1
|
Wolf K, Kosinski J, Gibson TJ, Wesch N, Dötsch V, Genuardi M, Cordisco EL, Zeuzem S, Brieger A, Plotz G. A conserved motif in the disordered linker of human MLH1 is vital for DNA mismatch repair and its function is diminished by a cancer family mutation. Nucleic Acids Res 2023; 51:6307-6320. [PMID: 37224528 PMCID: PMC10325900 DOI: 10.1093/nar/gkad418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/26/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
DNA mismatch repair (MMR) is essential for correction of DNA replication errors. Germline mutations of the human MMR gene MLH1 are the major cause of Lynch syndrome, a heritable cancer predisposition. In the MLH1 protein, a non-conserved, intrinsically disordered region connects two conserved, catalytically active structured domains of MLH1. This region has as yet been regarded as a flexible spacer, and missense alterations in this region have been considered non-pathogenic. However, we have identified and investigated a small motif (ConMot) in this linker which is conserved in eukaryotes. Deletion of the ConMot or scrambling of the motif abolished mismatch repair activity. A mutation from a cancer family within the motif (p.Arg385Pro) also inactivated MMR, suggesting that ConMot alterations can be causative for Lynch syndrome. Intriguingly, the mismatch repair defect of the ConMot variants could be restored by addition of a ConMot peptide containing the deleted sequence. This is the first instance of a DNA mismatch repair defect conferred by a mutation that can be overcome by addition of a small molecule. Based on the experimental data and AlphaFold2 predictions, we suggest that the ConMot may bind close to the C-terminal MLH1-PMS2 endonuclease and modulate its activation during the MMR process.
Collapse
Affiliation(s)
- Karla Wolf
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Centre for Structural Systems Biology (CSSB), Hamburg, 22607, Germany
| | - Toby J Gibson
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, 69117, Germany
| | - Nicole Wesch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, 60438, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, 60438, Germany
| | - Maurizio Genuardi
- UOC Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome00168, Italy
| | - Emanuela Lucci Cordisco
- Dipartimento di Scienze della Vita e di Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome00168, Italy
| | - Stefan Zeuzem
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Angela Brieger
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| | - Guido Plotz
- Department of Internal Medicine 1, University Hospital, Goethe University, Frankfurt am Main, 60590, Germany
| |
Collapse
|
2
|
Target-Based Small Molecule Drug Discovery for Colorectal Cancer: A Review of Molecular Pathways and In Silico Studies. Biomolecules 2022; 12:biom12070878. [PMID: 35883434 PMCID: PMC9312989 DOI: 10.3390/biom12070878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer is one of the most prevalent cancer types. Although there have been breakthroughs in its treatments, a better understanding of the molecular mechanisms and genetic involvement in colorectal cancer will have a substantial role in producing novel and targeted treatments with better safety profiles. In this review, the main molecular pathways and driver genes that are responsible for initiating and propagating the cascade of signaling molecules reaching carcinoma and the aggressive metastatic stages of colorectal cancer were presented. Protein kinases involved in colorectal cancer, as much as other cancers, have seen much focus and committed efforts due to their crucial role in subsidizing, inhibiting, or changing the disease course. Moreover, notable improvements in colorectal cancer treatments with in silico studies and the enhanced selectivity on specific macromolecular targets were discussed. Besides, the selective multi-target agents have been made easier by employing in silico methods in molecular de novo synthesis or target identification and drug repurposing.
