1
|
Ren L, Shi L, Zheng Y. Reference Materials for Improving Reliability of Multiomics Profiling. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:487-521. [PMID: 39723231 PMCID: PMC11666855 DOI: 10.1007/s43657-023-00153-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2024]
Abstract
High-throughput technologies for multiomics or molecular phenomics profiling have been extensively adopted in biomedical research and clinical applications, offering a more comprehensive understanding of biological processes and diseases. Omics reference materials play a pivotal role in ensuring the accuracy, reliability, and comparability of laboratory measurements and analyses. However, the current application of omics reference materials has revealed several issues, including inappropriate selection and underutilization, leading to inconsistencies across laboratories. This review aims to address these concerns by emphasizing the importance of well-characterized reference materials at each level of omics, encompassing (epi-)genomics, transcriptomics, proteomics, and metabolomics. By summarizing their characteristics, advantages, and limitations along with appropriate performance metrics pertinent to study purposes, we provide an overview of how omics reference materials can enhance data quality and data integration, thus fostering robust scientific investigations with omics technologies.
Collapse
Affiliation(s)
- Luyao Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
- Shanghai Cancer Center, Fudan University, Shanghai, 200032 China
- International Human Phenome Institutes, Shanghai, 200438 China
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
2
|
Dong L, Zhang Y, Fu B, Swart C, Jiang H, Liu Y, Huggett J, Wielgosz R, Niu C, Li Q, Zhang Y, Park SR, Sui Z, Yu L, Liu Y, Xie Q, Zhang H, Yang Y, Dai X, Shi L, Yin Y, Fang X. Reliable biological and multi-omics research through biometrology. Anal Bioanal Chem 2024; 416:3645-3663. [PMID: 38507042 DOI: 10.1007/s00216-024-05239-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Metrology is the science of measurement and its applications, whereas biometrology is the science of biological measurement and its applications. Biometrology aims to achieve accuracy and consistency of biological measurements by focusing on the development of metrological traceability, biological reference measurement procedures, and reference materials. Irreproducibility of biological and multi-omics research results from different laboratories, platforms, and analysis methods is hampering the translation of research into clinical uses and can often be attributed to the lack of biologists' attention to the general principles of metrology. In this paper, the progresses of biometrology including metrology on nucleic acid, protein, and cell measurements and its impacts on the improvement of reliability and comparability in biological research are reviewed. Challenges in obtaining more reliable biological and multi-omics measurements due to the lack of primary reference measurement procedures and new standards for biological reference materials faced by biometrology are discussed. In the future, in addition to establishing reliable reference measurement procedures, developing reference materials from single or multiple parameters to multi-omics scale should be emphasized. Thinking in way of biometrology is warranted for facilitating the translation of high-throughput omics research into clinical practices.
Collapse
Affiliation(s)
- Lianhua Dong
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Yu Zhang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Boqiang Fu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Claudia Swart
- Physikalisch-Technische Bundesanstalt, 38116, Braunschweig, Germany
| | | | - Yahui Liu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Jim Huggett
- National Measurement Laboratory at LGC (NML), Teddington, Middlesex, UK
| | - Robert Wielgosz
- Bureau International Des Poids Et Mesures (BIPM), Pavillon de Breteuil, 92312, Sèvres Cedex, France
| | - Chunyan Niu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Qianyi Li
- BGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yongzhuo Zhang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Sang-Ryoul Park
- Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Zhiwei Sui
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | - Lianchao Yu
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China
| | | | - Qing Xie
- BGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongfu Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Xinhua Dai
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, 200438, China
| | - Ye Yin
- BGI, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Xiang Fang
- Center for Advanced Measurement of Science, National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
3
|
Gouveia GJ, Shaver AO, Garcia BM, Morse AM, Andersen EC, Edison AS, McIntyre LM. Long-Term Metabolomics Reference Material. Anal Chem 2021; 93:9193-9199. [PMID: 34156835 PMCID: PMC8996483 DOI: 10.1021/acs.analchem.1c01294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of quality control samples in metabolomics ensures data quality, reproducibility, and comparability between studies, analytical platforms, and laboratories. Long-term, stable, and sustainable reference materials (RMs) are a critical component of the quality assurance/quality control (QA/QC) system; however, the limited selection of currently available matrix-matched RMs reduces their applicability for widespread use. To produce an RM in any context, for any matrix that is robust to changes over the course of time, we developed iterative batch averaging method (IBAT). To illustrate this method, we generated 11 independently grown Escherichia coli batches and made an RM over the course of 10 IBAT iterations. We measured the variance of these materials by nuclear magnetic resonance (NMR) and showed that IBAT produces a stable and sustainable RM over time. This E. coli RM was then used as a food source to produce a Caenorhabditis elegans RM for a metabolomics experiment. The metabolite extraction of this material, alongside 41 independently grown individual C. elegans samples of the same genotype, allowed us to estimate the proportion of sample variation in preanalytical steps. From the NMR data, we found that 40% of the metabolite variance is due to the metabolite extraction process and analysis and 60% is due to sample-to-sample variance. The availability of RMs in untargeted metabolomics is one of the predominant needs of the metabolomics community that reach beyond quality control practices. IBAT addresses this need by facilitating the production of biologically relevant RMs and increasing their widespread use.
