1
|
Krewing M, Weisgerber KM, Dirks T, Bobkov I, Schubert B, Bandow JE. Iron-sulfur cluster proteins present the weak spot in non-thermal plasma-treated Escherichia coli. Redox Biol 2025; 81:103562. [PMID: 40023980 PMCID: PMC11915174 DOI: 10.1016/j.redox.2025.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Non-thermal atmospheric pressure plasmas have an antiseptic activity beneficial in different medical applications. In a genome-wide screening, hydrogen peroxide and superoxide were identified as key species contributing to the antibacterial effects of plasma while [FeS] cluster proteins emerged as potential cellular targets. We investigated the impact of plasma treatment on [FeS] cluster homeostasis in Escherichia coli treated for 1 min with the effluent of a microscale atmospheric pressure plasma jet (μAPPJ). Mutants defective in [FeS] cluster synthesis and maintenance lacking the SufBC2D scaffold protein complex or desulfurase IscS were hypersensitive to plasma treatment. Monitoring the activity of [FeS] cluster proteins of the tricarboxylic acid cycle (aconitase, fumarase, succinate dehydrogenase) and malate dehydrogenase (no [FeS] clusters), we identified cysteine, iron, superoxide dismutase, and catalase as determinants of plasma sensitivity. Survival rates, enzyme activity, and restoration of enzyme activity after plasma treatment were superior in mutants with elevated cysteine levels and in the wildtype under iron replete conditions. Mutants with elevated hydrogen peroxide and superoxide detoxification capacity over-expressing sodA and katE showed full protection from plasma-induced enzyme inactivation and survival rates increased from 34 % (controls) to 87 %. Our study indicates that metabolic and genetic adaptation of bacteria may result in plasma tolerance and resistance, respectively.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Kim Marie Weisgerber
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ivan Bobkov
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Hahn V, Zühlke D, Winter H, Landskron A, Bernhardt J, Sievers S, Schmidt M, von Woedtke T, Riedel K, Kolb JF. Proteomic profiling of antibiotic-resistant Escherichia coli GW-AmxH19 isolated from hospital wastewater treated with physical plasma. Proteomics 2024; 24:e2300494. [PMID: 38644344 DOI: 10.1002/pmic.202300494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
Microorganisms which are resistant to antibiotics are a global threat to the health of humans and animals. Wastewater treatment plants are known hotspots for the dissemination of antibiotic resistances. Therefore, novel methods for the inactivation of pathogens, and in particular antibiotic-resistant microorganisms (ARM), are of increasing interest. An especially promising method could be a water treatment by physical plasma which provides charged particles, electric fields, UV-radiation, and reactive species. The latter are foremost responsible for the antimicrobial properties of plasma. Thus, with plasma it might be possible to reduce the amount of ARM and to establish this technology as additional treatment stage for wastewater remediation. However, the impact of plasma on microorganisms beyond a mere inactivation was analyzed in more detail by a proteomic approach. Therefore, Escherichia coli GW-AmxH19, isolated from hospital wastewater in Germany, was used. The bacterial solution was treated by a plasma discharge ignited between each of four pins and the liquid surface. The growth of E. coli and the pH-value decreased during plasma treatment in comparison with the untreated control. Proteome and antibiotic resistance profile were analyzed. Concentrations of nitrite and nitrate were determined as long-lived indicative products of a transient chemistry associated with reactive nitrogen species (RNS). Conversely, hydrogen peroxide served as indicator for reactive oxygen species (ROS). Proteome analyses revealed an oxidative stress response as a result of plasma-generated RNS and ROS as well as a pH-balancing reaction as key responses to plasma treatment. Both, the generation of reactive species and a decreased pH-value is characteristic for plasma-treated solutions. The plasma-mediated changes of the proteome are discussed also in comparison with the Gram-positive bacterium Bacillus subtilis. Furthermore, no effect of the plasma treatment, on the antibiotic resistance of E. coli, was determined under the chosen conditions. The knowledge about the physiological changes of ARM in response to plasma is of fundamental interest to understand the molecular basis for the inactivation. This will be important for the further development and implementation of plasma in wastewater remediation.