Collapse
|
3
|
Schrecker C, Behrens S, Schönherr R, Ackermann A, Pauli D, Plotz G, Zeuzem S, Brieger A. SPTAN1 Expression Predicts Treatment and Survival Outcomes in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13143638. [PMID: 34298848 PMCID: PMC8305611 DOI: 10.3390/cancers13143638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is a common and deadly form of cancer. Non-erythroid spectrin αII (SPTAN1), a protein of the cytoskeleton, is thought to be involved in CRC development and progression. In this study, we explore whether measuring SPTAN1 levels in resected CRC specimens might help to predict patient survival outcomes and response to chemotherapy. Indeed, we find that higher SPTAN1 protein and mRNA levels in CRC specimens associate with longer patient survival times. Using cell culture experiments, we then show that cells with lower SPTAN1 levels are less susceptible to FOLFOX chemotherapy, a standard treatment regimen for patients with CRC. Overall, our study underscores the importance of cytoskeletal proteins in shaping tumour biology and treatment responses and nominates SPTAN1 as a biomarker to improve patient stratification and refine therapeutic decisions in CRC. Abstract Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality. In a cohort of 189 patients with CRC, we recently showed that expression of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1) was lower in advanced metastatic tumours. The aim of the present study was to clarify the association of intratumoural SPTAN1 expression levels with treatment and survival outcomes in patients with CRC. The analysis was based on histologic assessment of SPTAN1 protein levels in our own CRC cohort, and transcriptome data of 573 CRC cases from The Cancer Genome Atlas (TCGA). We first establish that high intratumoural levels of SPTAN1 protein and mRNA associate with favourable survival outcomes in patients with CRC. Next, a response prediction signature applied to the TCGA data reveals a possible link between high SPTAN1 transcript levels and improved patient responses to FOLFOX chemotherapy. Complementary in vitro experiments confirm that SPTAN1 knockdown strains of the colon cancer cell lines HT-29, HCT116 mlh1-2 and Caco-2 are less responsive to FOLFOX chemotherapy compared with SPTAN1-proficient control strains. Taken together, we identify SPTAN1 as a novel prognostic biomarker in CRC and show that SPTAN1 expression levels may predict patient responses to chemotherapy. These investigations illustrate how an affordable, histology-based diagnostic test could directly impact therapeutic decision-making at the bedside.
Collapse
Affiliation(s)
- Christopher Schrecker
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| | - Sophia Behrens
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Rebecca Schönherr
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Faculty of Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Anne Ackermann
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Daniel Pauli
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Guido Plotz
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Stefan Zeuzem
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
| | - Angela Brieger
- Department of Medicine, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.B.); (R.S.); (A.A.); (D.P.); (G.P.); (S.Z.)
- Correspondence: (C.S.); (A.B.); Tel.: +49-69-6301-6218 (A.B.)
| |
Collapse
|
4
|
Dennhag N, Liu JX, Nord H, von Hofsten J, Pedrosa Domellöf F. Absence of Desmin in Myofibers of the Zebrafish Extraocular Muscles. Transl Vis Sci Technol 2020; 9:1. [PMID: 32953241 PMCID: PMC7476663 DOI: 10.1167/tvst.9.10.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose To study the medial rectus (MR) muscle of zebrafish (Daniorerio) with respect to the pattern of distribution of desmin and its correlation to distinct types of myofibers and motor endplates. Methods The MRs of zebrafish were examined using confocal microscopy in whole-mount longitudinal specimens and in cross sections processed for immunohistochemistry with antibodies against desmin, myosin heavy chain isoforms, and innervation markers. Desmin patterns were correlated to major myofiber type and type of innervation. A total of 1382 myofibers in nine MR muscles were analyzed. Results Four distinct desmin immunolabeling patterns were found in the zebrafish MRs. Approximately a third of all slow myofibers lacked desmin, representing 8.5% of the total myofiber population. The adult zebrafish MR muscle displayed en grappe, en plaque, and multiterminal en plaque neuromuscular junctions (NMJs) with intricate patterns of desmin immunolabeling. Conclusions The MRs of zebrafish showed important similarities with the human extraocular muscles with regard to the pattern of desmin distribution and presence of the major types of NMJs and can be regarded as an adequate model to further study the role of desmin and the implications of heterogeneity in cytoskeletal protein composition. Translational Relevance The establishment of a zebrafish model to study the cytoskeleton in muscles that are particularly resistant to muscle disease opens new avenues to understand human myopathies and muscle dystrophies and may provide clues to new therapies.
