1
|
Alshangiti DM, El-Damhougy TK, Zaher A, Madani M, Mohamady Ghobashy M. Revolutionizing biomedicine: advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: a review. RSC Adv 2023; 13:35251-35291. [PMID: 38053691 PMCID: PMC10694639 DOI: 10.1039/d3ra07391b] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Nanocomposite hydrogel biomaterials represent an exciting Frontier in biomedicine, offering solutions to longstanding challenges. These hydrogels are derived from various biopolymers, including fibrin, silk fibroin, collagen, keratin, gelatin, chitosan, hyaluronic acid, alginate, carrageenan, and cellulose. While these biopolymers possess inherent biocompatibility and renewability, they often suffer from poor mechanical properties and rapid degradation. Researchers have integrated biopolymers such as cellulose, starch, and chitosan into hydrogel matrices to overcome these limitations, resulting in nanocomposite hydrogels. These innovative materials exhibit enhanced mechanical strength, improved biocompatibility, and the ability to finely tune drug release profiles. The marriage of nanotechnology and hydrogel chemistry empowers precise control over these materials' physical and chemical properties, making them ideal for tissue engineering, drug delivery, wound healing, and biosensing applications. Recent advancements in the design, fabrication, and characterization of biopolymer-based nanocomposite hydrogels have showcased their potential to transform biomedicine. Researchers are employing strategic approaches for integrating biopolymer nanoparticles, exploring how nanoparticle properties impact hydrogel performance, and utilizing various characterization techniques to evaluate structure and functionality. Moreover, the diverse biomedical applications of these nanocomposite hydrogels hold promise for improving patient outcomes and addressing unmet clinical needs.
Collapse
Affiliation(s)
| | - Tasneam K El-Damhougy
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University P.O. Box: 11754, Yousef Abbas Str. Nasr City Cairo Egypt
| | - Ahmed Zaher
- Chemistry Department, Faculty of Science, El-Mansoura University Egypt
| | - Mohamed Madani
- College of Science and Humanities, Imam Abdulrahman Bin Faisal University Jubail Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority P.O. Box 29 Nasr City Cairo Egypt
| |
Collapse
|
2
|
Lin JC, Liatsis P, Alexandridis P. Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2059673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jui-Chi Lin
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, UAE
| | - Paschalis Alexandridis
- Department of Biomedical Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| |
Collapse
|
3
|
Debons N, Matsumoto K, Hirota N, Coradin T, Ikoma T, Aimé C. Magnetic Field Alignment, a Perspective in the Engineering of Collagen-Silica Composite Biomaterials. Biomolecules 2021; 11:749. [PMID: 34069793 PMCID: PMC8157240 DOI: 10.3390/biom11050749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/02/2023] Open
Abstract
Major progress in the field of regenerative medicine is expected from the design of artificial scaffolds that mimic both the structural and functional properties of the ECM. The bionanocomposites approach is particularly well fitted to meet this challenge as it can combine ECM-based matrices and colloidal carriers of biological cues that regulate cell behavior. Here we have prepared bionanocomposites under high magnetic field from tilapia fish scale collagen and multifunctional silica nanoparticles (SiNPs). We show that scaffolding cues (collagen), multiple display of signaling peptides (SiNPs) and control over the global structuration (magnetic field) can be combined into a unique bionanocomposite for the engineering of biomaterials with improved cell performances.
Collapse
Affiliation(s)
- Nicolas Debons
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 75005 Paris, France; (N.D.); (T.C.)
| | - Kenta Matsumoto
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550, Japan; (K.M.); (T.I.)
| | - Noriyuki Hirota
- National Institute for Materials Science, Fine Particles Engineering Group, 3-13 Sakura, Tuskuba 305-0003, Japan;
| | - Thibaud Coradin
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 75005 Paris, France; (N.D.); (T.C.)
| | - Toshiyuki Ikoma
- Tokyo Institute of Technology, School of Materials and Chemical Technology, Department of Materials Science and Engineering, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550, Japan; (K.M.); (T.I.)
| | - Carole Aimé
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 75005 Paris, France; (N.D.); (T.C.)
