1
|
Thermo-responsive diblock copolymer with pendant thiolactone group and its double postmodification. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Hedrick JL, Piunova V, Park NH, Erdmann T, Arrechea PL. Simple and Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using Carbon Dioxide. ACS Macro Lett 2022; 11:368-375. [PMID: 35575375 DOI: 10.1021/acsmacrolett.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aliphatic polycarbonates represent an important class of materials with diverse applications ranging from battery electrolytes, polyurethane intermediates, and materials for biomedical applications. These materials can be produced via the ring-opening polymerization (ROP) of six- to eight-membered cyclic carbonates derived from precursor 1,3- and 1,5-diols. These diols can contain a range of functional groups depending on the desired thermal, mechanical, and solution properties. Generally, the ring closure to form the cyclic carbonate requires the use of undesirable and hazardous reagents. Advances in synthetic methodologies and catalysis have enabled the use of carbon dioxide (CO2) to perform these transformations with a high conversion of diol to cyclic carbonate, yet modest isolated yields due to oligomerization side reactions. In this Letter, we evaluate a series of bases in the presence of p-toluenesulfonyl chloride and the appropriate diol to better understand their effect on the yield and presence of oligomer byproducts during cyclic carbonate formation from CO2. From this study, N,N-tetramethylethylenediamine (TMEDA) was identified as an optimal base, facilitating the preparation of a diverse array of both six- and eight-membered carbonates from CO2 within 10 to 15 min. The robust conditions for both, the preparation of the diol precursor, and the TMEDA-mediated carbonate synthesis enabled readily telescoping the two-step reaction sequence, greatly simplifying the process of monomer preparation.
Collapse
Affiliation(s)
- James L. Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Victoria Piunova
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Nathaniel H. Park
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Tim Erdmann
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| | - Pedro L. Arrechea
- IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
3
|
Li K, Liu X, Chen L, Xiong Z, Xiong C, Chen D. Synthesis of new aliphatic poly(ester‐carbonate)s bearing amino groups based on photolabile protecting group and evaluation of antibacterial property. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaiqi Li
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences School of Chemical Sciences Beijing China
| | - Xiliang Liu
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences School of Chemical Sciences Beijing China
| | - Long Chen
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Zuochun Xiong
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| | - Dongliang Chen
- Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| |
Collapse
|
4
|
Tan EWP, Hedrick JL, Arrechea PL, Erdmann T, Kiyek V, Lottier S, Yang YY, Park NH. Overcoming Barriers in Polycarbonate Synthesis: A Streamlined Approach for the Synthesis of Cyclic Carbonate Monomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eddy W. P. Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Pedro L. Arrechea
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Tim Erdmann
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Vivien Kiyek
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Simon Lottier
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Nathaniel H. Park
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
5
|
Domiński A, Konieczny T, Duale K, Krawczyk M, Pastuch-Gawołek G, Kurcok P. Stimuli-Responsive Aliphatic Polycarbonate Nanocarriers for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E2890. [PMID: 33276597 PMCID: PMC7761607 DOI: 10.3390/polym12122890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles based on amphiphilic copolymers with tunable physicochemical properties can be used to encapsulate delicate pharmaceutics while at the same time improving their solubility, stability, pharmacokinetic properties, reducing immune surveillance, or achieving tumor-targeting ability. Those nanocarriers based on biodegradable aliphatic polycarbonates are a particularly promising platform for drug delivery due to flexibility in the design and synthesis of appropriate monomers and copolymers. Current studies in this field focus on the design and the synthesis of new effective carriers of hydrophobic drugs and their release in a controlled manner by exogenous or endogenous factors in tumor-specific regions. Reactive groups present in aliphatic carbonate copolymers, undergo a reaction under the action of a stimulus: e.g., acidic hydrolysis, oxidation, reduction, etc. leading to changes in the morphology of nanoparticles. This allows the release of the drug in a highly controlled manner and induces a desired therapeutic outcome without damaging healthy tissues. The presented review summarizes the current advances in chemistry and methods for designing stimuli-responsive nanocarriers based on aliphatic polycarbonates for controlled drug delivery.
Collapse
Affiliation(s)
- Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Tomasz Konieczny
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| |
Collapse
|
6
|
Chen C, Duan N, Chen S, Guo Z, Hu J, Guo J, Chen Z, Yang L. Synthesis mechanical properties and self-healing behavior of aliphatic polycarbonate hydrogels based on cooperation hydrogen bonds. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Kalva N, Uthaman S, Augustine R, Jeon SH, Huh KM, Park IK, Kim I. Photo- and pH-Responsive Polycarbonate Block Copolymer Prodrug Nanomicelles for Controlled Release of Doxorubicin. Macromol Biosci 2020; 20:e2000118. [PMID: 32567108 DOI: 10.1002/mabi.202000118] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Photo/pH dual-responsive amphiphilic diblock copolymers with alkyne functionalized pendant o-nitrobenzyl ester group are synthesized using poly(ethylene glycol) as a macroinitiator. The pendant alkynes are functionalized as aldehyde groups by the azide-alkyne Huisgen cycloaddition. The anticancer drug doxorubicin (DOX) molecules are then covalently conjugated through acid-sensitive Schiff-base linkage. The resultant prodrug copolymers self-assemble into nanomicelles in aqueous solution. The prodrug nanomicelles have a well-defined morphology with an average size of 20-40 nm. The dual-stimuli are applied individually or simultaneously to study the release behavior of DOX. Under UV light irradiation, nanomicelles are disassembled due to the ONB ester photocleavage. The light-controlled DOX release behavior is demonstrated using fluorescence spectroscopy. Due to the pH-sensitive imine linkage the DOX molecules are released rapidly from the nanomicelles at the acidic pH of 5.0, whereas only minimal amount of DOX molecules is released at the pH of 7.4. The DOX release rate is tunable by applying the dual-stimuli simultaneously. In vitro studies against colon cancer cells demonstrate that the nanomicelles show the efficient cellular uptake and the intracellular DOX release, indicating that the newly designed copolymers with dual-stimuli-response have significant potential applications as a smart nanomedicine against cancer.
Collapse
Affiliation(s)
- Nagendra Kalva
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Rimesh Augustine
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Su Hyeon Jeon
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science, BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
| | - Il Kim
- BK21 PLUS Centre for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
8
|
Soliman SMA, El Founi M, Vanderesse R, Acherar S, Ferji K, Babin J, Six JL. Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Colloids Surf B Biointerfaces 2019; 182:110393. [DOI: 10.1016/j.colsurfb.2019.110393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
9
|
Sun J, Birnbaum W, Anderski J, Picker MT, Mulac D, Langer K, Kuckling D. Use of Light-Degradable Aliphatic Polycarbonate Nanoparticles As Drug Carrier for Photosensitizer. Biomacromolecules 2018; 19:4677-4690. [DOI: 10.1021/acs.biomac.8b01446] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jingjiang Sun
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Wolfgang Birnbaum
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Juliane Anderski
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Marie-Theres Picker
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Corrensstr. 48, D-48149 Münster, Germany
| | - Dirk Kuckling
- Department of Chemistry, Paderborn University, Warburger Str. 100, D-33098 Paderborn, Germany
| |
Collapse
|