Collapse
Affiliation(s)
- Nils Dennhag
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
6
|
The Role of Nonerythroid Spectrin αII in Cancer. JOURNAL OF ONCOLOGY 2019; 2019:7079604. [PMID: 31186638 PMCID: PMC6521328 DOI: 10.1155/2019/7079604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022]
Abstract
Nonerythroid spectrin αII (SPTAN1) is an important cytoskeletal protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. The detection of altered expression of SPTAN1 in tumors indicates that SPTAN1 might be involved in the development and progression of cancer. SPTAN1 has been described in cancer and therapy response and proposed as a potential marker protein for neoplasia, tumor aggressiveness, and therapeutic efficiency. On one hand, the existing data suggest that overexpression of SPTAN1 in tumor cells reflects neoplastic and tumor promoting activity. On the other hand, nuclear SPTAN1 can have tumor suppressing effects by enabling DNA repair through interaction with DNA repair proteins. Moreover, SPTAN1 cleavage products occur during apoptosis and could serve as markers for the efficacy of cancer therapy. Due to SPTAN1's multifaceted functions and its role in adhesion and migration, SPTAN1 can influence tumor growth and progression in both positive and negative directions depending on its specific regulation. This review summarizes the current knowledge on SPTAN1 in cancer and depicts several mechanisms by which SPTAN1 could impact tumor development and aggressiveness.
Collapse
|
7
|
Downregulation of SPTAN1 is related to MLH1 deficiency and metastasis in colorectal cancer. PLoS One 2019; 14:e0213411. [PMID: 30856214 PMCID: PMC6411122 DOI: 10.1371/journal.pone.0213411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/20/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Colorectal cancers (CRCs) deficient in the DNA mismatch repair protein MutL homolog 1 (MLH1) display distinct clinicopathological features and require a different therapeutic approach compared to CRCs with MLH1 proficiency. However, the molecular basis of this fundamental difference remains elusive. Here, we report that MLH1-deficient CRCs exhibit reduced levels of the cytoskeletal scaffolding protein non-erythroid spectrin αII (SPTAN1), and that tumor progression and metastasis of CRCs correlate with SPTAN1 levels. Methods and results To investigate the link between MLH1 and SPTAN1 in cancer progression, a cohort of 189 patients with CRC was analyzed by immunohistochemistry. Compared with the surrounding normal mucosa, SPTAN1 expression was reduced in MLH1-deficient CRCs, whereas MLH1-proficient CRCs showed a significant upregulation of SPTAN1. Overall, we identified a strong correlation between MLH1 status and SPTAN1 expression. When comparing TNM classification and SPTAN1 levels, we found higher SPTAN1 levels in stage I CRCs, while stages II to IV showed a gradual reduction of SPTAN1 expression. In addition, SPTAN1 expression was lower in metastatic compared with non-metastatic CRCs. Knockdown of SPTAN1 in CRC cell lines demonstrated decreased cell viability, impaired cellular mobility and reduced cell-cell contact formation, indicating that SPTAN1 plays an important role in cell growth and cell attachment. The observed weakened cell-cell contact of SPTAN1 knockdown cells might indicate that tumor cells expressing low levels of SPTAN1 detach from their primary tumor and metastasize more easily. Conclusion Taken together, we demonstrate that MLH1 deficiency, low SPTAN1 expression, and tumor progression and metastasis are in close relation. We conclude that SPTAN1 is a candidate molecule explaining the tumor progression and metastasis of MLH1-deficient CRCs. The detailed analysis of SPTAN1 is now mandatory to substantiate its relevance and its potential value as a candidate protein for targeted therapy, and as a predictive marker of cancer aggressiveness.
