1
|
Bubis JA, Arrey TN, Damoc E, Delanghe B, Slovakova J, Sommer TM, Kagawa H, Pichler P, Rivron N, Mechtler K, Matzinger M. Challenging the Astral mass analyzer to quantify up to 5,300 proteins per single cell at unseen accuracy to uncover cellular heterogeneity. Nat Methods 2025; 22:510-519. [PMID: 39820751 PMCID: PMC11903296 DOI: 10.1038/s41592-024-02559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/06/2024] [Indexed: 01/19/2025]
Abstract
Despite significant advancements in sample preparation, instrumentation and data analysis, single-cell proteomics is currently limited by proteomic depth and quantitative performance. Here we demonstrate highly improved depth of proteome coverage as well as accuracy and precision for quantification of ultra-low input amounts. Using a tailored library, we identify up to 7,400 protein groups from as little as 250 pg of HeLa cell peptides at a throughput of 50 samples per day. Using a two-proteome mix, we check for optimal parameters of quantification and show that fold change differences of 2 can still be successfully determined at single-cell-level inputs. Eventually, we apply our workflow to A549 cells, yielding a proteome coverage ranging from 1,801 to a maximum of >5,300 protein groups from a single cell depending on cell size and search strategy used, which allows for the study of dependencies between cell size and cell cycle phase. Additionally, our workflow enables us to distinguish between in vitro analogs of two human blastocyst lineages: naive human pluripotent stem cells (epiblast) and trophectoderm-like cells. Our data harmoniously align with transcriptomic data, indicating that single-cell proteomics possesses the capability to identify biologically relevant differences within the blastocyst.
Collapse
Affiliation(s)
- Julia A Bubis
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | | | | | | | - Jana Slovakova
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Theresa M Sommer
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Harunobu Kagawa
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Peter Pichler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Nicolas Rivron
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| | - Manuel Matzinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
2
|
Lin HJL, Webber KGI, Nwosu AJ, Kelly RT. Review and Practical Guide for Getting Started With Single-Cell Proteomics. Proteomics 2025; 25:e202400021. [PMID: 39548896 PMCID: PMC11994847 DOI: 10.1002/pmic.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 11/18/2024]
Abstract
Single-cell proteomics (SCP) has advanced significantly in recent years, with new tools specifically designed for the preparation and analysis of single cells now commercially available to researchers. The field is sufficiently mature to be broadly accessible to any lab capable of isolating single cells and performing bulk-scale proteomic analyses. In this review, we highlight recent work in the SCP field that has significantly lowered the barrier to entry, thus providing a practical guide for those who are newly entering the SCP field. We outline the fundamental principles and report multiple paths to accomplish the key steps of a successful SCP experiment including sample preparation, separation, and mass spectrometry data acquisition and analysis. We recommend that researchers start with a label-free SCP workflow, as achieving high-quality and quantitatively accurate results is more straightforward than label-based multiplexed strategies. By leveraging these accessible means, researchers can confidently perform SCP experiments and make meaningful discoveries at the single-cell level.
