1
|
Chen X, Yu Y, Zheng H, Yang M, Wang C, Cai Q, Zhang W, Jiang F, Zhu Y, Yang H, Zhang T, Zhou Z. Single-cell transcriptome analysis reveals dynamic changes of the preclinical A549 cancer models, and the mechanism of dacomitinib. Eur J Pharmacol 2023; 960:176046. [PMID: 37708985 DOI: 10.1016/j.ejphar.2023.176046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The in vitro A549 cells, and A549 xenografts in nude mouse, were two commonly used models for anti-cancer drug discovery. However, the biological and molecular characteristics of these two classic models, and also the dynamic transcriptome changes after dacomitinib exposure remains elusive. We performed single-cell RNA sequencing to define the transcriptome profile at single-cell resolution, and processed tumor samples for bulk RNA and protein analysis to validate the differently expressed genes. Transcriptome profiling revealed that the in vitro A549 cells are heterogeneous. The minimal subpopulation of the in vitro A549 cells, which were characterized by the signature of response to unfolded protein, became the overriding subpopulation of the xenografts. The EGFR non-activating A549 cells were resistant to dacomitinib in vitro, while A549 xenografts were comparatively sensitive as EGFR-activating HCC827 xenografts. Dacomitinib inhibited MAPK signaling pathway, and increased the immune response in the A549 xenografts. A phagocytosis checkpoint stanniocalcin-1 (STC1) was significantly inhibited in dacomitinib-treated xenografts. So here our study gives the first insight of the heterogeneity of the two classic models, and the translational potential of dacomitinib being used into a broader patient population rather than EGFR common activating mutation.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yangziwei Yu
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haoyang Zheng
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Mengjing Yang
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Chuqiao Wang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Qianqian Cai
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Weiguo Zhang
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Feixiang Jiang
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China; Liaoning Cancer Hospital and Institute, Shenyang, 110042, China; Cancer Hospital of China Medical University, Shenyang, 110042, China
| | - Hedi Yang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Tianbiao Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Zhaoli Zhou
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
2
|
Daunys S, Janonienė A, Januškevičienė I, Paškevičiūtė M, Petrikaitė V. 3D Tumor Spheroid Models for In Vitro Therapeutic Screening of Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:243-270. [PMID: 33543463 DOI: 10.1007/978-3-030-58174-9_11] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The anticancer activity of compounds and nanoparticles is most often determined in the cell monolayer. However, three-dimensional (3D) systems, such as tumor spheroids, are more representing the natural tumor microenvironment. They have been shown to have higher invasiveness and resistance to cytotoxic agents and radiotherapy compared to cells growing in 2D monolayer. Furthermore, to improve the prediction of clinical efficacy of drugs, in the past decades, even more sophisticated systems, such as multicellular 3D cultures, closely representing natural tumor microenvironment have been developed. Those cultures are formed from either cell lines or patient-derived tumor cells. Such models are very attractive and could improve the selection of tested materials for clinical trials avoiding unnecessary expensive tests in vivo. The microenvironment in tumor spheroids is different, and those differences or the interaction between several cell populations may contribute to different tumor response to the treatment. Also, different types of nanoparticles may have different behavior in 3D models, depending on their nature, physicochemical properties, the presence of targeting ligands on the surface, etc. Therefore, it is very important to understand in which cases which type of tumor spheroid is more suitable for testing specific types of nanoparticles, which conditions should be used, and which analytical method should be applied.
Collapse
Affiliation(s)
- Simonas Daunys
- Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Agnė Janonienė
- Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Miglė Paškevičiūtė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Life Sciences Center, Vilnius University, Vilnius, Lithuania.
