1
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
2
|
Di Natale C, Celetti G, Scognamiglio PL, Cosenza C, Battista E, Causa F, Netti PA. Molecularly endowed hydrogel with an in silico-assisted screened peptide for highly sensitive small molecule harvesting. Chem Commun (Camb) 2018; 54:10088-10091. [DOI: 10.1039/c8cc04943b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of in silico-assisted screening of an AFM1 binding peptide and the working principle of toxin harvesting by molecularly endowed hydrogel.
Collapse
Affiliation(s)
- Concetta Di Natale
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT)
- Naples 80125
- Italy
| | - Giorgia Celetti
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT)
- Naples 80125
- Italy
| | | | - Chiara Cosenza
- Interdisciplinary Research Centre on Biomaterials (CRIB)
- University “Federico II”
- Naples 80125
- Italy
| | - Edmondo Battista
- Interdisciplinary Research Centre on Biomaterials (CRIB)
- University “Federico II”
- Naples 80125
- Italy
| | - Filippo Causa
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT)
- Naples 80125
- Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB)
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare
- Istituto Italiano di Tecnologia (IIT)
- Naples 80125
- Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB)
| |
Collapse
|
3
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
4
|
Matysiak J, Hajduk J, Pietrzak Ł, Schmelzer CEH, Kokot ZJ. Shotgun proteome analysis of honeybee venom using targeted enrichment strategies. Toxicon 2014; 90:255-64. [PMID: 25173076 DOI: 10.1016/j.toxicon.2014.08.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 01/30/2023]
Abstract
The aim of this study was to explore the honeybee venom proteome applying a shotgun proteomics approach using different enrichment strategies (combinatorial peptide ligand libraries and solid phase extraction). The studies were conducted using nano-LC/MALDI-TOF/TOF-MS system. The MS analysis of peptide profiles (in the range of 900-4500 Da) and virtual gel-image of proteins from Lab-on-Chip assay (in the range of 10-250 kDa) confirm that use of targeted enrichment strategies increase detection of honeybee venom components. The gel-free shotgun strategy and sophisticated instrumentation led to a significant increase of the sensitivity and higher number of identified peptides in honeybee venom samples, comparing with the current literature. Moreover, 11 of 12 known honeybee venom allergens were acknowledged and 4 new, so far uncharacterized proteins were identified. In addition, similarity searches were performed in order to investigate biological relations and homology between newly identified proteins sequences from Apis mellifera and other Hymenoptera.
Collapse
Affiliation(s)
- Jan Matysiak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland.
| | - Joanna Hajduk
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Łukasz Pietrzak
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Christian E H Schmelzer
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Zenon J Kokot
- Department of Inorganic & Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
5
|
Salamonsen LA, Edgell T, Rombauts LJ, Stephens AN, Robertson DM, Rainczuk A, Nie G, Hannan NJ. Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery. Fertil Steril 2013; 99:1086-92. [DOI: 10.1016/j.fertnstert.2012.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/04/2012] [Accepted: 09/07/2012] [Indexed: 01/01/2023]
|
6
|
Comparison of three different enrichment strategies for serum low molecular weight protein identification using shotgun proteomics approach. Anal Chim Acta 2012; 740:58-65. [DOI: 10.1016/j.aca.2012.06.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022]
|
7
|
Stanton PG, Sluka P, Foo CFH, Stephens AN, Smith AI, McLachlan RI, O'Donnell L. Proteomic changes in rat spermatogenesis in response to in vivo androgen manipulation; impact on meiotic cells. PLoS One 2012; 7:e41718. [PMID: 22860010 PMCID: PMC3408499 DOI: 10.1371/journal.pone.0041718] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/26/2012] [Indexed: 01/11/2023] Open
Abstract
The production of mature sperm is reliant on androgen action within the testis, and it is well established that androgens act on receptors within the somatic Sertoli cells to stimulate male germ cell development. Mice lacking Sertoli cell androgen receptors (AR) show late meiotic germ cell arrest, suggesting Sertoli cells transduce the androgenic stimulus co-ordinating this essential step in spermatogenesis. This study aimed to identify germ cell proteins responsive to changes in testicular androgen levels and thereby elucidate mechanisms by which androgens regulate meiosis. Testicular androgen levels were suppressed for 9 weeks using testosterone and estradiol-filled silastic implants, followed by a short period of either further androgen suppression (via an AR antagonist) or the restoration of intratesticular testosterone levels. Comparative proteomics were performed on protein extracts from enriched meiotic cell preparations from adult rats undergoing androgen deprivation and replacement in vivo. Loss of androgenic stimulus caused changes in proteins with known roles in meiosis (including Nasp and Hsp70–2), apoptosis (including Diablo), cell signalling (including 14-3-3 isoforms), oxidative stress, DNA repair, and RNA processing. Immunostaining for oxidised DNA adducts confirmed spermatocytes undergo oxidative stress-induced DNA damage during androgen suppression. An increase in PCNA and an associated ubiquitin-conjugating enzyme (Ubc13) suggested a role for PCNA-mediated regulation of DNA repair pathways in spermatocytes. Changes in cytoplasmic SUMO1 localisation in spermatocytes were paralleled by changes in the levels of free SUMO1 and of a subunit of its activating complex, suggesting sumoylation in spermatocytes is modified by androgen action on Sertoli cells. We conclude that Sertoli cells, in response to androgens, modulate protein translation and post-translational events in spermatocytes that impact on their metabolism, survival, and completion of meiosis.