- Ecole Normale Supérieure, CNRS-ENS-SU UMR 8640, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
4
|
Dems D, Freeman R, Riker KD, Coradin T, Stupp SI, Aimé C. Multivalent Clustering of Adhesion Ligands in Nanofiber-Nanoparticle Composites. Acta Biomater 2021; 119:303-311. [PMID: 33171314 DOI: 10.1016/j.actbio.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Because the positioning and clustering of biomolecules within the extracellular matrix dictates cell behaviors, the engineering of biomaterials incorporating bioactive epitopes with spatial organization tunable at the nanoscale is of primary importance. Here we used a highly modular composite approach combining peptide amphiphile (PA) nanofibers and silica nanoparticles, which are both easily functionalized with one or several bioactive signals. We show that the surface of silica nanoparticles allows the clustering of RGDS bioactive signals leading to improved adhesion and spreading of fibroblast cells on composite hydrogels at an epitope concentration much lower than in PA-only based matrices. Most importantly, by combining the two integrin-binding sequences RGDS and PHSRN on nanoparticle surfaces, we improved cell adhesion on the PA nanofiber/particle composite hydrogels, which is attributed to synergistic interactions known to be effective only for peptide intermolecular distance of ca. 5 nm. Such composites with soft and hard nanostructures offer a strategy for the design of advanced scaffolds to display multiple signals and control cell behavior.
Collapse
Affiliation(s)
- Dounia Dems
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Ronit Freeman
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA.; Department of Applied Physical Sciences, University of North Carolina, 121 South Rd, Chapel Hill, North Carolina, 27514, United States
| | - Kyle D Riker
- Department of Applied Physical Sciences, University of North Carolina, 121 South Rd, Chapel Hill, North Carolina, 27514, United States
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris cedex 05, France
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA.; Department of Materials and Science & Engineering; Department of Chemistry; Department of Biomedical Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States; Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, Illinois 60611, United States
| | - Carole Aimé
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75252 Paris cedex 05, France.
| |
Collapse
|
5
|
Bakht SM, Pardo A, Gómez-Florit M, Reis RL, Domingues RMA, Gomes ME. Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements. J Mater Chem B 2021; 9:5025-5038. [PMID: 34014245 DOI: 10.1039/d1tb00717c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of additive manufacturing in the biomedical field has become a hot topic in the last decade owing to its potential to provide personalized solutions for patients. Different bioinks have been designed trying to obtain a unique concoction that addresses all the needs for tissue engineering and drug delivery purposes, among others. Despite the remarkable progress made, the development of suitable bioinks which combine printability, cytocompatibility, and biofunctionality is still a challenge. In this sense, the well-established synthetic and functionalization routes to prepare nanoparticles with different functionalities make them excellent candidates to be combined with polymeric systems in order to generate suitable multi-functional bioinks. In this review, we briefly discuss the most recent advances in the design of functional nanocomposite hydrogels considering their already evaluated or potential use as bioinks. The scientific development over the last few years is reviewed, focusing the discussion on the wide range of functionalities that can be incorporated into 3D bioprinted constructs through the addition of multifunctional nanoparticles in order to increase their regenerative potential in the field of tissue engineering.
Collapse
Affiliation(s)
- Syeda M Bakht
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and Colloids and Polymers Physics Group, Particle Physics Department and Health Research Institute, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
6
|
Coradin T, Wang K, Law T, Trichet L. Type I Collagen-Fibrin Mixed Hydrogels: Preparation, Properties and Biomedical Applications. Gels 2020; 6:E36. [PMID: 33092154 PMCID: PMC7709698 DOI: 10.3390/gels6040036] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Type I collagen and fibrin are two essential proteins in tissue regeneration and have been widely used for the design of biomaterials. While they both form hydrogels via fibrillogenesis, they have distinct biochemical features, structural properties and biological functions which make their combination of high interest. A number of protocols to obtain such mixed gels have been described in the literature that differ in the sequence of mixing/addition of the various reagents. Experimental and modelling studies have suggested that such co-gels consist of an interpenetrated structure where the two proteins networks have local interactions only. Evidences have been accumulated that immobilized cells respond not only to the overall structure of the co-gels but can also exhibit responses specific to each of the proteins. Among the many biomedical applications of such type I collagen-fibrin mixed gels, those requiring the co-culture of two cell types with distinct affinity for these proteins, such as vascularization of tissue engineering constructs, appear particularly promising.