Collapse
Affiliation(s)
- Goncalo J Gouveia
- Department of Biochemistry & Molecular Biology, University of Georgia, Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315, Riverbend Road, Athens, Georgia 30602, United States
| | - Amanda O Shaver
- Department of Genetics, University of Georgia, Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315, Riverbend Road, Athens, Georgia 30602, United States
| | - Brianna M Garcia
- Department of Chemistry, University of Georgia, 140, Cedar Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315, Riverbend Road, Athens, Georgia 30602, United States
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, Florida 32610, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, 2205, Tech Drive, Evanston, Illinois 60208, United States
| | - Arthur S Edison
- Department of Biochemistry & Molecular Biology, University of Georgia, Green Street, Athens, Georgia 30602, United States
- Department of Genetics, University of Georgia, Green Street, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315, Riverbend Road, Athens, Georgia 30602, United States
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Clark DJ, Hu Y, Bocik W, Chen L, Schnaubelt M, Roberts R, Shah P, Whiteley G, Zhang H. Evaluation of NCI-7 Cell Line Panel as a Reference Material for Clinical Proteomics. J Proteome Res 2018; 17:2205-2215. [PMID: 29718670 PMCID: PMC6670293 DOI: 10.1021/acs.jproteome.8b00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reference materials are vital to benchmarking the reproducibility of clinical tests and essential for monitoring laboratory performance for clinical proteomics. The reference material utilized for mass spectrometric analysis of the human proteome would ideally contain enough proteins to be suitably representative of the human proteome, as well as exhibit a stable protein composition in different batches of sample regeneration. Previously, The Clinical Proteomic Tumor Analysis Consortium (CPTAC) utilized a PDX-derived comparative reference (CompRef) materials for the longitudinal assessment of proteomic performance; however, inherent drawbacks of PDX-derived material, including extended time needed to grow tumors and high level of expertise needed, have resulted in efforts to identify a new source of CompRef material. In this study, we examined the utility of using a panel of seven cancer cell lines, NCI-7 Cell Line Panel, as a reference material for mass spectrometric analysis of human proteome. Our results showed that not only is the NCI-7 material suitable for benchmarking laboratory sample preparation methods, but also NCI-7 sample generation is highly reproducible at both the global and phosphoprotein levels. In addition, the predicted genomic and experimental coverage of the NCI-7 proteome suggests the NCI-7 material may also have applications as a universal standard proteomic reference.
Collapse
Affiliation(s)
- David J. Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - William Bocik
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael Schnaubelt
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Rhonda Roberts
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Punit Shah
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Gordon Whiteley
- Antibody Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
5
|
Beasley-Green A, Bunk D, Rudnick P, Kilpatrick L, Phinney K. A proteomics performance standard to support measurement quality in proteomics. Proteomics 2012; 12:923-31. [DOI: 10.1002/pmic.201100522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Ballihaut G, Kilpatrick LE, Davis WC. Detection, identification, and quantification of selenoproteins in a candidate human plasma standard reference material. Anal Chem 2011; 83:8667-74. [PMID: 22007999 DOI: 10.1021/ac2021147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To understand the effect of Se supplementation on health, it is critical to accurately assess the Se status in the human body by measuring reliable biomarkers. The preferred biomarkers of the Se status are selenoprotein P (SelP) and glutathione peroxidase 3 (GPx3) along with selenoalbumin (SeAlb), but there is still a real need for reference methods and reference materials to validate their measurements. Therefore, this work presents a systematic approach to provide quality control data in selenoprotein measurements. This approach combines online isotope dilution affinity liquid chromatography (LC) coupled to inductively coupled plasma mass spectrometry (ICPMS), laser ablation ICPMS, and tandem mass spectrometry (MS/MS) to identify and quantify SelP, GPx3, and SeAlb in a human plasma reference material SRM 1950. Quantitative determinations of SelP, GPx3, and SeAlb were 50.2 ± 4.3, 23.6 ± 1.3, and 28.2 ± 2.6 ng g(-1) as Se, respectively. The subsequent identification of the selenoproteins included nine SelP peptides, including two selenopeptides and nine GPx3 peptides, while albumin was identified with a protein coverage factor >95%. The structural elucidation of selenoproteins in the target Se affinity fractions in SRM 1950 provides information needed for method validation and quality control measurements of selenoproteins and therefore the selenium status in human plasma.
Collapse
Affiliation(s)
- Guillaume Ballihaut
- Hollings Marine Laboratory, Analytical Chemistry Division, National Institute of Standards and Technology, Charleston, South Carolina 29412, United States
| | | | | |
Collapse
|
7
|
Affiliation(s)
- Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA.
| |
Collapse
|