Collapse
Affiliation(s)
- Veronika Hahn
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Daniela Zühlke
- Institute of Marine Biotechnology, Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Hauke Winter
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Annchristin Landskron
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jörg Bernhardt
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Schmidt
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medicine, Greifswald, Germany
| | - Katharina Riedel
- Institute of Marine Biotechnology, Greifswald, Germany
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Juergen F Kolb
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|
3
|
Martusevich AK, Surovegina AV, Bocharin IV, Nazarov VV, Minenko IA, Artamonov MY. Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities. Antioxidants (Basel) 2022; 11:antiox11071262. [PMID: 35883753 PMCID: PMC9311881 DOI: 10.3390/antiox11071262] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/21/2023] Open
Abstract
Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological effects of this effect, as well as identifying and justifying the most promising areas of its application. It is known that these biological effects include antibacterial and antiviral activity, the ability to stimulate hemocoagulation, pro-regenerative properties, etc. The possibility of using the factor in tissue engineering and implantology is also shown. Based on this, the purpose of this review was to form a unified understanding of the biological effects and biomedical applications of argon cold plasma. The review shows that cold plasma, like any other physical and chemical factors, has dose dependence, and the variable parameter in this case is the exposure of its application. One of the significant characteristics determining the specificity of the cold plasma effect is the carrier gas selection. This gas carrier is not just an ionized medium but modulates the response of biosystems to it. Finally, the perception of cold plasma by cellular structures can be carried out by activating a special molecular biosensor, the functioning of which significantly depends on the parameters of the medium (in the field of plasma generation and the cell itself). Further research in this area can open up new prospects for the effective use of cold plasma.
Collapse
Affiliation(s)
- Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
- Correspondence: ; Tel.: +7-909-144-9182
| | - Alexandra V. Surovegina
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
| | - Ivan V. Bocharin
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Nizhny Novgorod State Agricultural Academy, 603117 Nizhny Novgorod, Russia
| | - Vladimir V. Nazarov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia;
- Institute of Applied Physics, 603950 Nizhny Novgorod, Russia
| | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia; (A.V.S.); (V.V.N.); (I.A.M.); (M.Y.A.)
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| |
Collapse
|
4
|
Mildaziene V, Ivankov A, Sera B, Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. PLANTS (BASEL, SWITZERLAND) 2022; 11:856. [PMID: 35406836 PMCID: PMC9003542 DOI: 10.3390/plants11070856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Among the innovative technologies being elaborated for sustainable agriculture, one of the most rapidly developing fields relies on the positive effects of non-thermal plasma (NTP) treatment on the agronomic performance of plants. A large number of recent publications have indicated that NTP effects are far more persistent and complex than it was supposed before. Knowledge of the molecular basis and the resulting outcomes of seed treatment with NTP is rapidly accumulating and requires to be analyzed and presented in a systematic way. This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity. Wide-scale changes evolving at the epigenomic, transcriptomic, proteomic and metabolic levels are triggered by seed irradiation with NTP and contribute to changes in germination, early seedling growth, phytohormone amounts, metabolic and defense enzyme activity, secondary metabolism, photosynthesis, adaptability to biotic and abiotic stress, microbiome composition, and increased plant fitness, productivity and growth on a longer time scale. This review highlights the importance of these novel findings, as well as unresolved issues that remain to be investigated.
Collapse
Affiliation(s)
- Vida Mildaziene
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Anatolii Ivankov
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Bozena Sera
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia;
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
| |
Collapse
|
5
|
Xu L, Hou H, Farkas B, Keener KM, Garner AL, Tao B. High voltage atmospheric cold plasma modification of bovine serum albumin. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Concept for Improved Handling Ensures Effective Contactless Plasma Treatment of Patients with kINPen® MED. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nursing of patients with wounds is an essential part of medical healthcare. In this context, cold atmospheric-pressure plasma sources can be applied for skin decontamination and stimulation of wound healing. One of these plasma devices is the commercially available kINPen® MED (neoplas tools GmbH), a cold atmospheric-pressure plasma jet which is approved as a medical device, class-IIa. For the plasma treatment, a sterile disposable spacer is recommended to ensure a constant and effective distance between plasma and skin. The disadvantage of this spacer is its form and size which means that the effective axis/area is not visible for the attending doctor or qualified personnel and consequently it is a more or less intuitive treatment. In addition, the suggested perpendicular treatment is not applicable for the attending specialist due to lack of space or patient/wound positioning. A concept of a sensory unit was developed to measure the treatment distance and to visualize the effective treatment area for different angles. To determine the effective area for the plasma treatment, some exemplary methods were performed. Thus, the antimicrobial (Staphylococcus aureus DSM799/ATCC6538) efficacy, reactive oxygen species (ROS) distribution and (vacuum) ultraviolet ((V)UV) irradiation were determined depending on the treatment angle. Finally, a simplified first approach to visualize the effective treatment area at an optimal distance was designed and constructed to train attending specialists for optimal wound area coverage.
Collapse
|
7
|
VON Woedtke T, Schmidt A, Bekeschus S, Wende K, Weltmann KD. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019; 33:1011-1026. [PMID: 31280189 DOI: 10.21873/invivo.11570] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/25/2022]
Abstract
Plasma medicine comprises the application of physical plasma directly on or in the human body for therapeutic purposes. Three most important basic plasma effects are relevant for medical applications: i) inactivation of a broad spectrum of microorganisms, including multidrug-resistant pathogens, ii) stimulation of cell proliferation and angiogenesis with lower plasma treatment intensity, and iii) inactivation of cells by initialization of cell death with higher plasma treatment intensity, above all in cancer cells. Based on own published results as well as on monitoring of relevant literature the aim of this topical review is to summarize the state of the art in plasma medicine and connect it to redox biology. One of the most important results of basic research in plasma medicine is the insight that biological plasma effects are mainly mediated via reactive oxygen and nitrogen species influencing cellular redox-regulated processes. Plasma medicine can be considered a field of applied redox biology.