Collapse
Affiliation(s)
- Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France; (K.W.); (T.L.); (L.T.)
| | | | | | | |
Collapse
|
7
|
Debons N, Dems D, Hélary C, Le Grill S, Picaut L, Renaud F, Delsuc N, Schanne-Klein MC, Coradin T, Aimé C. Differentiation of neural-type cells on multi-scale ordered collagen-silica bionanocomposites. Biomater Sci 2020; 8:569-576. [PMID: 31915761 DOI: 10.1039/c9bm01029g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cells respond to biophysical and biochemical signals. We developed a composite filament from collagen and silica particles modified to interact with collagen and/or present a laminin epitope (IKVAV) crucial for cell-matrix adhesion and signal transduction. This combines scaffolding and signaling and shows that local tuning of collagen organization enhances cell differentiation.
Collapse
Affiliation(s)
- Nicolas Debons
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dems D, Rodrigues da Silva J, Hélary C, Wien F, Marchand M, Debons N, Muller L, Chen Y, Schanne-Klein MC, Laberty-Robert C, Krins N, Aimé C. Native Collagen: Electrospinning of Pure, Cross-Linker-Free, Self-Supported Membrane. ACS APPLIED BIO MATERIALS 2020; 3:2948-2957. [DOI: 10.1021/acsabm.0c00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Dounia Dems
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| | - Julien Rodrigues da Silva
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| | - Christophe Hélary
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| | - Frank Wien
- SOLEIL Synchrotron, Saint Aubin 91190, France
| | - Marion Marchand
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris 75006, France
| | - Nicolas Debons
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris 75006, France
| | - Yong Chen
- CNRS-ENS-SU UMR 8640, Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005, France
| | - Marie-Claire Schanne-Klein
- Laboratoire d’Optique et Biosciences (LOB), Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau F-91128, France
| | - Christel Laberty-Robert
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| | - Natacha Krins
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| | - Carole Aimé
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Paris F-75005, France
| |
Collapse
|
9
|
Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2026-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Zhang L, Liu Z, Zha S, Liu G, Zhu W, Xie Q, Li Y, Ying Y, Fu Y. Bio-/Nanoimmobilization Platform Based on Bioinspired Fibrin-Bone@Polydopamine-Shell Adhesive Composites for Biosensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47311-47319. [PMID: 31742992 DOI: 10.1021/acsami.9b15376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by blood coagulation and mussel adhesion, we report novel adhesive fibrin-bone@polydopamine (PDA)-shell composite matrix as highly efficient immobilization platform for biomacromolecules and nanomaterials. Fibrin, as a bioglue, and PDA, as a chemical adhesive, are integrated in a one-pot simultaneous polymerization consisting of biopolymerization of fibrinogen and chemical polymerization of dopamine. Fibrin fibers act as adhesive bones to construct scaffold, while PDA coat on the scaffold to form adhesive shell, generating 3D porous composite matrix with unique bone@shell structure. Two types of enzymes (glucose oxidase and acetylcholinesterase) and Au nanoparticles were adopted as respective model biomolecules and nanomaterials to investigate the immobilization capability of the matrix. The bionanocomposites showed high efficiency in capturing nanoparticles and enzymes, as well as significant mass-transfer and biocatalysis efficiencies. Therefore, the bionanocomposites exhibited significant potential in biosensing of glucose and paraoxon with limits of detection down to 5.2 μM and 4 ppt, respectively. The biological-chemical-combined polymerization strategy and composite platform with high immobilization capacity and mass-transfer efficiency open up a novel way for the preparation of high-performance bionanocomposites for various applications, in particular, biosensing.
