química e Biológica da UNL, 2780-157 Oeiras, Portugal
- IBET – Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - A. Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona,08193 Cerdanyola del Vallès, Spain
| | - E. Bendixen
- Institute of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - M. Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy, Komenskeho-73 Kosice, Slovakia
| | - F. Ceciliani
- Department of Veterinary Science and Public Health, Università di Milano, Via Celoria 10, 20133 Milano, Italy
| | - S. Cristobal
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Faculty of Health Science, Linköping University, SE-581 85 Linköping, Sweden
- IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country,48940 Leioa, Bizkaia, Spain
| | - P. D. Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - K. Hollung
- Nofima AS, PO Box 210, NO-1431 Aas, Norway
| | - F. Lisacek
- Swiss Institute of Bioinformatics, CMU – Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - G. Mazzucchelli
- Mass Spectrometry Laboratory, GIGA-Research, Department of Chemistry, University of Liège, 4000 Liège, Belgium
| | - M. McLaughlin
- Division of Veterinary Bioscience, School of Veterinary Medicine, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - I. Miller
- Institute of Medical Biochemistry, University of Veterinary Medicine, Veterinaerplatz 1, A-1210 Vienna, Austria
| | - J. E. Nally
- National Animal Disease Center, Bacterial Diseases of Livestock Research Unit, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA
| | - J. Plowman
- Food & Bio-Based Products, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - J. Renaut
- Department of Environment and Agrobiotechnologies, Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - P. Rodrigues
- CCMAR – Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - P. Roncada
- Department of Veterinary Science and Public Health, Istituto Sperimentale Italiano L. Spallanzani Milano, University of Milano, 20133 Milano, Italy
| | - J. Staric
- Clinic for Ruminants with Ambulatory Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - R. Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Integrated analyses of genome-wide DNA occupancy and expression profiling identify key genes and pathways involved in cellular transformation by a Marek's disease virus oncoprotein, Meq. J Virol 2013; 87:9016-29. [PMID: 23740999 DOI: 10.1128/jvi.01163-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marek's disease (MD) is an economically significant disease in chickens that is caused by the highly oncogenic Marek's disease virus (MDV). A major unanswered question is the mechanism of MDV-induced tumor formation. Meq, a bZIP transcription factor discovered in the 1990s, is critically involved in viral oncogenicity, but only a few of its host target genes have been described, impeding our understanding of MDV-induced tumorigenesis. Using chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray analysis, a high-confidence list of Meq binding sites in the chicken genome and a global transcriptome of Meq-responsive genes were generated. Meq binding sites were found to be enriched in the promoter regions of upregulated genes but not in those of downregulated genes. ChIP-seq was also performed for c-Jun, a known heterodimeric partner of Meq. The close location of binding sites of Meq and c-Jun was noted, suggesting cooperativity between these two factors in modulating transcription. Pathway analysis indicated that Meq transcriptionally regulates many genes that are part of several signaling pathways including the extracellular signal-regulated kinase /mitogen-activated protein kinase (ERK/MAPK), Jak-STAT, and ErbB pathways, which are critical for oncogenesis and/or include signaling mediators involved in apoptosis. Meq activates oncogenic signaling cascades by transcriptionally activating major kinases in the ERK/MAPK pathway and simultaneously repressing phosphatases, as verified using inhibitors of MEK and ERK1/2 in a cell proliferation assay. This study provides significant insights into the mechanistic basis of Meq-dependent cell transformation.
Collapse
|
7
|
|
8
|
Haq K, Fear T, Ibraheem A, Abdul-Careem MF, Sharif S. Influence of vaccination with CVI988/Rispens on load and replication of a very virulent Marek's disease virus strain in feathers of chickens. Avian Pathol 2012; 41:69-75. [PMID: 22845323 DOI: 10.1080/03079457.2011.640304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Several highly efficacious vaccines are currently available for control of Marek's disease, a lymphoproliferative disease in chickens. However, these vaccines are unable to prevent infection with Marek's disease virus (MDV) in vaccinated birds. This leads to shedding of virulent MDV from feather follicle epithelium and skin epithelial cells of vaccinated and infected chickens. The objective of the present study was to study the interactions between a vaccine strain (CVI988/Rispens) and a very virulent strain of MDV (RB1B) in feathers. We examined genome load and replication of CVI988 and MDV-RB1B strains at various time points post infection. Moreover, we evaluated cytokine expression in feathers as indicators of immunity generated in response to vaccines against MDV. Analysis of feathers collected between 4 and 21 days post infection (d.p.i.) revealed a steady level of CVI988 genome load in the presence or absence of RB1B. Infection with MDV resulted in a significant increase in RB1B genome load peaking at 14 d.p.i. Importantly, vaccination with CVI988 resulted in a significant reduction in accumulation of MDV-RB1B in feathers. RB1B genome accumulation in feather tips was associated with increased expression of interferon-α at 14 d.p.i. and interferon-Sγ at earlier time points, 4 and 7 d.p.i. compared with 10 and 14 d.p.i. Interleukin-10 and interleukin-6 were up-regulated at 14 d.p.i. in the infected groups. This study expands our understanding of the dynamics of replication of vaccine and virulent MDV strains in the feathers and illuminates mechanisms associated with immunity to Marek's disease.