Collapse
Affiliation(s)
- Peter G Stanton
- Prince Henry's Institute, Monash Medical Centre, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Menkhorst EM, Lane N, Winship AL, Li P, Yap J, Meehan K, Rainczuk A, Stephens A, Dimitriadis E. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation. PLoS One 2012; 7:e31418. [PMID: 22359590 PMCID: PMC3281063 DOI: 10.1371/journal.pone.0031418] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/07/2012] [Indexed: 11/25/2022] Open
Abstract
Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the ‘extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10−8 M), medroxyprogesterone acetate (10−7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel proteins expressed by EVT and to uncover the mechanisms leading to disease states.
Collapse
Affiliation(s)
| | - Natalie Lane
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | - Priscilla Li
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Joanne Yap
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Katie Meehan
- Prince Henry's Institute, Clayton, Victoria, Australia
| | - Adam Rainczuk
- Prince Henry's Institute, Clayton, Victoria, Australia
| | | | | |
Collapse
|
9
|
Paule S, Meehan K, Rainczuk A, Stephens AN, Nie G. Combination of hydrogel nanoparticles and proteomics to reveal secreted proteins associated with decidualization of human uterine stromal cells. Proteome Sci 2011; 9:50. [PMID: 21884602 PMCID: PMC3184050 DOI: 10.1186/1477-5956-9-50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 09/01/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identification of secreted proteins of low abundance is often limited by abundant and high molecular weight (MW) proteins. We have optimised a procedure to overcome this limitation. RESULTS Low MW proteins in the conditioned media of cultured cells were first captured using dual-size exclusion/affinity hydrogel nanoparticles and their identities were then revealed by proteomics. CONCLUSIONS This technique enables the analysis of secreted proteins of cultured cells low MW and low abundance.
Collapse
Affiliation(s)
- Sarah Paule
- Prince Henrys Institute of Medical Research, Clayton 3168 Australia
| | - Katie Meehan
- Prince Henrys Institute of Medical Research, Clayton 3168 Australia
| | - Adam Rainczuk
- Prince Henrys Institute of Medical Research, Clayton 3168 Australia
| | | | - Guiying Nie
- Prince Henrys Institute of Medical Research, Clayton 3168 Australia
| |
Collapse
|
10
|
Douglas T, Tamburro D, Fredolini C, Espina B, Lepene BS, Ilag L, Espina V, Petricoin EF, Liotta LA, Luchini A. The use of hydrogel microparticles to sequester and concentrate bacterial antigens in a urine test for Lyme disease. Biomaterials 2011; 32:1157-66. [PMID: 21035184 PMCID: PMC3019571 DOI: 10.1016/j.biomaterials.2010.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/04/2010] [Indexed: 01/24/2023]
Abstract
Hydrogel biomarker capturing microparticles were evaluated as a biomaterial to amplify the sensitivity of urine testing for infectious disease proteins. Lyme disease is a bacterial infection transmitted by ticks. Early diagnosis and prompt treatment of Lyme disease reduces complications including arthritis and cardiac involvement. While a urine test is highly desirable for Lyme disease screening, this has been difficult to accomplish because the antigen is present at extremely low concentrations, below the detection limit of clinical immunoassays. N-isopropylacrylamide (NIPAm)-acrylic acid (AAc) microparticles were covalently functionalized with amine containing dyes via amidation of carboxylic groups present in the microparticles. The dyes act as affinity baits towards protein analytes in solution. NIPAm/AAc microparticles functionalized with acid black 48 (AB48) mixed with human urine, achieved close to one hundred percent capture and 100 percent extraction yield of the target antigen. In urine, microparticles sequestered and concentrated Lyme disease antigens 100 fold, compared to the absence of microparticles, achieving an immunoassay detection sensitivity of 700 pg/mL in 10 mL urine. Antigen present in a single infected tick could be readily detected following microparticle sequestration. Hydrogel microparticles functionalized with high affinity baits can dramatically increase the sensitivity of urinary antigen tests for infectious diseases such as Lyme disease. These findings justify controlled clinical studies evaluating the sensitivity and precision of Lyme antigen testing in urine.
Collapse
Affiliation(s)
- Temple Douglas
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110 (USA)
| | - Davide Tamburro
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110 (USA)
| | - Claudia Fredolini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110 (USA)
- Department of Urology, S. Giovanni Bosco Hospital, Torino 10154, Italy
- Department of Medicine and Experimental Oncology, University of Turin, Turin 10126, Italy
| | | | | | - Leopold Ilag
- Department of Analytical Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110 (USA)
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110 (USA)
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110 (USA)
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, Virginia 20110 (USA)
| |
Collapse
|
11
|
Meehan KL, Rainczuk A, Salamonsen LA, Stephens AN. Proteomics and the search for biomarkers of female reproductive diseases. Reproduction 2010; 140:505-19. [PMID: 20628032 DOI: 10.1530/rep-10-0226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past decade, high-throughput proteomics technologies have evolved considerably and have become increasingly more commonly applied to the investigation of female reproductive diseases. Proteomic approaches facilitate the identification of new disease biomarkers by comparing the abundance of hundreds of proteins simultaneously to find those specific to a particular clinical condition. Some of the best studied areas of female reproductive biology applying proteomics include gynaecological cancers, endometriosis and endometrial infertility. This review will discuss the progress that has been made in these areas and will highlight some of the emerging technologies that promise to contribute to better understanding of the female reproductive disease.
Collapse
Affiliation(s)
- Katie L Meehan
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|