Collapse
Affiliation(s)
- Thomas VON Woedtke
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany .,Greifswald University Medicine, Greifswald, Germany
| | - Anke Schmidt
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| | | | | | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology, INP Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9062098. [PMID: 31687089 PMCID: PMC6800937 DOI: 10.1155/2019/9062098] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/17/2019] [Accepted: 08/25/2019] [Indexed: 12/24/2022]
Abstract
Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from in silico analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and in vitro and in vivo experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Collapse
|
9
|
Kramer A, Conway BR, Meissner K, Scholz F, Rauch BH, Moroder A, Ehlers A, Meixner AJ, Heidecke CD, Partecke LI, Kietzmann M, Assadian O. Cold atmospheric pressure plasma for treatment of chronic wounds: drug or medical device? J Wound Care 2019; 26:470-475. [PMID: 28795892 DOI: 10.12968/jowc.2017.26.8.470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The use of cold atmospheric pressure plasma (CAPP) as a new therapeutic option to aid the healing of chronic wounds appears promising. Currently, uncertainty exists regarding their classification as medical device or medical drug. Because the classification of CAPP has medical, legal, and economic consequences as well as implications for the level of preclinical and clinical testing, the correct classification is not an academic exercise, but an ethical need. METHOD A multidisciplinary team of physicians, surgeons, pharmacists, physicists and lawyers has analysed the physical and technical characteristics as well as legal conditions of the biological action of CAPP. RESULTS It was concluded that the mode of action of the locally generated CAPP, with its main active components being different radicals, is pharmacological and not physical in nature. CONCLUSION Depending on the intended use, CAPP should be classified as a drug, which is generated by use of a medical device directly at the point of therapeutic application.
Collapse
Affiliation(s)
- A Kramer
- Consultant Clinical Microbiology and Infection Control, Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - B R Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, United Kingdom; Institute of Skin Integrity and Infection Prevention, School for Human and Health Sciences, University of Huddersfield
| | - K Meissner
- Anesthetist, Intensive Care Specialist, Department of Anesthesiology and Intensive Medicine, University Medicine, Greifswald, Germany
| | - F Scholz
- Biochemist, Institute of Biochemistry, University of Greifswald, Germany
| | - B H Rauch
- Medical Pharmacology and Toxicology, Department of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Germany
| | - A Moroder
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A Ehlers
- Lawyer, Ehlers, Ehlers & Partner Healthcare Law Firm Munich, Germany
| | - A J Meixner
- Physicist, Institute of Physical and Theoretical Chemistry Tübingen, Germany
| | - C-D Heidecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - L I Partecke
- General Surgeon, Department of Surgery, University Medicine Greifswald, Germany
| | - M Kietzmann
- Veterinary Medicine, Pharmacologist, Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - O Assadian
- Consultant Clinical Microbiology and Infection Control, Consultant Infectious Diseases and Tropical Medicine, Institute for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Krewing M, Jarzina F, Dirks T, Schubert B, Benedikt J, Lackmann JW, Bandow JE. Plasma-sensitive Escherichia coli mutants reveal plasma resistance mechanisms. J R Soc Interface 2019; 16:20180846. [PMID: 30913981 PMCID: PMC6451402 DOI: 10.1098/rsif.2018.0846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Non-thermal atmospheric pressure plasmas are investigated as augmenting therapy to combat bacterial infections. The strong antibacterial effects of plasmas are attributed to the complex mixture of reactive species, (V)UV radiation and electric fields. The experience with antibiotics is that upon their introduction as medicines, resistance occurs in pathogens and spreads. To assess the possibility of bacterial resistance developing against plasma, we investigated intrinsic protective mechanisms that allow Escherichia coli to survive plasma stress. We performed a genome-wide screening of single-gene knockout mutants of E. coli and identified 87 mutants that are hypersensitive to the effluent of a microscale atmospheric pressure plasma jet. For selected genes ( cysB, mntH, rep and iscS) we showed in complementation studies that plasma resistance can be restored and increased above wild-type levels upon over-expression. To identify plasma-derived components that the 87 genes confer resistance against, mutants were tested for hypersensitivity against individual stressors (hydrogen peroxide, superoxide, hydroxyl radicals, ozone, HOCl, peroxynitrite, NO•, nitrite, nitrate, HNO3, acid stress, diamide, heat stress and detergents). k-means++ clustering revealed that most genes protect from hydrogen peroxide, superoxide and/or nitric oxide. In conclusion, individual bacterial genes confer resistance against plasma providing insights into the antibacterial mechanisms of plasma.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Fabian Jarzina
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Jan Benedikt
- Experimental Plasma Physics, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Jan-Wilm Lackmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