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Kumar S, Kunec D, Buza JJ, Chiang HI, Zhou H, Subramaniam S, Pendarvis K, Cheng HH, Burgess SC. Nuclear Factor kappa B is central to Marek's disease herpesvirus induced neoplastic transformation of CD30 expressing lymphocytes in-vivo. BMC SYSTEMS BIOLOGY 2012; 6:123. [PMID: 22979947 PMCID: PMC3472249 DOI: 10.1186/1752-0509-6-123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/04/2012] [Indexed: 12/15/2022]
Abstract
Background Marek’s Disease (MD) is a hyperproliferative, lymphomatous, neoplastic disease of chickens caused by the oncogenic Gallid herpesvirus type 2 (GaHV-2; MDV). Like several human lymphomas the neoplastic MD lymphoma cells overexpress the CD30 antigen (CD30hi) and are in minority, while the non-neoplastic cells (CD30lo) form the majority of population. MD is a unique natural in-vivo model of human CD30hi lymphomas with both natural CD30hi lymphomagenesis and spontaneous regression. The exact mechanism of neoplastic transformation from CD30lo expressing phenotype to CD30hi expressing neoplastic phenotype is unknown. Here, using microarray, proteomics and Systems Biology modeling; we compare the global gene expression of CD30lo and CD30hi cells to identify key pathways of neoplastic transformation. We propose and test a specific mechanism of neoplastic transformation, and genetic resistance, involving the MDV oncogene Meq, host gene products of the Nuclear Factor Kappa B (NF-κB) family and CD30; we also identify a novel Meq protein interactome. Results Our results show that a) CD30lo lymphocytes are pre-neoplastic precursors and not merely reactive lymphocytes; b) multiple transformation mechanisms exist and are potentially controlled by Meq; c) Meq can drive a feed-forward cycle that induces CD30 transcription, increases CD30 signaling which activates NF-κB, and, in turn, increases Meq transcription; d) Meq transcriptional repression or activation of the CD30 promoter generally correlates with polymorphisms in the CD30 promoter distinguishing MD-lymphoma resistant and susceptible chicken genotypes e) MDV oncoprotein Meq interacts with proteins involved in physiological processes central to lymphomagenesis. Conclusions In the context of the MD lymphoma microenvironment (and potentially in other CD30hi lymphomas as well), our results show that the neoplastic transformation is a continuum and the non-neoplastic cells are actually pre-neoplastic precursor cells and not merely immune bystanders. We also show that NF-κB is a central player in MDV induced neoplastic transformation of CD30-expressing lymphocytes in vivo. Our results provide insights into molecular mechanisms of neoplastic transformation in MD specifically and also herpesvirus induced lymphoma in general.
Collapse
Affiliation(s)
- Shyamesh Kumar
- Department of Pathobiology and Population Medicine, Mississippi State University, MS 39762, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Parvizi P, Mallick AI, Haq K, Haghighi HR, Orouji S, Thanthrige-Don N, St Paul M, Brisbin JT, Read LR, Behboudi S, Sharif S. A toll-like receptor 3 ligand enhances protective effects of vaccination against Marek's disease virus and hinders tumor development in chickens. Viral Immunol 2012; 25:394-401. [PMID: 22857262 DOI: 10.1089/vim.2012.0033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Marek's disease (MD) is caused by Marek's disease virus (MDV). Various vaccines including herpesvirus of turkeys (HVT) have been used to control this disease. However, HVT is not able to completely protect against very virulent strains of MDV. The objective of this study was to determine whether a vaccination protocol consisting of HVT and a Toll-like receptor (TLR) ligand could enhance protective efficacy of vaccination against MD. Hence, chickens were immunized with HVT and subsequently treated with synthetic double-stranded RNA polyriboinosinic polyribocytidylic [poly(I:C)], a TLR3 ligand, before or after being infected with a very virulent strain of MDV. Among the groups that were HVT-vaccinated and challenged with MDV, the lowest incidence of tumors was observed in the group that received poly(I:C) before and after MDV infection. Moreover, the groups that received a single poly(I:C) treatment either before or after MDV infection were better protected against MD tumors compared to the group that only received HVT. No association was observed between viral load, as determined by MDV genome copy number, and the reduction in tumor formation. Overall, the results presented here indicate that poly(I:C) treatment, especially when it is administered prior to and after HVT vaccination, enhances the efficacy of HVT vaccine and improves protection against MDV.