Collapse
|
8
|
Gupta AK, Pokhriyal R, Khan MI, Kumar DR, Gupta R, Chadda RK, Ramachandran R, Goyal V, Tripathi M, Hariprasad G. Cerebrospinal Fluid Proteomics For Identification Of α2-Macroglobulin As A Potential Biomarker To Monitor Pharmacological Therapeutic Efficacy In Dopamine Dictated Disease States Of Parkinson's Disease And Schizophrenia. Neuropsychiatr Dis Treat 2019; 15:2853-2867. [PMID: 31632033 PMCID: PMC6781638 DOI: 10.2147/ndt.s214217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
AIM Parkinson's disease and schizophrenia are clinical end points of dopaminergic deficit and excess, respectively, in the mid-brain. In accordance, current pharmacological interventions aim to restore normal dopamine levels, the overshooting of which culminates in adverse effects which results in psychotic symptoms in Parkinson's disease and extra-pyramidal symptoms in schizophrenia. Currently, there are no laboratory assays to assist treatment decisions or help foresee these drug side-effect outcomes. Therefore, the aim was to discover a protein biomarker that had a varying linear expression across the clinical dopaminergic spectrum. MATERIALS AND METHODS iTRAQ-based proteomic experiments along with mass spectrometric analysis was used for comparative proteomics using cerebrospinal fluid (CSF). CSF fluid was collected from 36 patients with Parkinson's disease, 15 patients with urological diseases that served as neurological controls, and seven schizophrenic patients with hallucinations. Validation included ELISA and pathway analysis to highlight the varying expression and provide plausible molecular pathways for differentially expressed proteins in the three clinical phenotypes. RESULTS Protein profiles were delineated in CSF from Parkinson's disease patients, neurological control and schizophrenia, respectively. Ten of the proteins that were identified had a linear relationship across the dopaminergic spectrum. α-2-Macroglobulin showed to be having high statistical significance on inter-group comparison on validation studies using ELISA. CONCLUSIONS Non-gel-based proteomic experiments are an ideal platform to discover potential biomarkers that can be used to monitor pharmaco-therapeutic efficacy in dopamine-dictated clinical scenarios. α-2 Macroglobulin is a potential biomarker to monitor pharmacological therapy in Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vinay Goyal
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
9
|
Hinrichsen I, Weßbecher IM, Huhn M, Passmann S, Zeuzem S, Plotz G, Biondi RM, Brieger A. Phosphorylation-dependent signaling controls degradation of DNA mismatch repair protein PMS2. Mol Carcinog 2017; 56:2663-2668. [DOI: 10.1002/mc.22709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/28/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Inga Hinrichsen
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
| | - Isabel M. Weßbecher
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
| | - Meik Huhn
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
- Pharmazentrum Frankfurt; Institute of Pharmacology and Toxicology; University Clinic Frankfurt; Frankfurt a.M. Germany
| | - Sandra Passmann
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
| | - Stefan Zeuzem
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
| | - Guido Plotz
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
| | - Ricardo M. Biondi
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
| | - Angela Brieger
- Medical Clinic I; Biomedical Research Laboratory; University Clinic Frankfurt; Frankfurt a.M. Germany
| |
Collapse
|
10
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
11
|
Hnia K, Ramspacher C, Vermot J, Laporte J. Desmin in muscle and associated diseases: beyond the structural function. Cell Tissue Res 2014; 360:591-608. [PMID: 25358400 DOI: 10.1007/s00441-014-2016-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Desmin is a muscle-specific type III intermediate filament essential for proper muscular structure and function. In human, mutations affecting desmin expression or promoting its aggregation lead to skeletal (desmin-related myopathies), or cardiac (desmin-related cardiomyopathy) phenotypes, or both. Patient muscles display intracellular accumulations of misfolded proteins and desmin-positive insoluble granulofilamentous aggregates, leading to a large spectrum of molecular alterations. Increasing evidence shows that desmin function is not limited to the structural and mechanical integrity of cells. This novel perception is strongly supported by the finding that diseases featuring desmin aggregates cannot be easily associated with mechanical defects, but rather involve desmin filaments in a broader spectrum of functions, such as in organelle positioning and integrity and in signaling. Here, we review desmin functions and related diseases affecting striated muscles. We detail emergent cellular functions of desmin based on reported phenotypes in patients and animal models. We discuss known desmin protein partners and propose an overview of the way that this molecular network could serve as a signal transduction platform necessary for proper muscle function.
