1
|
Wöhlbrand L, Dörries M, Siani R, Medrano-Soto A, Schnaars V, Schumacher J, Hilbers C, Thies D, Kube M, Reinhardt R, Schloter M, Saier MH, Winklhofer M, Rabus R. Key role of Desulfobacteraceae in C/S cycles of marine sediments is based on congeneric catabolic-regulatory networks. SCIENCE ADVANCES 2025; 11:eads5631. [PMID: 40053579 PMCID: PMC11887813 DOI: 10.1126/sciadv.ads5631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Marine sediments are highly bioactive habitats, where sulfate-reducing bacteria contribute substantially to seabed carbon cycling by oxidizing ~77 Tmol Corg year-1. This remarkable activity is largely attributable to the deltaproteobacterial family Desulfobacteraceae of complete oxidizers (to CO2), which our biogeography focused meta-analysis verified as cosmopolitan. However, the catabolic/regulatory networks underlying this ecophysiological feat at the thermodynamic limit are essentially unknown. Integrating cultivation-based (80 conditions) proteogenomics of six representative Desulfobacteraceae spp., we identify molecular commonalities explaining the family's environmental relevance and success. Desulfobacteraceae genomes are specifically enriched in substrate uptake, degradation capacities, and regulatory functions including fine-tuned sulfate uptake. Conserved gene arrangements and shared regulatory patterns translate into strikingly similar (sub-)proteome profiles. From 319 proteins, we constructed a meta-network for catabolizing 35 substrates. Therefrom, we defined a Desulfobacteraceae characteristic gene subset, which we found prevalent in metagenomes of organic-rich, marine sediments. These genes are promising targets to advance our mechanistic understanding of Desulfobacteraceae-driven biogeochemical processes in marine sediments and beyond.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the Carl von Ossietzky Universität Oldenburg (HIFMB), Oldenburg, Germany
| | - Roberto Siani
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Arturo Medrano-Soto
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Vanessa Schnaars
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Julian Schumacher
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christina Hilbers
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Daniela Thies
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Kube
- Integrative Infection Biology Crops-Livestocks, Faculty of Agricultural Sciences, University Hohenheim, Stuttgart, Germany
| | | | - Michael Schloter
- Institute for Comparative Microbiome Analysis (COMI), Department of Environmental Sciences, Helmholtz Zentrum München, Oberschleißheim, Munich, Germany
- Chair for Environmental Microbiology, School of Life Sciences, Technical University Munich, Freising, Germany
| | - Milton H. Saier
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Michael Winklhofer
- Institute of Biology and Environmental Sciences (IBU), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
2
|
Grüterich L, Wilson M, Jensen K, Streit WR, Mueller P. Transcriptomic response of wetland microbes to root influence. iScience 2024; 27:110890. [PMID: 39493876 PMCID: PMC11530916 DOI: 10.1016/j.isci.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/17/2024] [Accepted: 08/26/2024] [Indexed: 11/05/2024] Open
Abstract
Wetlands are hotspots for carbon and nutrient cycling. The important role of plant-microbe interactions in driving wetland biogeochemistry is widely acknowledged, prompting research into their molecular biological basis for a deeper understanding of these processes. We analyzed transcriptomic responses of soil microbes to root exudates in coastal wetland soils using 13CO2 pulse labeling. Metatranscriptomics revealed 388 upregulated and 11 downregulated genes in response to root exudates. The Wood-Ljungdahl pathway and dissimilatory sulfate reduction/oxidation were the most active microbial pathways independent of root influence, whereas pathways with the strongest upregulation in response to root influence were related to infection, stress response, and motility. We demonstrate shifts within the active community toward higher relative abundances of Betaproteobacteria, Campylobacterota, Kiritimatiellota, Lentisphaerota, and Verrucomicrobiota in response to exudates. Overall, this study improves our mechanistic understanding of wetland plant-soil microbe interactions by revealing the phylogenetic and transcriptional response of soil microorganisms to root influence and exudate input.