Collapse
Affiliation(s)
- Payvand Parvizi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith J, Sadeyen JR, Paton IR, Hocking PM, Salmon N, Fife M, Nair V, Burt DW, Kaiser P. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism. J Virol 2011; 85:11146-58. [PMID: 21865384 PMCID: PMC3194948 DOI: 10.1128/jvi.05499-11] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/15/2011] [Indexed: 02/04/2023] Open
Abstract
Marek's disease virus (MDV) is a highly contagious oncogenic alphaherpesvirus that causes disease that is both a cancer model and a continuing threat to the world's poultry industry. This comprehensive gene expression study analyzes the host response to infection in both resistant and susceptible lines of chickens and inherent expression differences between the two lines following the infection of the host. A novel pathogenicity mechanism, involving the downregulation of genes containing HIC1 transcription factor binding sites as early as 4 days postinfection, was suggested from this analysis. HIC1 drives antitumor mechanisms, suggesting that MDV infection switches off genes involved in antitumor regulation several days before the expression of the MDV oncogene meq. The comparison of the gene expression data to previous QTL data identified several genes as candidates for involvement in resistance to MD. One of these genes, IRG1, was confirmed by single nucleotide polymorphism analysis to be involved in susceptibility. Its precise mechanism remains to be elucidated, although the analysis of gene expression data suggests it has a role in apoptosis. Understanding which genes are involved in susceptibility/resistance to MD and defining the pathological mechanisms of the disease gives us a much greater ability to try to reduce the incidence of this virus, which is costly to the poultry industry in terms of both animal welfare and economics.
Collapse
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haq K, Elawadli I, Parvizi P, Mallick AI, Behboudi S, Sharif S. Interferon-γ influences immunity elicited by vaccines against very virulent Marek’s disease virus. Antiviral Res 2011; 90:218-26. [DOI: 10.1016/j.antiviral.2011.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/28/2011] [Accepted: 04/04/2011] [Indexed: 12/16/2022]
|
13
|
Abstract
It is more than a century since Marek's disease (MD) was first reported in chickens and since then there have been concerted efforts to better understand this disease, its causative agent and various approaches for control of this disease. Recently, there have been several outbreaks of the disease in various regions, due to the evolving nature of MD virus (MDV), which necessitates the implementation of improved prophylactic approaches. It is therefore essential to better understand the interactions between chickens and the virus. The chicken immune system is directly involved in controlling the entry and the spread of the virus. It employs two distinct but interrelated mechanisms to tackle viral invasion. Innate defense mechanisms comprise secretion of soluble factors as well as cells such as macrophages and natural killer cells as the first line of defense. These innate responses provide the adaptive arm of the immune system including antibody- and cell-mediated immune responses to be tailored more specifically against MDV. In addition to the immune system, genetic and epigenetic mechanisms contribute to the outcome of MDV infection in chickens. This review discusses our current understanding of immune responses elicited against MDV and genetic factors that contribute to the nature of the response.
Collapse
|
14
|
Arathy DS, Nair S, Soman SS, Issac A, Sreekumar E. Functional characterization of the CC chemokine RANTES from Pekin duck (Anas platyrhynchos). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:142-150. [PMID: 20850473 DOI: 10.1016/j.dci.2010.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 05/29/2023]
Abstract
RANTES (Regulated upon Activation, Normal T-cell Expressed and Secreted) is a key pro-inflammatory cytokine that belongs to the CC-group of chemokines. The present study was carried out to functionally characterize the previously identified RANTES homologue in domestic duck (GenBank Accession No. AY641435). Recombinant duck RANTES was expressed in Escherichia coli-based and HEK293T cell-based systems. A tRNA supplementation strategy was required to express the protein in E. coli due to the presence of rare codons. In biological assays using HEK293T cell-expressed protein, RANTES was found to mediate chemotaxis of DT-40 chicken B cells and primary duck splenocytes at a concentration of 0.505μg/ml (0.6μM). Immunostaining of the migrated splenocytes using anti-duck CD4 and CD8 monoclonal antibodies and subsequent flow cytometric analysis showed enhanced chemotaxis of CD8+ cells. The recombinant RANTES exhibited in vitro antiviral activity by inhibiting infection of chicken embryo fibroblast cells with duck enteritis virus (DEV) at the same concentration. The effect could be neutralized by rabbit anti-duck RANTES polyclonal serum. The mechanism seems to be direct on viral particles as evidenced by the need for co-incubation of RANTES with DEV prior to the infection for antiviral activity, and also by the enhanced binding of DEV to E. coli expressed purified RANTES on ELISA-based assays. Our results show that the duck RANTES has overlapping biological properties with its mammalian orthologue, and also has possible functional cross-reactivity with chicken immune cells indicated by the chemotaxis of DT-40 cells.