Collapse
Affiliation(s)
- Karim Hnia
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France,
| | | | | | | |
Collapse
|
12
|
Đermadi D, Valo S, Pussila M, Reyhani N, Sarantaus L, Lalowski M, Baumann M, Nyström M. Inherited cancer predisposition sensitizes colonic mucosa to address Western diet effects and putative cancer-predisposing changes on mouse proteome. J Nutr Biochem 2014; 25:1196-1206. [PMID: 25172634 DOI: 10.1016/j.jnutbio.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/14/2014] [Accepted: 06/10/2014] [Indexed: 12/15/2022]
Abstract
Human epidemiological evidence and previous studies on mice have shown that Western-style diet (WD) may predispose gut mucosa to colorectal cancer (CRC). The mechanisms that mediate the effects of diet on tumorigenesis are largely unknown. To address putative cancer-predisposing events available for early detection, we quantitatively analyzed the proteome of histologically normal colon of a wild-type (Mlh1(+/+)) and an Mlh1(+/-) mouse after a long-term feeding experiment with WD and AIN-93G control diet. The Mlh1(+/-) mouse carries susceptibility to colon cancer analogous to a human CRC syndrome (Lynch syndrome). Remarkably, WD induced expression changes reflecting metabolic disturbances especially in the cancer-predisposed colon, while similar changes were not significant in the wild-type proteome. Overall, the detected changes constitute a complex interaction network of proteins involved in ATP synthesis coupled proton transport, oxidoreduction coenzyme and nicotinamide nucleotide metabolic processes, important in cell protection against reactive oxygen species toxicity. Of these proteins, selenium binding protein 1 and galectin-4, which directly interact with MutL homolog 1, are underlined in neoplastic processes, suggesting that sensitivity to WD is increased by an Mlh1 mutation. The significance of WD on CRC risk is highlighted by the fact that five out of six mice with neoplasias were fed with WD.
Collapse
Affiliation(s)
- Denis Đermadi
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Satu Valo
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marjaana Pussila
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Nima Reyhani
- Department of Information and Computer Science, School of Science, Aalto University, FI-00076 Espoo, Finland
| | - Laura Sarantaus
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland; Folkhälsan Institute of Genetics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marc Baumann
- Meilahti Clinical Proteomics Core Facility, Biochemistry and Developmental Biology, Institute of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | - Minna Nyström
- Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
13
|
Hinrichsen I, Ernst BP, Nuber F, Passmann S, Schäfer D, Steinke V, Friedrichs N, Plotz G, Zeuzem S, Brieger A. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1. Mol Cancer 2014; 13:11. [PMID: 24456667 PMCID: PMC3904401 DOI: 10.1186/1476-4598-13-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/17/2014] [Indexed: 01/13/2023] Open
Abstract
Introduction Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Methods Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. Results MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. Conclusions These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Angela Brieger
- Medical Clinic I, Biomedical Research Laboratory, Goethe-University, Frankfurt a,M, Germany.
| |
Collapse
|
14
|
Abstract
Continuous synthesis of all cellular components requires their constant turnover in order for a cell to achieve homeostasis. To this end, eukaryotic cells are endowed with two degradation pathways - the ubiquitin-proteasome system and the lysosomal pathway. The latter pathway is partly fed by autophagy, which targets intracellular material in distinct vesicles, termed autophagosomes, to the lysosome. Central to this pathway is a set of key autophagy proteins, including the ubiquitin-like modifier Atg8, that orchestrate autophagosome initiation and biogenesis. In higher eukaryotes, the Atg8 family comprises six members known as the light chain 3 (LC3) or γ-aminobutyric acid (GABA)-receptor-associated protein (GABARAP) proteins. Considerable effort during the last 15 years to decipher the molecular mechanisms that govern autophagy has significantly advanced our understanding of the functioning of this protein family. In this Cell Science at a Glance article and the accompanying poster, we present the current LC3 protein interaction network, which has been and continues to be vital for gaining insight into the regulation of autophagy.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry II, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
15
|
Brieger A, Plotz G, Hinrichsen I, Passmann S, Adam R, Zeuzem S. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins. PLoS One 2012; 7:e31863. [PMID: 22348133 PMCID: PMC3279419 DOI: 10.1371/journal.pone.0031863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/13/2012] [Indexed: 12/22/2022] Open
Abstract
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.
Collapse
Affiliation(s)
- Angela Brieger
- Department of Medicine I, University of Frankfurt/M., Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|