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
- Institute of Physiology and Pharmacology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
3
|
Ultra-thin fluorocarbon foils optimise multiscale imaging of three-dimensional native and optically cleared specimens. Sci Rep 2019; 9:17292. [PMID: 31754183 PMCID: PMC6872575 DOI: 10.1038/s41598-019-53380-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/31/2019] [Indexed: 01/09/2023] Open
Abstract
In three-dimensional light microscopy, the heterogeneity of the optical density in a specimen ultimately limits the achievable penetration depth and hence the three-dimensional resolution. The most direct approach to reduce aberrations, improve the contrast and achieve an optimal resolution is to minimise the impact of changes of the refractive index along an optical path. Many implementations of light sheet fluorescence microscopy operate with a large chamber filled with an aqueous immersion medium and a further inner container with the specimen embedded in a possibly entirely different non-aqueous medium. In order to minimise the impact of the latter on the optical quality of the images, we use multi-facetted cuvettes fabricated from vacuum-formed ultra-thin fluorocarbon (FEP) foils. The ultra-thin FEP-foil cuvettes have a wall thickness of about 10–12 µm. They are impermeable to liquids, but not to gases, inert, durable, mechanically stable and flexible. Importantly, the usually fragile specimen can remain in the same cuvette from seeding to fixation, clearing and observation, without the need to remove or remount it during any of these steps. We confirm the improved imaging performance of ultra-thin FEP-foil cuvettes with excellent quality images of whole organs such us mouse oocytes, of thick tissue sections from mouse brain and kidney as well as of dense pancreas and liver organoid clusters. Our ultra-thin FEP-foil cuvettes outperform many other sample-mounting techniques in terms of a full separation of the specimen from the immersion medium, compatibility with aqueous and organic clearing media, quick specimen mounting without hydrogel embedding and their applicability for multiple-view imaging and automated image segmentation. Additionally, we show that ultra-thin FEP foil cuvettes are suitable for seeding and growing organoids over a time period of at least ten days. The new cuvettes allow the fixation and staining of specimens inside the holder, preserving the delicate morphology of e.g. fragile, mono-layered three-dimensional organoids.
Collapse
|
4
|
PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers (Basel) 2019; 11:polym11050916. [PMID: 31126035 PMCID: PMC6572693 DOI: 10.3390/polym11050916] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) systems provide a suitable environment for cells cultured in vitro since they reproduce the physiological conditions that traditional cell culture supports lack. Electrospinning is a cost-effective technology useful to manufacture scaffolds with nanofibers that resemble the extracellular matrix that surround cells in the organism. Poly(lactic acid) (PLA) is a synthetic polymer suitable for biomedical applications. The main objective of this study is to evaluate electrospun (ES)-PLA scaffolds to be used for culturing cancer cells. Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with no validated targeted therapy and a high relapse rate. MDA-MB-231 TNBC cells were grown in scaffolds from two different PLA concentrations (12% and 15% w/v). The appropriateness of ES-PLA scaffolds was evaluated using a cell proliferation assay. EGFR and STAT3 gene expression and protein levels were compared in cells grown in 2D versus in 3D cultures. An increase in STAT3 activation was shown, which is related to self-renewal of cancer stem cells (CSCs). Therefore, the enrichment of the breast CSC (BCSC) population was tested using a mammosphere-forming assay and gene expression of BCSC-related stemness and epithelial-to-mesenchymal transition markers. Based on the results obtained, ES-PLA scaffolds are useful for 3D cultures in short culture periods with no BCSC-enrichment.
Collapse
|
5
|
Smyrek I, Mathew B, Fischer SC, Lissek SM, Becker S, Stelzer EHK. E-cadherin, actin, microtubules and FAK dominate different spheroid formation phases and important elements of tissue integrity. Biol Open 2019; 8:bio.037051. [PMID: 30578251 PMCID: PMC6361217 DOI: 10.1242/bio.037051] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Spheroids resemble features of tissues and serve as model systems to study cell–cell and cell–ECM interactions in non-adhesive three-dimensional environments. Although it is generally accepted that mature spheroids resemble tissue properties very well, no studies relate different phases in the spheroid formation processes that contribute to tissue integrity. Tissue integrity involves the cellular processes adhesion formation, adhesion reinforcement, rearrangement as well as proliferation. They maintain the structure and function of tissues and, upon dysregulation, contribute to malignancy. We investigated spheroid formation dynamics in cell lines of different metastatic potential. We dissected spheroid formation into phases of aggregation, compaction and growth to identify the respective contributions of E-cadherin, actin, microtubules and FAK. E-cadherin, actin and microtubules drive the first two phases. Microtubules and FAK are involved in the proliferation phase. FAK activity correlates with the metastatic potential of the cells. A robust computational model based on a very large number of experiments reveals the temporal resolution of cell adhesion. Our results provide novel hypotheses to unveil the general mechanisms that contribute to tissue integrity. Summary: The phases of spheroid formation resemble different stages of cell contact formation. This facilitates studying the temporal contribution of molecules in this process.