Collapse
Affiliation(s)
- D S Arathy
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud P.O., Thiruvananthapuram 695014, Kerala, India
| | | | | | | | | |
Collapse
|
15
|
Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens. Vet Immunol Immunopathol 2010; 138:292-302. [PMID: 21067815 DOI: 10.1016/j.vetimm.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
16
|
Parvizi P, Andrzejewski K, Read LR, Behboudi S, Sharif S. Expression profiling of genes associated with regulatory functions of T-cell subsets in Marek's disease virus-infected chickens. Avian Pathol 2010; 39:367-73. [DOI: 10.1080/03079457.2010.508776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Manda P, Freeman MG, Bridges SM, Jankun-Kelly TJ, Nanduri B, McCarthy FM, Burgess SC. GOModeler--a tool for hypothesis-testing of functional genomics datasets. BMC Bioinformatics 2010; 11 Suppl 6:S29. [PMID: 20946613 PMCID: PMC3026376 DOI: 10.1186/1471-2105-11-s6-s29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Functional genomics technologies that measure genome expression at a global scale are accelerating biological knowledge discovery. Generating these high throughput datasets is relatively easy compared to the downstream functional modelling necessary for elucidating the molecular mechanisms that govern the biology under investigation. A number of publicly available ‘discovery-based’ computational tools use the computationally amenable Gene Ontology (GO) for hypothesis generation. However, there are few tools that support hypothesis-based testing using the GO and none that support testing with user defined hypothesis terms. Here, we present GOModeler, a tool that enables researchers to conduct hypothesis-based testing of high throughput datasets using the GO. GOModeler summarizes the overall effect of a user defined gene/protein differential expression dataset on specific GO hypothesis terms selected by the user to describe a biological experiment. The design of the tool allows the user to complement the functional information in the GO with his/her domain specific expertise for comprehensive hypothesis testing. Results GOModeler tests the relevance of the hypothesis terms chosen by the user for the input gene dataset by providing the individual effects of the genes on the hypothesis terms and the overall effect of the entire dataset on each of the hypothesis terms. It matches the GO identifiers (ids) of the genes with the GO ids of the hypothesis terms and parses the names of those ids that match to assign effects. We demonstrate the capabilities of GOModeler with a dataset of nine differentially expressed cytokine genes and compare the results to those obtained through manual analysis of the dataset by an immunologist. The direction of overall effects on all hypothesis terms except one was consistent with the results obtained by manual analysis. The tool’s editing capability enables the user to augment the information extracted. GOModeler is available as a part of the AgBase tool suite (http://www.agbase.msstate.edu). Conclusions GOModeler allows hypothesis driven analysis of high throughput datasets using the GO. Using this tool, researchers can quickly evaluate the overall effect of quantitative expression changes of gene set on specific biological processes of interest. The results are provided in both tabular and graphical formats.
Collapse
Affiliation(s)
- Prashanti Manda
- Department of Computer Science and Engineering, Mississippi State University, MS, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Haq K, Abdul-Careem MF, Shanmuganthan S, Thanthrige-Don N, Read LR, Sharif S. Vaccine-induced host responses against very virulent Marek's disease virus infection in the lungs of chickens. Vaccine 2010; 28:5565-72. [DOI: 10.1016/j.vaccine.2010.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/07/2010] [Accepted: 06/10/2010] [Indexed: 02/02/2023]
|
19
|
Cytokine gene expression in splenic CD4+ and CD8+ T cell subsets of genetically resistant and susceptible chickens infected with Marek's disease virus. Vet Immunol Immunopathol 2009; 132:209-17. [DOI: 10.1016/j.vetimm.2009.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 01/03/2023]
|
20
|
The 5' leader of the mRNA encoding the marek's disease virus serotype 1 pp14 protein contains an intronic internal ribosome entry site with allosteric properties. J Virol 2009; 83:12769-78. [PMID: 19793814 DOI: 10.1128/jvi.01010-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We demonstrate the presence of a functional internal ribosome entry site (IRES) within the 5' leader (designated 5L) from a variant of bicistronic mRNAs that encode the pp14 and RLORF9 proteins from Marek's disease virus (MDV) serotype 1. Transcribed as a 1.8-kb family of immediate-early genes, the mature bicistronic mRNAs have variable 5' leader sequences due to alternative splicing or promoter usage. Consequently, the presence or absence of the 5L IRES in the mRNA dictates the mode of pp14 translation and leads to the production of two pp14 isoforms that differ in their N-terminal sequences. Real-time reverse transcription-quantitative PCR indicates that the mRNA variants with the 5L IRES is two to three times more abundant in MDV-infected and transformed cells than the mRNA variants lacking the 5L IRES. A common feature to all members of the 1.8-kb family of transcripts is the presence of an intercistronic IRES that we have previously shown to control the translation of the second open reading frame (i.e., RLORF9). Investigation of the two IRESs residing in the same bicistronic reporter mRNA revealed functional synergism for translation efficiency. In analogy with allosteric models in proteins, we propose IRES allostery to describe such a novel phenomenon. The functional implications of our findings are discussed in relation to host-virus interactions and translational control.