Collapse
Affiliation(s)
- Hsien-Jung L Lin
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kei G I Webber
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Andikan J Nwosu
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Ryan T Kelly
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
3
|
Nalla LV, Kanukolanu A, Yeduvaka M, Gajula SNR. Advancements in Single-Cell Proteomics and Mass Spectrometry-Based Techniques for Unmasking Cellular Diversity in Triple Negative Breast Cancer. Proteomics Clin Appl 2025; 19:e202400101. [PMID: 39568435 PMCID: PMC11726282 DOI: 10.1002/prca.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer characterized by a lack of targeted treatment options. Intratumoral heterogeneity significantly drives disease progression and complicates therapeutic responses, necessitating advanced analytical approaches to understand its underlying biology. This review aims to explore the advancements in single-cell proteomics and their application in uncovering cellular diversity in TNBC. It highlights innovations in sample preparation, mass spectrometry-based techniques, and the potential for integrating proteomics into multi-omics platforms. METHODS The review discusses the combination of improved sample preparation methods and cutting-edge mass spectrometry techniques in single-cell proteomics. It emphasizes the challenges associated with protein analysis, such as the inability to amplify proteins akin to transcripts, and examines strategies to overcome these limitations. RESULTS Single-cell proteomics provides a direct link to phenotype and cell behavior, complementing transcriptomic approaches and offering new insights into the mechanisms driving TNBC. The integration of advanced techniques has enabled deeper exploration of cellular heterogeneity and disease mechanisms. CONCLUSION Despite the challenges, single-cell proteomics holds immense potential to evolve into a high-throughput and scalable multi-omics platform. Addressing existing hurdles will enable deeper biological insights, ultimately enhancing the diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Lakshmi Vineela Nalla
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Aarika Kanukolanu
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Madhuri Yeduvaka
- Department of Pharmacology, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, GITAM School of PharmacyGITAM (Deemed to be University)VisakhapatnamAndhra PradeshIndia
| |
Collapse
|
4
|
Ghosh G, Shannon AE, Searle BC. Data acquisition approaches for single cell proteomics. Proteomics 2025; 25:e2400022. [PMID: 39088833 PMCID: PMC11735665 DOI: 10.1002/pmic.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Single-cell proteomics (SCP) aims to characterize the proteome of individual cells, providing insights into complex biological systems. It reveals subtle differences in distinct cellular populations that bulk proteome analysis may overlook, which is essential for understanding disease mechanisms and developing targeted therapies. Mass spectrometry (MS) methods in SCP allow the identification and quantification of thousands of proteins from individual cells. Two major challenges in SCP are the limited material in single-cell samples necessitating highly sensitive analytical techniques and the efficient processing of samples, as each biological sample requires thousands of single cell measurements. This review discusses MS advancements to mitigate these challenges using data-dependent acquisition (DDA) and data-independent acquisition (DIA). Additionally, we examine the use of short liquid chromatography gradients and sample multiplexing methods that increase the sample throughput and scalability of SCP experiments. We believe these methods will pave the way for improving our understanding of cellular heterogeneity and its implications for systems biology.
Collapse
Affiliation(s)
- Gautam Ghosh
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Ariana E. Shannon
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| | - Brian C. Searle
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| |
Collapse
|
5
|
Kwon Y, Fulcher JM, Paša-Tolić L, Qian WJ. Spatial Proteomics towards cellular Resolution. Expert Rev Proteomics 2024:1-10. [PMID: 39710940 DOI: 10.1080/14789450.2024.2445809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g. genetic mutations and epigenetic marks), multiplexed immunofluorescence, and spatial metabolomics/lipidomics have enabled high-resolution spatial profiling of gene expression, genetic variation, protein expression, and metabolites/lipids profiles in tissue. These developments contribute to a deeper understanding of the spatial organization within tissue microenvironments at the molecular level. AREAS COVERED This report provides an overview of the untargeted, bottom-up mass spectrometry (MS)-based spatial proteomics workflow. It highlights recent progress in tissue dissection, sample processing, bioinformatics, and liquid chromatography (LC)-MS technologies that are advancing spatial proteomics toward cellular resolution. EXPERT OPINION The field of untargeted MS-based spatial proteomics is rapidly evolving and holds great promise. To fully realize the potential of spatial proteomics, it is critical to advance data analysis and develop automated and intelligent tissue dissection at the cellular or subcellular level, along with high-throughput LC-MS analyses of thousands of samples. Achieving these goals will necessitate significant advancements in tissue dissection technologies, LC-MS instrumentation, and computational tools.