Collapse
Affiliation(s)
| | - Ziyu Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China
| | | | | | | | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) , Hunan Normal University , Changsha 410081 , China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Yibin Ying
- Zhejiang A&F University , Hangzhou , Zhejiang 311300 , China
| | | |
Collapse
|
11
|
Shao P, Xu P, Zhang L, Xue Y, Zhao X, Li Z, Li Q. Non-Chloride in Situ Preparation of Nano-Cuprous Oxide and Its Effect on Heat Resistance and Combustion Properties of Calcium Alginate. Polymers (Basel) 2019; 11:polym11111760. [PMID: 31717828 PMCID: PMC6918189 DOI: 10.3390/polym11111760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022] Open
Abstract
With Cu2+ complexes as precursors, nano-cuprous oxide was prepared on a sodium alginate template excluded of Cl- and based on which the calcium alginate/nano-cuprous oxide hybrid materials were prepared by a Ca2+ crosslinking and freeze-drying process. The thermal degradation and combustion behavior of the materials were studied by related characterization techniques using pure calcium alginate as a comparison. The results show that the weight loss rate, heat release rate, peak heat release rate, total heat release rate and specific extinction area of the hybrid materials were remarkably lower than pure calcium alginate, and the flame-retardant performance was significantly improved. The experimental data indicates that nano-cuprous oxide formed a dense protective layer of copper oxide, calcium carbonate and carbon by lowering the initial degradation temperature of the polysaccharide chain during thermal degradation and catalytically dehydrating to char in the combustion process, and thereby can isolate combustible gases, increase carbon residual rates, and notably reduce heat release and smoke evacuation.
Collapse
Affiliation(s)
- Peiyuan Shao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Peng Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China
| | - Yun Xue
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Xihui Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
| | - Zichao Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- College of Life Sciences, Institute of Advanced Cross-Field Science, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.L.); (Q.L.); Tel.: +86-532-8595-0705 (Q.L.)
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; (P.S.); (P.X.); (L.Z.); (Y.X.); (X.Z.)
- Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.L.); (Q.L.); Tel.: +86-532-8595-0705 (Q.L.)
| |
Collapse
|
12
|
Construction of chitosan/ZnO nanocomposite film by in situ precipitation. Int J Biol Macromol 2019; 122:82-87. [DOI: 10.1016/j.ijbiomac.2018.10.084] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/29/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
|
13
|
Shi Y, Hélary C, Coradin T. Exploring the cell-protein-mineral interfaces: Interplay of silica (nano)rods@collagen biocomposites with human dermal fibroblasts. Mater Today Bio 2019; 1:100004. [PMID: 32159139 PMCID: PMC7061546 DOI: 10.1016/j.mtbio.2019.100004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 01/23/2023] Open
Abstract
The benefits of associating biological polymers with nanomaterials within functional bionanocomposite hydrogels have already been evidenced both in vitro and in vivo. However their development as effective biomaterials requires to understand and tune the interactions at the cell-protein-mineral ternary interface. With this purpose, we have studied here the impact of silica (nano)rods on the structural and rheological properties of type I collagen hydrogels and on the behavior of human dermal fibroblasts. High collagen concentrations were beneficial to the material mechanical properties, whereas silica rods could exert a positive effect on these at both low and high content. Electron microscopy evidenced strong bio-mineral interactions, emphasizing the true composite nature of these materials. In contrast, adhesion and proliferation studies showed that, despite these interactions, fibroblasts can discriminate between the protein and the inorganic phases and penetrate the collagen network to limit direct contact with silica. Such a divergence between physicochemical characteristics and biological responses has major implications for the prediction of the in vivo fate of nanocomposite biomaterials.
Collapse
Affiliation(s)
| | | | - Thibaud Coradin
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
14
|
Postnova I, Silant'ev V, Sarin S, Shchipunov Y. Chitosan Hydrogels and Bionanocomposites Formed through the Mineralization and Regulated Charging. CHEM REC 2018; 18:1247-1260. [PMID: 29791784 DOI: 10.1002/tcr.201800049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 01/24/2023]
Abstract
The account presents survey of our systematic studies on chitosan. Only this polysaccharide bears cationic charges, possesses antimicrobial activity and wound healing ability that make it highly appropriate for using in medicine, biomedical engineering, cosmetics, food, packaging. However, its application meets with severe limitation. Chitosan belongs to polysaccharides that do not jellify solutions. Main approaches are based on the chemical modifications and cross-linking, but these treatments impairs therewith the biocompatibility and biological activity of chitosan. We have developed approaches in which monolithic hydrogels are fabricated via the mineralization of polysaccharide by method of green sol-gel chemistry and via the formation of polyelectrolyte complex with oppositely charged counterparts in the regime of its charging by means of regulated acidification. The latter approach was also extended for the preparation of chitosan bionanocomposites and films with nanoparticles.