Collapse
Affiliation(s)
- Luise Grüterich
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Monica Wilson
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Kai Jensen
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Wolfgang R. Streit
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - Peter Mueller
- Institute of Landscape Ecology, University of Münster, Heisenbergstraße 2, 48149 Münster, Germany
| |
Collapse
|
3
|
Wang Y, Zhang R, Mathivanan K, Zhang Y, Yang L, Guan F, Duan J. Proteomics and EPS Compositional Analysis Reveals Desulfovibrio bisertensis SY-1 Induced Corrosion on Q235 Steel by Biofilm Formation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5060. [PMID: 39459765 PMCID: PMC11509735 DOI: 10.3390/ma17205060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Microorganisms that exist in the seawater form microbial biofilms on materials used in marine construction, especially on metal surfaces submerged in seawater, where they form biofilms and cause severe corrosion. Biofilms are mainly composed of bacteria and their secreted polymeric substances. In order to understand how biofilms promote metal corrosion, planktonic and biofilm cells of Desulfovibrio bizertensis SY-1 (D. bizertensis) from Q235 steel were collected and analyzed as to their intracellular proteome and extracellular polymeric substances (EPS). The intracellular proteome analysis showed that the cellular proteins were strongly regulated in biofilm cells compared to planktonic cells, e.g., along with flagellar proteins, signaling-related proteins were significantly increased, whereas energy production and conversion proteins and DNA replication proteins were significantly regulated. The up-and-down regulation of proteins revealed that biofilm formation by bacteria on metal surfaces is affected by flagellar and signaling proteins. A significant decrease in DNA replication proteins indicated that DNA is no longer replicated and transcribed in mature biofilms, thus reducing energy consumption. Quantitative analysis and lectin staining of the biofilm on the metal's surface revealed that the bacteria secreted a substantial amount of EPS when they began to attach to the surface, and proteins dominated the main components of EPS. Further, the infrared analysis showed that the secondary structure of the proteins in the EPS of the biofilm was mainly dominated by β-sheet and 3-turn helix, which may help to enhance the adhesion of EPS. The functional groups of EPS analyzed using XPS showed that the C element of EPS in the biofilm mainly existed in the form of combinations with N. Furthermore, the hydroxyl structure in the EPS extracted from the biofilm had a stronger hydrogen bonding effect, which could maintain the stability of the EPS structure and biofilm. The study results revealed that D. bizertensis regulates the metabolic pathways and their secreted EPS structure to affect biofilm formation and cause metal corrosion, which has a certain reference significance for the study of the microbially influenced corrosion (MIC) mechanism.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Krishnamurthy Mathivanan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Luhua Yang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
| | - Fang Guan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| | - Jizhou Duan
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.W.); (K.M.); (Y.Z.); (L.Y.); (F.G.)
- Guangxi Key Laboratory of Marine Environmental Science, Institute of Marine Corrosion Protection, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Thapa BS, Kim T, Pandit S, Song YE, Afsharian YP, Rahimnejad M, Kim JR, Oh SE. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry. BIORESOURCE TECHNOLOGY 2022; 347:126579. [PMID: 34921921 DOI: 10.1016/j.biortech.2021.126579] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms acting as microbial electrocatalysts have intrinsic metabolisms that mediate a redox potential difference between solid electrodes and microbes, leading to spontaneous electron transfer to the electrode (exo-electron transfer) or electron uptake from the electrode (endo-electron transfer). These microbes biochemically convert various organic and/or inorganic compounds to electricity and/or biochemicals in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs) and microbial electrosynthesis cells (MECs). For the past two decades, intense studies have converged to clarify electron transfer mechanisms of electroactive microbes in BESs, which thereby have led to improved bioelectrochemical performance. Also, many novel exoelectrogenic eukaryotes as well as prokaryotes with electroactive properties are being continuously discovered. This review presents an overview of electroactive microorganisms (bacteria, microalgae and fungi) and their exo- and endo-electron transfer mechanisms in BESs for optimizing and advancing bioelectrochemical techniques.
Collapse
Affiliation(s)
- Bhim Sen Thapa
- Department of Biological Environment, Kangwon National University, Chuncheon, Gangwondo 24341, Republic of Korea
| | - Taeyoung Kim
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida 201306, India
| | - Young Eun Song
- Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Yasamin Pesaran Afsharian
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, Chuncheon, Gangwondo 24341, Republic of Korea.
| |
Collapse
|
5
|
Response to substrate limitation by a marine sulfate-reducing bacterium. THE ISME JOURNAL 2022; 16:200-210. [PMID: 34285365 PMCID: PMC8692349 DOI: 10.1038/s41396-021-01061-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-reducing microorganisms (SRM) in subsurface sediments live under constant substrate and energy limitation, yet little is known about how they adapt to this mode of life. We combined controlled chemostat cultivation and transcriptomics to examine how the marine sulfate reducer, Desulfobacterium autotrophicum, copes with substrate (sulfate or lactate) limitation. The half-saturation uptake constant (Km) for lactate was 1.2 µM, which is the first value reported for a marine SRM, while the Km for sulfate was 3 µM. The measured residual lactate concentration in our experiments matched values observed in situ in marine sediments, supporting a key role of SRM in the control of lactate concentrations. Lactate limitation resulted in complete lactate oxidation via the Wood-Ljungdahl pathway and differential overexpression of genes involved in uptake and metabolism of amino acids as an alternative carbon source. D. autotrophicum switched to incomplete lactate oxidation, rerouting carbon metabolism in response to sulfate limitation. The estimated free energy was significantly lower during sulfate limitation (-28 to -33 kJ mol-1 sulfate), suggesting that the observed metabolic switch is under thermodynamic control. Furthermore, we detected the upregulation of putative sulfate transporters involved in either high or low affinity uptake in response to low or high sulfate concentration.