Collapse
Affiliation(s)
- Yumi Kwon
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
6
|
Webber KGI, Huang S, Lin HJL, Hunter TL, Tsang J, Jayatunge D, Andersen JL, Kelly RT. Gradient-Elution Nanoflow Liquid Chromatography Without a Binary Pump: Smoothed Step Gradients Enable Reproducible, Sensitive, and Low-Cost Separations for Single-Cell Proteomics. Mol Cell Proteomics 2024; 23:100880. [PMID: 39536954 DOI: 10.1016/j.mcpro.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Mass spectrometry-based proteome profiling of trace analytes including single cells benefits from liquid chromatography separations operated at low flow rates (e.g., <50 nl/min). However, high-pressure binary pumps needed to achieve such flow rates are not commercially available, and instead require splitting of the gradient flow to achieve low-nanoliter-per-minute flow rates. Gradient flow splitting can waste solvent and lead to flow inconsistencies. To address this, we have developed a method for creating gradients by combining segments of mobile phase having increasing solvent strength together in an open capillary, and then relying on Taylor dispersion to form the desired smooth gradient profile. Our method dramatically reduces costs, as only a single isocratic high-pressure pump is required. Following development of gradient profiles for both 10- and 20-min active gradients, we measured 200 pg injections of HeLa digest using a timsTOF mass spectrometer. Finally, we investigated differences in protein expression between single cells originating from two different colonies of ATG-KO HeLa cells. Thousands of proteins were quantified, and a potential mechanism explaining differential immune responses of these two colonies upon exposure to viral DNA treatment was determined.
Collapse
Affiliation(s)
- Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Tyler L Hunter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Jeremy Tsang
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake, Utah, USA
| | - Dasun Jayatunge
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake, Utah, USA
| | - Joshua L Andersen
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake, Utah, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
7
|
Xie X, Truong T, Huang S, Johnston SM, Hovanski S, Robinson A, Webber KGI, Lin HJL, Mun DG, Pandey A, Kelly RT. Multicolumn Nanoflow Liquid Chromatography with Accelerated Offline Gradient Generation for Robust and Sensitive Single-Cell Proteome Profiling. Anal Chem 2024; 96:10534-10542. [PMID: 38915247 PMCID: PMC11482043 DOI: 10.1021/acs.analchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Peptide separations that combine high sensitivity, robustness, peak capacity, and throughput are essential for extending bottom-up proteomics to smaller samples including single cells. To this end, we have developed a multicolumn nanoLC system with offline gradient generation. One binary pump generates gradients in an accelerated fashion to support multiple analytical columns, and a single trap column interfaces with all analytical columns to reduce required maintenance and simplify troubleshooting. A high degree of parallelization is possible, as one sample undergoes separation while the next sample plus its corresponding mobile phase gradient are transferred into the storage loop and a third sample is loaded into a sample loop. Selective offline elution from the trap column into the sample loop prevents salts and hydrophobic species from entering the analytical column, thus greatly enhancing column lifetime and system robustness. With this design, samples can be analyzed as fast as every 20 min at a flow rate of just 40 nL/min with close to 100% MS utilization time and continuously for as long as several months without column replacement. We utilized the system to analyze the proteomes of single cells from a multiple myeloma cell line upon treatment with the immunomodulatory imide drug lenalidomide.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Simon Hovanski
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Abigail Robinson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| |
Collapse
|
8
|
Staes A, Mendes Maia T, Dufour S, Bouwmeester R, Gabriels R, Martens L, Gevaert K, Impens F, Devos S. Benefit of In Silico Predicted Spectral Libraries in Data-Independent Acquisition Data Analysis Workflows. J Proteome Res 2024; 23:2078-2089. [PMID: 38666436 DOI: 10.1021/acs.jproteome.4c00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Data-independent acquisition (DIA) has become a well-established method for MS-based proteomics. However, the list of options to analyze this type of data is quite extensive, and the use of spectral libraries has become an important factor in DIA data analysis. More specifically the use of in silico predicted libraries is gaining more interest. By working with a differential spike-in of human standard proteins (UPS2) in a constant yeast tryptic digest background, we evaluated the sensitivity, precision, and accuracy of the use of in silico predicted libraries in data DIA data analysis workflows compared to more established workflows. Three commonly used DIA software tools, DIA-NN, EncyclopeDIA, and Spectronaut, were each tested in spectral library mode and spectral library-free mode. In spectral library mode, we used independent spectral library prediction tools PROSIT and MS2PIP together with DeepLC, next to classical data-dependent acquisition (DDA)-based spectral libraries. In total, we benchmarked 12 computational workflows for DIA. Our comparison showed that DIA-NN reached the highest sensitivity while maintaining a good compromise on the reproducibility and accuracy levels in either library-free mode or using in silico predicted libraries pointing to a general benefit in using in silico predicted libraries.
