1
|
Yuan J, Sun B, Li M, Yang C, Zhang L, Chen N, Chen F, Li L. OSaMPle workflow for salivary metaproteomics analysis reveals dysbiosis in inflammatory bowel disease patients. NPJ Biofilms Microbiomes 2025; 11:63. [PMID: 40268913 PMCID: PMC12018957 DOI: 10.1038/s41522-025-00692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025] Open
Abstract
The human oral microbiome has been associated with multiple inflammatory conditions including inflammatory bowel disease (IBD). Identifying functional changes in oral microbiome by metaproteomics helps understanding the factors driving dysbiosis related to intestinal diseases. However, enriching bacterial cells from oral samples (such as saliva and mouth rinse) rich in host proteins is challenging. Here, we present an Optimized Salivary MetaProteomic sample analysis workflow (OSaMPle) to enrich salivary bacteria and reduce host-derived interferences for in-depth analysis of the oral metaproteome. Compared to a conventional approach, OSaMPle improved the identification of bacterial peptides and proteins by 3.2 folds and 1.7 folds, respectively. Furthermore, applying OSaMPle to analyze mouth rinse samples from IBD patients revealed significant alterations in bacterial protein expressions under disease conditions. Specifically, proteins involved in the fatty acid elongation pathway in Peptostreptococcus were significantly less abundant in IBD patients, whereas proteins associated with the TCA cycle in Neisseria were significantly more abundant. The OSaMPle workflow is capable of processing small-volume oral samples and adaptable to high-throughput automation. It holds promise as a strategy for investigating the functional responses of oral microbiomes under disease conditions and identifying disease-associated microbes with their proteins, providing critical insights for detecting disease-related biomarkers within the oral microbiome.
Collapse
Affiliation(s)
- Jinhui Yuan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Boyan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Murong Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 100081, Beijing, China
| | - Congyi Yang
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China.
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, 100081, Beijing, China.
| | - Leyuan Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 102206, Beijing, China.
| |
Collapse
|
2
|
Yang X, Wang J, Liao R, Cai Y. A simplified protocol for deep quantitative proteomic analysis of gingival crevicular fluid for skeletal maturity indicators. Anal Chim Acta 2024; 1296:342342. [PMID: 38401943 DOI: 10.1016/j.aca.2024.342342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Assessment of craniofacial skeletal maturity is of great importance in orthodontic diagnosis and treatment planning. Traditional radiographic methods suffer from clinician subjectivity and low reproducibility. Recent biochemical methods, such as the use of gingival crevicular fluid (GCF) protein biomarkers involved in bone metabolism, have provided new opportunities to assess skeletal maturity. However, mass spectrometry (MS)-based GCF proteomic analysis still faces significant challenges, including the interference of high abundance proteins, laborious sample prefractionation and relatively limited coverage of GCF proteome. To improve GCF sample processing and further discover novel biomarkers, we herein developed a single-pot, solid-phase-enhanced sample-preparation (SP3)-based high-field asymmetric waveform ion mobility spectrometry (FAIMS)-MS protocol for deep quantitative analysis of the GCF proteome for skeletal maturity indicators. SP3 combined with FAIMS could minimize sample loss and eliminate tedious and time-consuming offline fractionation, thereby simplifying GCF sample preparation and improving analytical coverage and reproducibility of the GCF proteome. A total of 5407 proteins were identified in GCF samples from prepubertal and circumpubertal groups, representing the largest dataset of human GCF proteome to date. Compared to the prepubertal group, 61 proteins were differentially expressed (31 up-regulated, 30 down-regulated) in the circumpubertal group. The six-protein marker panel, including ATP5D, CLTA, CLTB, DNM2, HSPA8 and NCK1, showed great potential to predict the circumpubertal stage (ROC-AUC 0.937), which provided new insights into skeletal maturity assessment.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, PR China
| | - Jun Wang
- Department of Pediatric Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200433, PR China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China.
| | - Yan Cai
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, PR China.