Collapse
|
6
|
Schnaars V, Wöhlbrand L, Scheve S, Hinrichs C, Reinhardt R, Rabus R. Proteogenomic Insights into the Physiology of Marine, Sulfate-Reducing, Filamentous Desulfonema limicola and Desulfonema magnum. Microb Physiol 2021; 31:1-20. [PMID: 33611323 PMCID: PMC8315694 DOI: 10.1159/000513383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022]
Abstract
The genus Desulfonema belongs to the deltaproteobacterial family Desulfobacteraceae and comprises marine, sulfate-reducing bacteria that form filaments and move by gliding. This study reports on the complete, manually annotated genomes of Dn. limicola 5ac10T (6.91 Mbp; 6,207 CDS) and Dn. magnum 4be13T (8.03 Mbp; 9,970 CDS), integrated with substrate-specific proteome profiles (8 vs. 11). The richness in mobile genetic elements is shared with other Desulfobacteraceae members, corroborating horizontal gene transfer as major driver in shaping the genomes of this family. The catabolic networks of Dn. limicola and Dn. magnum have the following general characteristics: 98 versus 145 genes assigned (having genomic shares of 1.7 vs. 2.2%), 92.5 versus 89.7% proteomic coverage, and scattered gene clusters for substrate degradation and energy metabolism. The Dn. magnum typifying capacity for aromatic compound degradation (e.g., p-cresol, 3-phenylpropionate) requires 48 genes organized in operon-like structures (87.7% proteomic coverage; no homologs in Dn. limicola). The protein complements for aliphatic compound degradation, central pathways, and energy metabolism are highly similar between both genomes and were identified to a large extent (69-96%). The differential protein profiles revealed a high degree of substrate-specificity for peripheral reaction sequences (forming central intermediates), agreeing with the high number of sensory/regulatory proteins predicted for both strains. By contrast, central pathways and modules of the energy metabolism were constitutively formed under the tested substrate conditions. In accord with their natural habitats that are subject to fluctuating changes of physicochemical parameters, both Desulfonema strains are well equipped to cope with various stress conditions. Next to superoxide dismutase and catalase also desulfoferredoxin and rubredoxin oxidoreductase are formed to counter exposure to molecular oxygen. A variety of proteases and chaperones were detected that function in maintaining cellular homeostasis upon heat or cold shock. Furthermore, glycine betaine/proline betaine transport systems can respond to hyperosmotic stress. Gliding movement probably relies on twitching motility via type-IV pili or adventurous motility. Taken together, this proteogenomic study demonstrates the adaptability of Dn. limicola and Dn. magnum to its dynamic habitats by means of flexible catabolism and extensive stress response capacities.
Collapse
Affiliation(s)
- Vanessa Schnaars
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Sabine Scheve
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Christina Hinrichs
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Richard Reinhardt
- Max-Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany,
| |
Collapse
|
7
|
Zaybak Z, Logan BE, Pisciotta JM. Electrotrophic activity and electrosynthetic acetate production by Desulfobacterium autotrophicum HRM2. Bioelectrochemistry 2018; 123:150-155. [PMID: 29753938 DOI: 10.1016/j.bioelechem.2018.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/26/2018] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
Abstract
Electroautotrophic microorganisms accept electrons from a cathode as source of reducing equivalents to drive CO2 fixation by poorly understood mechanisms. Acetogenic bacteria were the first group found to possess the capability for electroautotrophic metabolism in pure culture with associated electrosynthesis of acetate as primary metabolite. Identification of additional electrotrophic species can contribute to our understanding of this unusual form of metabolism. Here, bioelectrochemical techniques, chemical analysis and microscopy were used to determine electrotrophic metabolism of Desulfobacterium autotrophicum HRM2. Chronoamperometry showed increasing current uptake over 21 days of incubation in duplicate bioelectrochemical system sets. Linear sweep voltammetry indicated peak current uptake at -243 mV. High performance liquid chromatography (HPLC) analysis quantified acetate accumulation in anaerobic minimal media containing inorganic carbon as sole carbon source, consistent with electrosynthesis. Scanning electron microscopy and live/dead staining by epifluorescence microscopy analysis indicated viable 1-2 μm cells after 76 days of cultivation under electroautotrophic conditions. The genome of Db. autotrophicum HRM2 is fully sequenced and, thus, could provide insight into the biochemical and physiological mechanisms by which electrotrophic cells utilize cathode-derived electrons. This research expands the diversity of facultative autotrophs capable of electrotrophic metabolism to include the sulfate-reducing marine bacterium Db. autotrophicum HRM2.