Collapse
Affiliation(s)
- An Staes
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, B9052 Ghent, Belgium
| | - Teresa Mendes Maia
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, B9052 Ghent, Belgium
| | - Sara Dufour
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, B9052 Ghent, Belgium
| | - Robbin Bouwmeester
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Ralf Gabriels
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Lennart Martens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, B9052 Ghent, Belgium
| | - Simon Devos
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, B9052 Ghent, Belgium
| |
Collapse
|
9
|
Su P, Hollas MAR, Butun FA, Kanchustambham VL, Rubakhin S, Ramani N, Greer JB, Early BP, Fellers RT, Caldwell MA, Sweedler JV, Kafader JO, Kelleher NL. Single Cell Analysis of Proteoforms. J Proteome Res 2024; 23:1883-1893. [PMID: 38497708 PMCID: PMC11406863 DOI: 10.1021/acs.jproteome.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We introduce single cell Proteoform imaging Mass Spectrometry (scPiMS), which realizes the benefit of direct solvent extraction and MS detection of intact proteins from single cells dropcast onto glass slides. Sampling and detection of whole proteoforms by individual ion mass spectrometry enable a scalable approach to single cell proteomics. This new scPiMS platform addresses the throughput bottleneck in single cell proteomics and boosts the cell processing rate by several fold while accessing protein composition with higher coverage.
Collapse
Affiliation(s)
- Pei Su
- Departments of Molecular Biosciences, Chemistry, Chemical and Biological Engineering, and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael A R Hollas
- Departments of Molecular Biosciences, Chemistry, Chemical and Biological Engineering, and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Fatma Ayaloglu Butun
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Vijaya Lakshmi Kanchustambham
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Stanislav Rubakhin
- Beckman Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph B Greer
- Departments of Molecular Biosciences, Chemistry, Chemical and Biological Engineering, and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Bryan P Early
- Departments of Molecular Biosciences, Chemistry, Chemical and Biological Engineering, and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Departments of Molecular Biosciences, Chemistry, Chemical and Biological Engineering, and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael A Caldwell
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan V Sweedler
- Beckman Institute and Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jared O Kafader
- Departments of Molecular Biosciences, Chemistry, Chemical and Biological Engineering, and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Molecular Biosciences, Chemistry, Chemical and Biological Engineering, and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
10
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
11
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins located in the sarcomere, cytoskeleton and the extracellular matrix. Eur J Transl Myol 2024; 34:12564. [PMID: 38787300 PMCID: PMC11264229 DOI: 10.4081/ejtm.2024.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
12
|
Dowling P, Trollet C, Muraine L, Negroni E, Swandulla D, Ohlendieck K. The potential of proteomics for in-depth bioanalytical investigations of satellite cell function in applied myology. Expert Rev Proteomics 2024; 21:229-235. [PMID: 38753566 DOI: 10.1080/14789450.2024.2356578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Regenerative myogenesis plays a crucial role in mature myofibers to counteract muscular injury or dysfunction due to neuromuscular disorders. The activation of specialized myogenic stem cells, called satellite cells, is intrinsically involved in proliferation and differentiation, followed by myoblast fusion and the formation of multinucleated myofibers. AREAS COVERED This report provides an overview of the role of satellite cells in the neuromuscular system and the potential future impact of proteomic analyses for biomarker discovery, as well as the identification of novel therapeutic targets in muscle disease. The article reviews the ways in which the systematic analysis of satellite cells, myoblasts, and myocytes by single-cell proteomics can help to better understand the process of myofiber regeneration. EXPERT OPINION In order to better comprehend satellite cell dysfunction in neuromuscular disorders, mass spectrometry-based proteomics is an excellent large-scale analytical tool for the systematic profiling of pathophysiological processes. The optimized isolation of muscle-derived cells can be routinely performed by mechanical/enzymatic dissociation protocols, followed by fluorescence-activated cell sorting in specialized flow cytometers. Ultrasensitive single-cell proteomics using label-free quantitation methods or approaches that utilize tandem mass tags are ideal bioanalytical approaches to study the pathophysiological role of stem cells in neuromuscular disease.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, KE, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, KE, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Laura Muraine
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, KE, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, KE, Ireland
| |
Collapse
|
13
|
Staes A, Boucher K, Dufour S, Maia TM, Timmerman E, Haver DV, Pauwels J, Demol H, Vandenbussche J, Gevaert K, Impens F, Devos S. High-Throughput Nanoflow Proteomics Using a Dual-Column Electrospray Source. Anal Chem 2024; 96:6534-6539. [PMID: 38647218 DOI: 10.1021/acs.analchem.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
With current trends in proteomics, especially regarding clinical and low input (to single cell) samples, it is increasingly important to both maximize the throughput of the analysis and maintain as much sensitivity as possible. The new generation of mass spectrometers (MS) are taking a huge leap in sensitivity, allowing analysis of samples with shorter liquid chromatography (LC) methods while digging as deep in the proteome. However, the throughput can be doubled by implementing a dual column nano-LC-MS configuration. For this purpose, we used a dual-column setup with a two-outlet electrospray source and compared it to a classic dual-column setup with a single-outlet source.