Collapse
|
21
|
Analyses of the spleen proteome of chickens infected with Marek's disease virus. Virology 2009; 390:356-67. [PMID: 19540544 PMCID: PMC7103390 DOI: 10.1016/j.virol.2009.05.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 04/29/2009] [Accepted: 05/18/2009] [Indexed: 01/10/2023]
Abstract
Marek's disease virus (MDV), which causes a lymphoproliferative disease in chickens, is known to induce host responses leading to protection against disease in a manner dependent on genetic background of chickens and virulence of the virus. In the present study, changes in the spleen proteome at 7, 14 and 21 days post-infection in response to MDV infection were studied using two-dimensional polyacrylamide gel electrophoresis. Differentially expressed proteins were identified using one-dimensional liquid chromatography electrospray ionization tandem mass spectrometry (1D LC ESI MS/MS). Comparative analysis of multiple gels revealed that the majority of changes had occurred at early stages of the disease. In total, 61 protein spots representing 48 host proteins were detected as either quantitatively (false discovery rate (FDR)<or=0.05 and fold change>or=2) or qualitatively differentially expressed at least once during different sampling points. Overall, the proteins identified in the present study are involved in a variety of cellular processes such as the antigen processing and presentation, ubiquitin-proteasome protein degradation (UPP), formation of the cytoskeleton, cellular metabolism, signal transduction and regulation of translation. Notably, early stages of the disease were characterized by changes in the UPP, and antigen presentation. Furthermore, changes indicative of active cell proliferation as well as apoptosis together with significant changes in cytoskeletal components that were observed throughout the experimental period suggested the complexity of the pathogenesis. The present findings provide a basis for further studies aimed at elucidation of the role of these proteins in MDV interactions with its host.
Collapse
|
22
|
Tahiri-Alaoui A, Smith LP, Baigent S, Kgosana L, Petherbridge LJ, Lambeth LS, James W, Nair V. Identification of an intercistronic internal ribosome entry site in a Marek's disease virus immediate-early gene. J Virol 2009; 83:5846-53. [PMID: 19297480 PMCID: PMC2681985 DOI: 10.1128/jvi.02602-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/10/2009] [Indexed: 01/31/2023] Open
Abstract
In this study, we have identified an internal ribosome entry site (IRES) from the highly infectious herpesvirus Marek's disease virus (MDV). The IRES was mapped to the intercistronic region (ICR) of a bicistronic mRNA that we cloned from the MDV-transformed CD4(+) T-cell line MSB-1. The transcript is a member of a family of mRNAs expressed as immediate-early genes with two open reading frames (ORF). The first ORF encodes a 14-kDa polypeptide with two N-terminal splice variants, whereas the second ORF is contained entirely within a single exon and encodes a 12-kDa protein also known as RLORF9. We have shown that the ICR that separates the two ORFs functions as an IRES that controls the translation of RLORF9 when cap-dependent translation is inhibited. Deletion analysis revealed that there are two potential IRES elements within the ICR. Reverse genetic experiments with the oncogenic strain of MDV type 1 indicated that deletion of IRES-controlled RLORF9 does not significantly affect viral replication or MDV-induced mortality.
Collapse
|
23
|
Lambeth LS, Yao Y, Smith LP, Zhao Y, Nair V. MicroRNAs 221 and 222 target p27Kip1 in Marek's disease virus-transformed tumour cell line MSB-1. J Gen Virol 2009; 90:1164-1171. [PMID: 19264608 DOI: 10.1099/vir.0.007831-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short RNAs that function as post-transcriptional suppressors of protein expression and are involved in a variety of biological processes, including oncogenesis. Several recent studies have implicated the involvement of miR-221 and miR-222 in tumorigenesis as these miRNAs are upregulated in a number of cancers and affect the expression of cell cycle regulatory proteins such as the cyclin-dependent kinase (cdk) inhibitor p27(Kip1). Marek's disease virus (MDV) is a highly oncogenic herpesvirus that affects poultry, causing acute neoplastic disease with lymphomatous lesions in several organs. MDV-encoded oncogenes such as Meq are directly implicated in the neoplastic transformation of T cells and have been well studied. More recently, however, the involvement of both host and virus-encoded miRNAs in the induction of MD lymphomas is being increasingly recognized. We analysed the miRNA expression profiles in the MDV-transformed lymphoblastoid cell line MSB-1 and found that endogenous miRNAs miR-221 and miR-222 were significantly upregulated. Demonstration of the conserved binding sites for these miRNAs in the chicken p27(Kip1) 3'-untranslated region sequence and the repression of luciferase activity of reporter constructs indicated that miR-221 and miR-222 target p27(Kip1) in these cells. We also found that overexpression of miR-221 and miR-222 decreased p27(Kip1) levels and that treatment with retrovirally expressed antagomiRs partially alleviated this suppression. These data show that an oncogenic herpesvirus, as in the case of many cancers, can exploit the miRNA machinery for suppressing cell cycle regulatory molecules such as p27(Kip1) in the induction and progression of T-cell lymphomas.