Collapse
Affiliation(s)
- Irina Postnova
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok, 690022, Russia.,Far-Eastern Federal University, Vladivostok, 690091, Russia
| | - Vladimir Silant'ev
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Sergei Sarin
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok, 690022, Russia
| | - Yury Shchipunov
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok, 690022, Russia
| |
Collapse
|
15
|
Liu Z, Li Z, Zhao X, Zhang L, Li Q. Highly Efficient Flame Retardant Hybrid Composites Based on Calcium Alginate/Nano-Calcium Borate. Polymers (Basel) 2018; 10:E625. [PMID: 30966659 PMCID: PMC6403745 DOI: 10.3390/polym10060625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Hybrid composites with low flammability based on renewable calcium alginate and nano-calcium borate were fabricated using an in situ method through a simple, eco-friendly vacuum drying process. The composites were characterized by X-ray diffractometry (XRD), Fourier transform infrared spectrum (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The combustion behavior and flammability of the composites were assessed by using the limiting oxygen index (LOI) and cone calorimetry (CONE) tests. The composites showed excellent thermal stability and achieved nonflammability with an LOI higher than 60. Pyrolysis was investigated using pyrolysis⁻gas chromatography⁻mass spectrometry (Py-GC-MS) and the results showed that fewer sorts of cracking products were produced from the hybrid composites compared with the calcium alginate. A possible thermal degradation mechanism of composites was proposed based on the experimental data. The combined results indicate that the calcium borate had a nano-effect, accumulating more freely in the hybrid composites and contributing significantly to both the solid phase and gas phase, resulting in an efficient improvement in the flame retardancy of the composites. Our study provides a novel material with promising potentiality for flame retardant applications.
Collapse
Affiliation(s)
- Zhenhui Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zichao Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China;.
| | - Xihui Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Cao L, Wu X, Wang Q, Wang J. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:440-446. [DOI: 10.1016/j.jphotobiol.2017.10.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/15/2017] [Accepted: 10/26/2017] [Indexed: 01/26/2023]
|
17
|
Bhattacharya S, Nandi S, Jelinek R. Carbon-dot–hydrogel for enzyme-mediated bacterial detection. RSC Adv 2017. [DOI: 10.1039/c6ra25148j] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A hybrid carbon-dot (C-dot)–hydrogel matrix was constructed and employed for detection of bacteria.
Collapse
Affiliation(s)
| | - Sukhendu Nandi
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer Sheva 84105
- Israel
| | - Raz Jelinek
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer Sheva 84105
- Israel
- Ilse Katz Institute for Nanotechnology
| |
Collapse
|
18
|
Pawelec KM, Best SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B 2016; 4:6484-6496. [PMID: 27928505 PMCID: PMC5123637 DOI: 10.1039/c6tb00807k] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/20/2016] [Indexed: 12/28/2022]
Abstract
The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential.
Collapse
Affiliation(s)
- K M Pawelec
- University of Michigan , 2350 Hayward Ave , Ann Arbor , MI 48109 , USA
| | - S M Best
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| | - R E Cameron
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| |
Collapse
|
19
|
Jiang D, Zhang Y, Zhang F, Liu Z, Han J, Wu X. Antimicrobial and antifouling nanocomposite hydrogels containing polythioether dendron: high-loading silver nanoparticles and controlled particle release. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3967-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Soulé S, Bulteau AL, Faucher S, Haye B, Aimé C, Allouche J, Dupin JC, Lespes G, Coradin T, Martinez H. Design and Cellular Fate of Bioinspired Au-Ag Nanoshells@Hybrid Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10073-10082. [PMID: 27609666 DOI: 10.1021/acs.langmuir.6b02810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silica-coated gold-silver alloy nanoshells were obtained via a bioinspired approach using gelatin and poly-l-lysine (PLL) as biotemplates for the interfacial condensation of sodium silicate solutions. X-ray photoelectron spectroscopy was used as an efficient tool for the in-depth and complete characterization of the chemical features of nanoparticles during the whole synthetic process. Cytotoxicity assays using HaCaT cells evidenced the detrimental effect of the gelatin nanocoating and significant induction of late apoptosis after silicification. In contrast, PLL-modified nanoparticles had less biological impact that was further improved by the silica layer, and uptake rates of up to 50% of those of the initial particles could be achieved. These results are discussed considering the effect of nanosurface confinement of the biopolymers on their chemical and biological reactivity.