Collapse
Affiliation(s)
- An Staes
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Katie Boucher
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Sara Dufour
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Teresa Mendes Maia
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Delphi Van Haver
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Jarne Pauwels
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Hans Demol
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | | | - Kris Gevaert
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| | - Simon Devos
- VIB Center for Medical Biotechnology, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
- VIB Proteomics Core, Technologiepark-Zwijnaarde 75, B9052 Ghent, Belgium
| |
Collapse
|
14
|
Matzinger M, Schmücker A, Yelagandula R, Stejskal K, Krššáková G, Berger F, Mechtler K, Mayer RL. Micropillar arrays, wide window acquisition and AI-based data analysis improve comprehensiveness in multiple proteomic applications. Nat Commun 2024; 15:1019. [PMID: 38310095 PMCID: PMC10838342 DOI: 10.1038/s41467-024-45391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 01/19/2024] [Indexed: 02/05/2024] Open
Abstract
Comprehensive proteomic analysis is essential to elucidate molecular pathways and protein functions. Despite tremendous progress in proteomics, current studies still suffer from limited proteomic coverage and dynamic range. Here, we utilize micropillar array columns (µPACs) together with wide-window acquisition and the AI-based CHIMERYS search engine to achieve excellent proteomic comprehensiveness for bulk proteomics, affinity purification mass spectrometry and single cell proteomics. Our data show that µPACs identify ≤50% more peptides and ≤24% more proteins, while offering improved throughput, which is critical for large (clinical) proteomics studies. Combining wide precursor isolation widths of m/z 4-12 with the CHIMERYS search engine identified +51-74% and +59-150% more proteins and peptides, respectively, for single cell, co-immunoprecipitation, and multi-species samples over a conventional workflow at well-controlled false discovery rates. The workflow further offers excellent precision, with CVs <7% for low input bulk samples, and accuracy, with deviations <10% from expected fold changes for regular abundance two-proteome mixes. Compared to a conventional workflow, our entire optimized platform discovered 92% more potential interactors in a protein-protein interaction study on the chromatin remodeler Smarca5/Snf2h. These include previously described Smarca5 binding partners and undescribed ones including Arid1a, another chromatin remodeler with key roles in neurodevelopmental and malignant disorders.
Collapse
Affiliation(s)
- Manuel Matzinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Anna Schmücker
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ramesh Yelagandula
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Laboratory of Epigenetics, Cell Fate & Disease, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Karel Stejskal
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Gabriela Krššáková
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.