Collapse
Affiliation(s)
- I Smyrek
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - B Mathew
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - S C Fischer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - S M Lissek
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - S Becker
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| | - E H K Stelzer
- Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15, D-60348 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol 2017; 232:2679-2697. [PMID: 27791270 DOI: 10.1002/jcp.25664] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022]
Abstract
Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddaly Ravi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aarthi Ramesh
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aishwarya Pattabhi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
7
|
Pampaloni F, Mayer B, Kabat Vel-Job K, Ansari N, Hötte K, Kögel D, Stelzer EHK. A Novel Cellular Spheroid-Based Autophagy Screen Applying Live Fluorescence Microscopy Identifies Nonactin as a Strong Inducer of Autophagosomal Turnover. SLAS DISCOVERY 2017; 22:558-570. [PMID: 28297606 DOI: 10.1177/2472555217696798] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dysregulation of the basal autophagic flux has been linked to several pathological conditions, including neurodegenerative diseases and cancer. In addition, autophagy has profound effects on the response of tumor cells to therapy. Hence, the search for pharmacological modulators of autophagy is of great clinical relevance. We established a drug screening assay in which the autophagic flux is measured by recording the fluorescence emission of the tandem fusion protein mRFP-GFP-LC3 by dynamic live-cell imaging. We optimized the assay for the identification of autophagy modulators in three dimensions with U343 glioma cell spheroids, which represent a more realistic cancer model than conventional 2D cell cultures. We validated the assay by screening a library of known autophagy modulators. As the first application, a small library of 94 natural compounds was screened for its impact on autophagy. We discovered the cyclic ionophore nonactin as a new and potent autophagy inducer. This novel autophagy screening assay based on 3D tumor spheroids is robust, reproducible, and scalable. It provides a valuable tool for both basic research and drug screening campaigns.
Collapse
Affiliation(s)
- Francesco Pampaloni
- 1 Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Benjamin Mayer
- 1 Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Konstantin Kabat Vel-Job
- 1 Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Nariman Ansari
- 1 Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Katharina Hötte
- 1 Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Donat Kögel
- 2 Experimental Neurosurgery, Department of Neurosurgery, Goethe Universität Frankfurt am MainFrankfurt am Main, Hessen, Germany
| | - Ernst H K Stelzer
- 1 Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Guarino V, Cirillo V, Altobelli R, Ambrosio L. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices 2014; 12:113-29. [DOI: 10.1586/17434440.2014.953058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Mettlen M, Danuser G. Imaging and modeling the dynamics of clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2014; 6:a017038. [PMID: 25167858 DOI: 10.1101/cshperspect.a017038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clathrin-mediated endocytosis (CME) plays a central role in cellular homeostasis and is mediated by clathrin-coated pits (CCPs). Live-cell imaging has revealed a remarkable heterogeneity in CCP assembly kinetics, which can be used as an intrinsic source of mechanistic information on CCP regulation but also poses several major problems for unbiased analysis of CME dynamics. The backbone of unveiling the molecular control of CME is an imaging-based inventory of the full diversity of individual CCP behaviors, which requires detection and tracking of structural fiduciaries and regulatory proteins with an accuracy of >99.9%, despite very low signals. This level of confidence can only be achieved by combining appropriate imaging modalities with self-diagnostic computational algorithms for image analysis and data mining.
Collapse
Affiliation(s)
- Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9039
| | - Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
10
|
Benien P, Swami A. 3D tumor models: history, advances and future perspectives. Future Oncol 2014; 10:1311-27. [DOI: 10.2217/fon.13.274] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT: Evaluation of cancer therapeutics by utilizing 3D tumor models, before clinical studies, could be more advantageous than conventional 2D tumor models (monolayer cultures). The 3D systems mimic the tumor microenvironment more closely than 2D systems. The following review discusses the various 3D tumor models present today with the advantages and limitations of each. 3D tumor models replicate the elements of a tumor microenvironment such as hypoxia, necrosis, angiogenesis and cell adhesion. The review introduces application of techniques such as microfluidics, imaging and tissue engineering to improve the 3D tumor models. Despite their tremendous potential to better screen chemotherapeutics, 3D tumor models still have a long way to go before they are used commonly as in vitro tumor models in pharmaceutical industrial research.
Collapse
Affiliation(s)
| | - Archana Swami
- Department of Anesthesiology, Brigham & Women’s Hospital Boston, MA 02115, USA
| |
Collapse
|
11
|
Wang C, Tang Z, Zhao Y, Yao R, Li L, Sun W. Three-dimensional
in vitro
cancer models: a short review. Biofabrication 2014; 6:022001. [DOI: 10.1088/1758-5082/6/2/022001] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Pampaloni F, Ansari N, Stelzer EHK. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 2013; 352:161-77. [DOI: 10.1007/s00441-013-1589-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/12/2013] [Indexed: 01/13/2023]
|
13
|
Wrzesinski K, Fey SJ. After trypsinisation, 3D spheroids of C3A hepatocytes need 18 days to re-establish similar levels of key physiological functions to those seen in the liver. Toxicol Res (Camb) 2013. [DOI: 10.1039/c2tx20060k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|