Collapse
Affiliation(s)
- Zehra Zaybak
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA; Department of Biology, West Chester University of Pennsylvania, West Chester, PA 19383, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA
| | - John M Pisciotta
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA 16802, USA; Department of Biology, West Chester University of Pennsylvania, West Chester, PA 19383, USA.
| |
Collapse
|
8
|
Marietou A, Røy H, Jørgensen BB, Kjeldsen KU. Sulfate Transporters in Dissimilatory Sulfate Reducing Microorganisms: A Comparative Genomics Analysis. Front Microbiol 2018; 9:309. [PMID: 29551997 PMCID: PMC5840216 DOI: 10.3389/fmicb.2018.00309] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
The first step in the sulfate reduction pathway is the transport of sulfate across the cell membrane. This uptake has a major effect on sulfate reduction rates. Much of the information available on sulfate transport was obtained by studies on assimilatory sulfate reduction, where sulfate transporters were identified among several types of protein families. Despite our growing knowledge on the physiology of dissimilatory sulfate-reducing microorganisms (SRM) there are no studies identifying the proteins involved in sulfate uptake in members of this ecologically important group of anaerobes. We surveyed the complete genomes of 44 sulfate-reducing bacteria and archaea across six phyla and identified putative sulfate transporter encoding genes from four out of the five surveyed protein families based on homology. We did not find evidence that ABC-type transporters (SulT) are involved in the uptake of sulfate in SRM. We speculate that members of the CysP sulfate transporters could play a key role in the uptake of sulfate in thermophilic SRM. Putative CysZ-type sulfate transporters were present in all genomes examined suggesting that this overlooked group of sulfate transporters might play a role in sulfate transport in dissimilatory sulfate reducers alongside SulP. Our in silico analysis highlights several targets for further molecular studies in order to understand this key step in the metabolism of SRMs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Røy
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Bo B Jørgensen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Kasper U Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Wasmund K, Mußmann M, Loy A. The life sulfuric: microbial ecology of sulfur cycling in marine sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:323-344. [PMID: 28419734 PMCID: PMC5573963 DOI: 10.1111/1758-2229.12538] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| | - Marc Mußmann
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
| | - Alexander Loy
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology”University of ViennaAlthanstrasse 14ViennaA‐1090Austria
- Austrian Polar Research InstituteViennaAustria
| |
Collapse
|
10
|
Dörries M, Wöhlbrand L, Kube M, Reinhardt R, Rabus R. Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059. BMC Genomics 2016; 17:918. [PMID: 27846794 PMCID: PMC5109826 DOI: 10.1186/s12864-016-3236-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) are key players of the carbon- and sulfur-cycles in the sediments of the world's oceans. Habitat relevant SRBs are often members of the Desulfosarcina-Desulfococcus clade belonging to the deltaproteobacterial family of Desulfobacteraceae. Despite this environmental recognition, their molecular (genome-based) physiology and their potential to contribute to organic carbon mineralization as well as to adapt to changing environmental conditions have been scarcely investigated. A metabolically versatile representative of this family is Desulfococcus multivorans that is able to completely oxidize (to CO2) a variety of organic acids, including fatty acids up to C14, as well as aromatic compounds. RESULTS In this study the complete 4.46 Mbp and manually annotated genome of metabolically versatile Desulfococcus multivorans DSM 2059 is presented with particular emphasis on a proteomics-driven metabolic reconstruction. Proteomic profiling covered 17 substrate adaptation conditions (6 aromatic and 11 aliphatic compounds) and comprised 2D DIGE, shotgun proteomics and analysis of the membrane protein-enriched fractions. This comprehensive proteogenomic dataset allowed for reconstructing a metabolic network of degradation pathways and energy metabolism that consists of 170 proteins (154 detected; ~91 % coverage). Peripheral degradation routes feed via central benzoyl-CoA, (modified) β-oxidation or methylmalonyl-CoA pathways into the Wood-Ljungdahl pathway for complete oxidation of acetyl-CoA to CO2. Dissimilatory sulfate reduction is fueled by a complex electron transfer network composed of cytoplasmic components (e.g., electron transfer flavoproteins) and diverse membrane redox complexes (Dsr, Qmo, Hmc, Tmc, Qrc, Nuo and Rnf). Overall, a high degree of substrate-specific formation of catabolic enzymes was observed, while most complexes involved in electron transfer appeared to be constitutively formed. CONCLUSIONS A highly dynamic genome structure in combination with substrate-specifically formed catabolic subproteomes and a constitutive subproteome for energy metabolism and electron transfer appears to be a common trait of Desulfobacteraceae members.
Collapse
Affiliation(s)
- Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Michael Kube
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany
| | | | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|