| | - Rupert L Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| |
Collapse
|
15
|
Gómez JEU, Faraj REKE, Braun M, Levkin PA, Popova AA. ANDeS: An automated nanoliter droplet selection and collection device. SLAS Technol 2024; 29:100118. [PMID: 37981010 DOI: 10.1016/j.slast.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
The Droplet Microarray (DMA) has emerged as a tool for high-throughput biological and chemical applications by enabling miniaturization and parallelization of experimental processes. Due to its ability to hold hundreds of nanoliter droplets, the DMA enables simple screening and analysis of samples such as cells and biomolecules. However, handling of nanoliter volumes poses a challenge, as manual recovery of nanoliter volumes is not feasible, and traditional laboratory equipment is not suited to work with such low volumes, and small array formats. To tackle this challenge, we developed the Automated Nanoliter Droplet Selection device (ANDeS), a robotic system for automated collection and transfer of nanoliter samples from DMA. ANDeS can automatically collect volumes from 50 to 350 nL from the flat surface of DMA with a movement accuracy of ±30 µm using fused silica capillaries. The system can automatically collect and transfer the droplets from DMA chip into other platforms, such as microtiter plates, conical tubes or another DMA. In addition, to ensure high throughput and multiple droplet collection, the uptake of multiple droplets within a single capillary, separated by air gaps to avoid mixing of the samples within the capillary, was optimized and demonstrated. This study shows the potential of ANDeS in laboratory applications by using it for the collection and transfer of biological samples, contained in nanoliter droplets, for subsequent analysis. The experimental results demonstrate the ability of ANDeS to increase the versatility of the DMA platform by allowing for automated retrieval of nanoliter samples from DMA, which was not possible manually on the level of individual droplets. Therefore, it widens the variety of analytical techniques that can be used for the analysis of content of individual droplets and experiments performed using DMA. Thus, ANDeS opens up opportunities to expand the development of miniaturized assays in such fields as cell screening, omics analysis and combinatorial chemistry.
Collapse
Affiliation(s)
- Joaquín E Urrutia Gómez
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Razan El Khaled El Faraj
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Moritz Braun
- Institute for Applied Materials - Ceramic Materials and Technologies, Karlsruhe Institute of Technology (KIT), Haid-und-Neu straße 7, Karlsruhe 76131, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, Eggenstein-Leopoldshafen 76344, Germany; Institute of Organic Chemistry, Karlsruhe Institute of Technology, Kaiserstraße 12, Karlsruhe 76131, Germany.
| | - Anna A Popova
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
16
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
17
|
Truong T, Sanchez-Avila X, Webber KGI, Johnston SM, Kelly RT. Efficient and Sensitive Sample Preparation, Separations, and Data Acquisition for Label-Free Single-Cell Proteomics. Methods Mol Biol 2024; 2817:67-84. [PMID: 38907148 DOI: 10.1007/978-1-0716-3934-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We describe a sensitive and efficient workflow for label-free single-cell proteomics that spans sample preparation, liquid chromatography separations, and mass spectrometry data acquisition. The Tecan Uno Single Cell Dispenser provides rapid cell isolation and nanoliter-volume reagent dispensing within 384-well PCR plates. A newly developed sample processing workflow achieves cell lysis, protein denaturation, and digestion in 1 h with a single reagent dispensing step. Low-flow liquid chromatography coupled with wide-window data-dependent acquisition results in the quantification of nearly 3000 proteins per cell using an Orbitrap Exploris 480 mass spectrometer. This approach greatly broadens accessibility to sensitive single-cell proteome profiling for nonspecialist laboratories.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
18
|
Mayer RL, Mechtler K. Immunopeptidomics in the Era of Single-Cell Proteomics. BIOLOGY 2023; 12:1514. [PMID: 38132340 PMCID: PMC10740491 DOI: 10.3390/biology12121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Immunopeptidomics, as the analysis of antigen peptides being presented to the immune system via major histocompatibility complexes (MHC), is being seen as an imperative tool for identifying epitopes for vaccine development to treat cancer and viral and bacterial infections as well as parasites. The field has made tremendous strides over the last 25 years but currently still faces challenges in sensitivity and throughput for widespread applications in personalized medicine and large vaccine development studies. Cutting-edge technological advancements in sample preparation, liquid chromatography as well as mass spectrometry, and data analysis, however, are currently transforming the field. This perspective showcases how the advent of single-cell proteomics has accelerated this transformation of immunopeptidomics in recent years and will pave the way for even more sensitive and higher-throughput immunopeptidomics analyses.