| |
Collapse
|
3
|
Roemermann DL, Atout R, Pesun I, Kelekis-Cholakis A, Stavropoulou C, Renvert SN, França R. An In Vivo Investigation of Non-Metallic vs. Metallic Hand Scalers on Zirconia Implant-Supported Crowns: A Year-Long Analysis of Peri-Implant Maintenance. J Funct Biomater 2023; 15:9. [PMID: 38248676 PMCID: PMC10817302 DOI: 10.3390/jfb15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
This study examined whether the degree of abutment surface modification that may occur with regular periodontal instrumentation has a clinical impact in terms of increased plaque accumulation and increased peri-implant tissue inflammation on zirconia implant abutments. Thirteen patients who had zirconia implant crowns were recruited in this randomized clinical trial. Each patient acted as their control and had either the buccal or lingual surface of their screw-retained implant restoration scaled with a metallic scaler and the other surface with a non-metallic scaler at 3, 6, 9, and 12 months. Cytokine testing of the peri-implant crevicular fluid was completed at 0, 3, and 12 months for IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, or IFNγ. Implant crowns were removed at 12 months and evaluated under an atomic force microscope for the average roughness (Ra). The implant crowns were polished and re-inserted. The results were analyzed using the Kruskal-Wallis test, and post hoc tests were conducted with a significance level of α = 0.05. Significant differences in surface roughness (Ra) were observed between the metallic and non-metallic scalers. The median Ra values were 274.0 nm for metallic scalers and 147.1 nm for non-metallic scalers. However, there were no significant differences between the type of scaler used and the amount of clinical inflammation or cytokine production. Metallic scalers produced deeper, more aggressive surface alterations to the abutment/crown zirconia surface, but there was no statistically significant difference between the degree of surface alterations, amount of BOP, and the amplitude of cytokine inflammation produced.
Collapse
Affiliation(s)
- Dayna L. Roemermann
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Reem Atout
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Igor Pesun
- Department of Restorative Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Anastasia Kelekis-Cholakis
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Chrysi Stavropoulou
- Department of Dental Diagnostic and Surgical Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (D.L.R.); (R.A.); (A.K.-C.); (C.S.)
| | - Stefan N. Renvert
- Oral Health Sciences, Kristianstad University, 291 88 Kristianstad, Sweden;
| | - Rodrigo França
- Department of Restorative Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
4
|
Target Protein for Xklp2 Functions as Coactivator of Androgen Receptor and Promotes the Proliferation of Prostate Carcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:6085948. [PMID: 35444697 PMCID: PMC9015851 DOI: 10.1155/2022/6085948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
The activation of the androgen receptor (AR) pathway is crucial in the progression of human prostate cancer. Results of the present study indicated that the target protein xenopus kinesin-like protein (TPX2) enhanced the transcription activation of AR and promoted the proliferation of LNCaP (ligand-dependent prostate carcinoma) cells. The protein-protein interaction between AR and TPX2 was investigated using coimmunoprecipitation assays. Results of the present study further demonstrated that TPX2 enhanced the transcription factor activation of AR and enhanced the expression levels of the downstream gene prostate-specific antigen (PSA). TPX2 did this by promoting the accumulation of AR in the nucleus and also promoting the recruitment of AR to the androgen response element, located in the promoter region of the PSA gene. Overexpression of TPX2 enhanced both the in vitro and in vivo proliferation of LNCaP cells. By revealing a novel role of TPX2 in the AR signaling pathway, the present study indicated that TPX2 may be an activator of AR and thus exhibits potential as a novel target for prostate carcinoma treatment.
Collapse
|
5
|
Proteomics Disclose the Potential of Gingival Crevicular Fluid (GCF) as a Source of Biomarkers for Severe Periodontitis. MATERIALS 2022; 15:ma15062161. [PMID: 35329612 PMCID: PMC8950923 DOI: 10.3390/ma15062161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Periodontal disease is a widespread disorder comprising gingivitis, a mild early gum inflammation, and periodontitis, a more severe multifactorial inflammatory disease that, if left untreated, can lead to the gradual destruction of the tooth-supporting apparatus. To date, effective etiopathogenetic models fully explaining the clinical features of periodontal disease are not available. Obviously, a better understanding of periodontal disease could facilitate its diagnosis and improve its treatment. The purpose of this study was to employ a proteomic approach to analyze the gingival crevicular fluid (GCF) of patients with severe periodontitis, in search of potential biomarkers. GCF samples, collected from both periodontally healthy sites (H-GCF) and the periodontal pocket (D-GCF), were subjected to a comparison analysis using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A total of 26 significantly different proteins, 14 up-regulated and 12 down-regulated in D-GCF vs. H-GCF, were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The main expressed proteins were inflammatory molecules, immune responders, and host enzymes. Most of these proteins were functionally connected using the STRING analysis database. Once validated in a large scale-study, these proteins could represent a cluster of promising biomarkers capable of making a valuable contribution for a better assessment of periodontitis.
Collapse
|