11
|
Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0200-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
12
|
Innovative non-thermal plasma disinfection process inside sealed bags: Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms. PLoS One 2017; 12:e0180183. [PMID: 28662202 PMCID: PMC5491144 DOI: 10.1371/journal.pone.0180183] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
In this work, we developed a device capable to generate a non-thermal plasma discharge inside a sealed bag. The aim of this study was to assess the effectiveness of the oxygen, nitrogen and argon plasma sterilization on Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis spores according to the NF EN 556 Norm. Moreover the bag integrity which is a critical key to maintain the sterile state of items after the end of the process was verified by Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectrometry (XPS) analyses. After plasma treatments, the bacterial counting showed a 6 log reduction of P. aeruginosa and S. aureus in 45 min and 120 min respectively whatever the gas used and a 4 log reduction of B. subtilis spores in 120 min with only oxygen plasma. These results were confirmed by Scanning Electron Microscopy (SEM) observations showing altered bacteria or spores and numerous debris. Taking into account the studied microorganisms, the oxygen plasma treatment showed the highest efficiency. FTIR and XPS analyses showed that this treatment induced no significant modification of the bags. To conclude this non-thermal plasma sterilization technique could be an opportunity to sterilize heat and chemical-sensitive medical devices and to preserve their sterile state after the end of the process.
Collapse
|
13
|
Brandenburg R. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1361-6595/aa6426] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Lührmann A, Matthes R, Kramer A. Impact of cold atmospheric pressure argon plasma on antibiotic sensitivity of methicillin-resistant Staphylococcus aureus strains in vitro. GMS HYGIENE AND INFECTION CONTROL 2016; 11:Doc17. [PMID: 27610332 PMCID: PMC5005816 DOI: 10.3205/dgkh000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIM The antimicrobial activity of cold atmospheric pressure plasma (CAP), also called tissue tolerable plasma (TTP), could be a promising option to eradicate methicillin-sensitive as well as methicillin-resistant Staphylococcus aureus strains, which often colonize chronic wounds. Currently, the influence of CAP on the susceptibility of S. aureus to antibiotics is scarcely known, but could be important for treatment of wounds. Therefore, the aim of this study was to investigate whether CAP has an impact on the susceptibility of different S. aureus strains to different antibiotics. METHOD For assessment, the agar diffusion test with different antibiotic test disks (cefuroxime, gentamicin, oxacillin, vancomycin, ciprofloxacin, co-trimoxazole, clindamycin, erythromycin) was used. Test strains were spread on agar plates and CAP treated before the antibiotic disks were placed. After 24 hours cultivation, the inhibited growth zones were measured and differences statistically evaluated. RESULTS In most cases, CAP had a negligible influence on the susceptibility to antibiotics. For two strains, the susceptibility significantly decreased to β-lactam antibiotics. CONCLUSION Because CAP can influence the antibiotic susceptibility of S. aureus, before conducting combined treatment with local plasma application on wounds and systemic antibiotics, their interaction must be analysed in vitro to exclude unwanted combination effects.
Collapse
Affiliation(s)
- Anne Lührmann
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Rutger Matthes
- Unit of Periodontology, Dental School, University of Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
15
|
Proteomics Analyses and Morphological Structure of Bacillus subtilis Inactivated by Pulsed Magnetic Field. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9444-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 2014; 98:6205-13. [PMID: 24841116 DOI: 10.1007/s00253-014-5781-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/15/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Plasma is ionized gas, which is found in various forms in nature and can also be generated artificially. A variety of cold atmospheric-pressure plasmas are currently being investigated for their clinical utility, and first studies reporting on the treatment of patients showed that plasma treatment may support the wound healing process. One of the benefits of plasma treatment is the effective inactivation of bacteria including tenacious pathogens such as Pseudomonas aeruginosa or multiresistant Staphylococcus aureus (MRSA). Neither the molecular mechanisms promoting wound healing nor those underlying bacterial inactivation are fully understood yet. The review has a focus on plasma jets, a particular type of cold atmospheric-pressure plasma sources featuring an indirect treatment whereby the treated substrates do not come into contact with the plasma directly but are exposed to the plasma-emitted reactive species and photons. Such plasma jets are being employed as tools in basic research regarding the effects of plasmas on biological samples. This review provides a brief overview on the recent clinical investigations into the benefits of cold atmospheric-pressure plasmas. It then describes our current understanding of the mechanisms leading to bacterial inactivation and inactivation of biomacromolecules gained by employing plasma jets.
Collapse
|