Collapse
Affiliation(s)
- Rupert L. Mayer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, 1030 Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
19
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
20
|
Végvári Á, Zhang X, Zubarev RA. Toward Single Bacterium Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2098-2106. [PMID: 37713396 PMCID: PMC10557376 DOI: 10.1021/jasms.3c00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/14/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Bacteria are orders of magnitude smaller than mammalian cells, and while single cell proteomics (SCP) currently detects and quantifies several thousands of proteins per mammalian cell, it is not clear whether conventional SCP methods will be suitable for bacteria. Here we report on the first successful attempt to detect proteins from individual Escherichia coli bacteria, with validation of our findings by comparison with two bacteria samples and bulk proteomics data. Data are available via ProteomeXchange with the identifier PXD043473.
Collapse
Affiliation(s)
- Ákos Végvári
- Division of Chemistry I,
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Xuepei Zhang
- Division of Chemistry I,
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Chemistry I,
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
21
|
Sanchez-Avila X, Truong T, Xie X, Webber KGI, Johnston SM, Lin HJL, Axtell NB, Puig-Sanvicens V, Kelly RT. Easy and Accessible Workflow for Label-Free Single-Cell Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2374-2380. [PMID: 37594399 PMCID: PMC11002963 DOI: 10.1021/jasms.3c00240] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Single-cell proteomics (SCP) can provide information that is unattainable through either bulk-scale protein measurements or single-cell profiling of other omes. Maximizing proteome coverage often requires custom instrumentation, consumables, and reagents for sample processing and separations, which has limited the accessibility of SCP to a small number of specialized laboratories. Commercial platforms have become available for SCP cell isolation and sample preparation, but the high cost of these platforms and the technical expertise required for their operation place them out of reach of many interested laboratories. Here, we assessed the new HP D100 Single Cell Dispenser for label-free SCP. The low-cost instrument proved highly accurate and reproducible for dispensing reagents in the range from 200 nL to 2 μL. We used the HP D100 to isolate and prepare single cells for SCP within 384-well PCR plates. When the well plates were immediately centrifuged following cell dispensing and again after reagent dispensing, we found that ∼97% of wells that were identified in the instrument software as containing a single cell indeed provided the proteome coverage expected of a single cell. This commercial dispenser combined with one-step sample processing provides a very rapid and easy-to-use workflow for SCP with no reduction in proteome coverage relative to a nanowell-based workflow, and the commercial well plates also facilitate autosampling with unmodified instrumentation. Single-cell samples were analyzed using home-packed 30 μm i.d. nanoLC columns as well as commercially available 50 μm i.d. columns. The commercial columns resulted in ∼35% fewer identified proteins. However, combined with the well plate-based preparation platform, the presented workflow provides a fully commercial and relatively low-cost alternative for SCP sample preparation and separation, which should greatly broaden the accessibility of SCP to other laboratories.
Collapse
Affiliation(s)
- Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Nathaniel B Axtell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
22
|
Abstract
Missing values are a notable challenge when analyzing mass spectrometry-based proteomics data. While the field is still actively debating the best practices, the challenge increased with the emergence of mass spectrometry-based single-cell proteomics and the dramatic increase in missing values. A popular approach to deal with missing values is to perform imputation. Imputation has several drawbacks for which alternatives exist, but currently, imputation is still a practical solution widely adopted in single-cell proteomics data analysis. This perspective discusses the advantages and drawbacks of imputation. We also highlight 5 main challenges linked to missing value management in single-cell proteomics. Future developments should aim to solve these challenges, whether it is through imputation or data modeling. The perspective concludes with recommendations for reporting missing values, for reporting methods that deal with missing values, and for proper encoding of missing values.
Collapse
Affiliation(s)
- Christophe Vanderaa
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, 1200 Brussels, Belgium
| |
Collapse
|
23
|
Matzinger M, Mechtler K. Improving single cell proteomics experiments: how can we best utilize latest-generation data acquisition and MS instrument architecture? Expert Rev Proteomics 2023; 20:193-195. [PMID: 37715641 DOI: 10.1080/14789450.2023.2260954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/18/2023]
Affiliation(s)
| | - Karl Mechtler
- Institute of Molecular Pathology (IMP), Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Gregor Mendel Institute of Molecular Plant Biology (GMI) of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|