Collapse
Affiliation(s)
- Luke S Lambeth
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Yongxiu Yao
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Lorraine P Smith
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Yuguang Zhao
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Venugopal Nair
- The Jenner Institute, University of Oxford, Compton, Berkshire RG20 7NN, UK
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
24
|
Genotype-dependent tumor regression in Marek's disease mediated at the level of tumor immunity. CANCER MICROENVIRONMENT 2009; 2:23-31. [PMID: 19308678 PMCID: PMC2787926 DOI: 10.1007/s12307-008-0018-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 12/14/2008] [Indexed: 01/22/2023]
Abstract
Marek's disease (MD) of chickens is a unique natural model of Hodgkin's and Non Hodgkin's lymphomas in which the neoplastically-transformed cells over-express CD30 (CD30(hi)) antigen. All chicken genotypes can be infected with MD virus and develop microscopic lymphomas. From 21 days post infection (dpi) microscopic lymphomas regress in resistant chickens but, in contrast, they progress to gross lymphomas in susceptible chickens. Here we test our hypothesis that in resistant chickens at 21 dpi the tissue microenvironment is pro T-helper (Th)-1 and compatible with cytotoxic T lymphocyte (CTL) immunity but in susceptible lines it is pro Th-2 or pro T-regulatory (T-reg) and antagonistic to CTL immunity. We used the B2, non-MHC-associated, MD resistance/susceptibility system (line [L]6(1)/line [L]7(2)) and quantified the levels of key mRNAs that can be used to define Th-1 (IL-2, IL-12, IL-18, IFNgamma), Th-2 (IL-4, IL-10) and T-reg (TGFbeta, GPR-83, CTLA-4, SMAD-7) lymphocyte phenotypes. We measured gene expression in both whole tissues (represents tissue microenvironment and tumor microenvironment) and in the lymphoma lesions (tumor microenvironment) themselves. Gene ontology-based modeling of our results shows that the dominant phenotype in whole tissue as well as in microscopic lymphoma lesions, is pro T-reg in both L6(1) and L7(2) but a minor pro Th-1 and anti Th-2 tissue microenvironment exists in L6(1) whereas there is an anti Th-1 and pro Th-2 tissue microenvironment in L7(2). The tumor microenvironment per se is pro T-reg, anti Th-1 and pro Th-2 in both L6(1) and L7(2). Together our data suggests that the neoplastic transformation is essentially the same in both L6(1) and L7(2) and that resistance/susceptibility is mediated at the level of tumor immunity in the tissues.
Collapse
|
25
|
Parvizi P, Read L, Abdul-Careem MF, Lusty C, Sharif S. Cytokine Gene Expression in Splenic CD4+and CD8+T-Cell Subsets of Chickens Infected with Marek's Disease Virus. Viral Immunol 2009; 22:31-8. [DOI: 10.1089/vim.2008.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Payvand Parvizi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Leah Read
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | - Christopher Lusty
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Dail MB, Shack LA, Chambers JE, Burgess SC. Global liver proteomics of rats exposed for 5 days to phenobarbital identifies changes associated with cancer and with CYP metabolism. Toxicol Sci 2008; 106:556-69. [PMID: 18796496 PMCID: PMC2581678 DOI: 10.1093/toxsci/kfn198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/10/2008] [Indexed: 12/14/2022] Open
Abstract
A global proteomics approach was applied to model the hepatic response elicited by the toxicologically well-characterized xenobiotic phenobarbital (PB), a prototypical inducer of hepatic xenobiotic metabolizing enzymes and a well-known nongenotoxic liver carcinogen in rats. Differential detergent fractionation two-dimensional liquid chromatography electrospray ionization tandem mass spectrometry and systems biology modeling were used to identify alterations in toxicologically relevant hepatic molecular functions and biological processes in the livers of rats following a 5-day exposure to PB at 80 mg/kg/day or a vehicle control. Of the 3342 proteins identified, expression of 121 (3.6% of the total proteins) was significantly increased and 127 (3.8%) significantly decreased in the PB group compared to controls. The greatest increase was seen for cytochrome P450 (CYP) 2B2 (167-fold). All proteins with statistically significant differences from control were then analyzed using both Gene Ontology (GO) and Ingenuity Pathways Analysis (IPA, 5.0 IPA-Tox) for cellular location, function, network connectivity, and possible disease processes, especially as they relate to CYP-mediated metabolism and nongenotoxic carcinogenesis mechanisms. The GO results suggested that PB's mechanism of nongenotoxic carcinogenesis involves both increased xenobiotic metabolism, especially induction of the 2B subfamily of CYP enzymes, and increased cell cycle activity. Apoptosis, however, also increased, perhaps, as an attempt to counter the rising cancer threat. Of the IPA-mapped proteins, 41 have functions which are procarcinogenic and 14 anticarcinogenic according to the hypothesized nongenotoxic mechanism of imbalance between apoptosis and cellular proliferation. Twenty-two additional IPA nodes can be classified as procarcinogenic by the competing theory of increased metabolism resulting in the formation of reactive oxygen species. Since the systems biology modeling corresponded well to PB effects previously elucidated via more traditional methods, the global proteomic approach is proposed as a new screening methodology that can be incorporated into future toxicological studies.
Collapse
Affiliation(s)
- Mary B. Dail
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - L. Allen Shack
- Department of Basic Sciences, College of Veterinary Medicine
| | - Janice E. Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine
- Department of Basic Sciences, College of Veterinary Medicine
| | - Shane C. Burgess
- Department of Basic Sciences, College of Veterinary Medicine
- Mississippi Agriculture and Forestry Experiment Station
- Institute for Digital Biology
- Life Sciences and Biotechnology Institute, Mississippi State University, Mississippi State, Mississippi 39762
| |
Collapse
|
27
|
Ramaroson MF, Ruby J, Goshe MB, Liu HC. Changes in the Gallus gallus Proteome Induced by Marek’s Disease Virus. J Proteome Res 2008; 7:4346-58. [DOI: 10.1021/pr800268h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mialy F. Ramaroson
- Department of Molecular and Structural Biochemistry, and Department of Animal Science, North Carolina State University, Raleigh, North Carolina 27695
| | - James Ruby
- Department of Molecular and Structural Biochemistry, and Department of Animal Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Michael B. Goshe
- Department of Molecular and Structural Biochemistry, and Department of Animal Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Hsiao-Ching Liu
- Department of Molecular and Structural Biochemistry, and Department of Animal Science, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
28
|
Shack LA, Buza JJ, Burgess SC. The neoplastically transformed (CD30hi) Marek's disease lymphoma cell phenotype most closely resembles T-regulatory cells. Cancer Immunol Immunother 2008; 57:1253-62. [PMID: 18256827 PMCID: PMC11030954 DOI: 10.1007/s00262-008-0460-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/15/2008] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Marek's disease (MD), a herpesvirus-induced lymphoma of chickens is a unique natural model of CD30-overexpressing (CD30hi) lymphoma. We have previously proposed that the CD30hi neoplastically transformed CD4+ T cells in MD lymphomas have a phenotype antagonistic to cell mediated immunity. Here were test the hypothesis that the CD30hi neoplastically transformed MD lymphoma cells have a phenotype more closely resembling T-helper (Th)-2 or regulatory T (T-reg) cells. MATERIALS AND METHODS We separated ex vivo-derived CD30hi, from the CD30lo/- (non-transformed), MD lymphoma cells and then quantified the relative amounts of mRNA and proteins for cytokines and other genes that define CD4+ Th-1, Th-2 or T-reg phenotypes. RESULTS AND DISCUSSION Gene Ontology-based modeling of our data shows that the CD30hi MD lymphoma cells having a phenotype more similar to T-reg. Sequences that could be bound by the MD virus putative oncoprotein Meq in each of these genes' promoters suggests that the MD herpesvirus may play a direct role in maintaining this T-reg-like phenotype.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Cell Separation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Chickens
- Computational Biology
- Cytokines/genetics
- Cytokines/immunology
- Databases, Genetic
- Gene Expression Profiling
- Immunophenotyping
- Ki-1 Antigen/genetics
- Ki-1 Antigen/immunology
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/pathology
- Marek Disease/immunology
- Marek Disease/pathology
- Models, Immunological
- Phenotype
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- L. A. Shack
- Department of Basic Sciences, College of Veterinary Medicine, Wise Center, Mississippi State University, Spring Street, Box 6100, Mississippi State, MS 39762-6100 USA
| | - J. J. Buza
- Department of Basic Sciences, College of Veterinary Medicine, Wise Center, Mississippi State University, Spring Street, Box 6100, Mississippi State, MS 39762-6100 USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, USA
| | - S. C. Burgess
- Department of Basic Sciences, College of Veterinary Medicine, Wise Center, Mississippi State University, Spring Street, Box 6100, Mississippi State, MS 39762-6100 USA
- Institute for Digital Biology, Mississippi State University, Mississippi State, USA
- Mississippi Agricultural and Forestry Experiment Station, Mississippi State, USA
| |
Collapse
|
29
|
Buza JJ, Burgess SC. Different signaling pathways expressed by chicken naive CD4(+) T cells, CD4(+) lymphocytes activated with staphylococcal enterotoxin B, and those malignantly transformed by Marek's disease virus. J Proteome Res 2008; 7:2380-7. [PMID: 18412384 DOI: 10.1021/pr700844z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteomics methods, based on liquid chromatography and tandem mass spectrometry, produce large "shotgun" proteomes that are most appropriately compared not at the level of differentially expressed proteins only but at the more comprehensive level of biological networks and pathways. This is now possible with the emergence of functional annotation databases and tools, databases of canonical pathways and molecular interactions and computational text mining tools. Here, we used shotgun proteomics, and the differential proteomics modeling functionalities available in the Pathwaystudio network modeling program to define the cell physiology of Hodgkin's disease antigen-overexpressing (CD30 (hi)) CD4 (+) T cell lymphomas using the unique Marek's disease (MD) natural animal model. CD30 (hi) lymphoma cells have characteristics of activated T cells but are also fundamentally different from their nontransformed healthy counterparts. We compared the cell physiology of naïve, superantigen-activated and MD-transformed CD4 (+) T cell proteomes. While the superantigen-activated cells had signaling pathways associated with cell activation, inflammation, proliferation and cell death, the MD-transformed cells had growth factor, cytokine, adhesion, and transcription factor signaling responses associated with oncogenicity, cell proliferation, angiogenesis, motility, and metastasis.
Collapse
Affiliation(s)
- Joram J Buza
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
| | | |
Collapse
|
30
|
Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH, Watson M, Nair V. MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol 2008; 82:4007-15. [PMID: 18256158 PMCID: PMC2293013 DOI: 10.1128/jvi.02659-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/25/2008] [Indexed: 12/30/2022] Open
Abstract
Research over the last few years has demonstrated the increasing role of microRNAs (miRNAs) as major regulators of gene expression in diverse cellular processes and diseases. Several viruses, particularly herpesviruses, also use the miRNA pathway of gene regulation by encoding their own miRNAs. Marek's disease (MD) is a widespread lymphomatous neoplastic disease of poultry caused by the highly contagious Marek's disease virus type 1 (MDV-1). Recent studies using virus-infected chicken embryo fibroblasts have identified at least eight miRNAs that map to the R(L)/R(S) region of the MDV genome. Since MDV is a lymphotropic virus that induces T-cell lymphomas, analysis of the miRNA profile in T-cell lymphoma would be more relevant for examining their role in oncogenesis. We determined the viral and host miRNAs expressed in MSB-1, a lymphoblastoid cell line established from an MDV-induced lymphoma of the spleen. In this paper, we report the identification of 13 MDV-1-encoded miRNAs (12 by direct cloning and 1 by Northern blotting) from MSB-1 cells. These miRNAs, five of which are novel MDV-1 miRNAs, map to the Meq and latency-associated transcript regions of the MDV genome. Furthermore, we show that miRNAs encoded by MDV-1 and the coinfected MDV-2 accounted for >60% of the 5,099 sequences of the MSB-1 "miRNAome." Several chicken miRNAs, some of which are known to be associated with cancer, were also cloned from MSB-1 cells. High levels of expression of MDV-1-encoded miRNAs and potentially oncogenic host miRNAs suggest that miRNAs may have major roles in MDV pathogenesis and neoplastic transformation.
Collapse
Affiliation(s)
- Yongxiu Yao
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Sanders WS, Bridges SM, McCarthy FM, Nanduri B, Burgess SC. Prediction of peptides observable by mass spectrometry applied at the experimental set level. BMC Bioinformatics 2007; 8 Suppl 7:S23. [PMID: 18047723 PMCID: PMC2099492 DOI: 10.1186/1471-2105-8-s7-s23] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background When proteins are subjected to proteolytic digestion and analyzed by mass spectrometry using a method such as 2D LC MS/MS, only a portion of the proteotypic peptides associated with each protein will be observed. The ability to predict which peptides can and cannot potentially be observed for a particular experimental dataset has several important applications in proteomics research including calculation of peptide coverage in terms of potentially detectable peptides, systems biology analysis of data sets, and protein quantification. Results We have developed a methodology for constructing artificial neural networks that can be used to predict which peptides are potentially observable for a given set of experimental, instrumental, and analytical conditions for 2D LC MS/MS (a.k.a Multidimensional Protein Identification Technology [MudPIT]) datasets. Neural network classifiers constructed using this procedure for two MudPIT datasets exhibit 10-fold cross validation accuracy of about 80%. We show that a classifier constructed for one dataset has poor predictive performance with the other dataset, thus demonstrating the need for dataset specific classifiers. Classification results with each dataset are used to compute informative percent amino acid coverage statistics for each protein in terms of the predicted detectable peptides in addition to the percent coverage of the complete sequence. We also demonstrate the utility of predicted peptide observability for systems analysis to help determine if proteins that were expected but not observed generate sufficient peptides for detection. Conclusion Classifiers that accurately predict the likelihood of detecting proteotypic peptides by mass spectrometry provide proteomics researchers with powerful new approaches for data analysis. We demonstrate that the procedure we have developed for building a classifier based on an individual experimental data set results in classifiers with accuracy comparable to those reported in the literature based on large training sets collected from multiple experiments. Our approach allows the researcher to construct a classifier that is specific for the experimental, instrument, and analytical conditions of a single experiment and amenable to local, condition-specific, implementation. The resulting classifiers have application in a number of areas such as determination of peptide coverage for protein identification, pathway analysis, and protein quantification.
Collapse
Affiliation(s)
- William S Sanders
- Department of Biochemistry & Molecular Biology, Mississippi State University, MS, USA.
| | | | | | | | | |
Collapse
|