Collapse
Affiliation(s)
- Samantha Soulé
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Anne-Laure Bulteau
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Stéphane Faucher
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Bernard Haye
- Sorbonne Universités, UPMC Univ Paris 06, CNRS , Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Carole Aimé
- Sorbonne Universités, UPMC Univ Paris 06, CNRS , Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Joachim Allouche
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Jean-Charles Dupin
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Gaëtane Lespes
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Laboratoire de Chimie Analytique Bio-inorganique et Environnement (LCABIE), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| | - Thibaud Coradin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS , Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Hervé Martinez
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (IPREM)-UMR CNRS/UPPA 5254, Equipe de Chimie Physique (ECP), Université de Pau et des Pays de l'Adour (UPPA), Technopôle Hélioparc Pau Pyrénées , 2, Avenue du Président Pierre Angot, 64053 Pau Cedex 09, France
| |
Collapse
|
21
|
García-Astrain C, Miljevic M, Ahmed I, Martin L, Eceiza A, Fruk L, Corcuera MA, Gabilondo N. Designing hydrogel nanocomposites using TiO2 as clickable cross-linkers. JOURNAL OF MATERIALS SCIENCE 2016; 51:5073-5081. [DOI: 10.1007/s10853-016-9810-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Singh V, Srivastava P, Singh A, Singh D, Malviya T. Polysaccharide-Silica Hybrids: Design and Applications. POLYM REV 2016. [DOI: 10.1080/15583724.2015.1090449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Sarin S, Kolesnikova S, Postnova I, Ha CS, Shchipunov Y. Bionanocomposite from self-assembled building blocks of nacre-like crystalline polymorph of chitosan with clay nanoplatelets. RSC Adv 2016. [DOI: 10.1039/c6ra02996e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Films containing a new crystalline polymorph are prepared by a one-pot technique combining the formation of building blocks of clay nanoplatelets with chitosan macromolecules and their evaporation-induced self-assembly.
Collapse
Affiliation(s)
- Sergey Sarin
- Institute of Chemistry
- Far East Department
- Russian Academy of Sciences
- Vladivostok
- Russia
| | - Sophia Kolesnikova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry
- Far East Department
- Russian Academy of Sciences
- Vladivostok
- Russia
| | - Irina Postnova
- Far Eastern Federal University
- School of Natural Sciences
- Vladivostok
- 690090 Russia
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering
- Pusan National University
- 609-735 Busan
- Korea
| | - Yury Shchipunov
- Institute of Chemistry
- Far East Department
- Russian Academy of Sciences
- Vladivostok
- Russia
| |
Collapse
|
24
|
Raveendran RL, Devaki SJ, Nampoothiri KM. Facile strategy for the development of polyglucopyranose–silver hydrogel/films for antimicrobial applications. RSC Adv 2016. [DOI: 10.1039/c6ra21632c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of silver nanoparticles entrapped hydrogels for antimicrobial applications.
Collapse
Affiliation(s)
- Reshma Lali Raveendran
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram
- India
| | - Sudha J. Devaki
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram
- India
| | - K. Madhavan Nampoothiri
- Biotechnology Division
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST)
- Thiruvananthapuram
- India
| |
Collapse
|
25
|
Affiliation(s)
- Marcelo A da Silva
- MNP, School of Physics and Astronomy; University of Leeds; 8.61 E.C. Stoner Building Leeds LS2 9JT UK
| | - Cécile A Dreiss
- King's College London, Institute of Pharmaceutical Sciences; 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
26
|
Voisin H, Aimé C, Coradin T. Understanding and Tuning Bioinorganic Interfaces for the Design of Bionanocomposites. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
García-Astrain C, Chen C, Burón M, Palomares T, Eceiza A, Fruk L, Corcuera MÁ, Gabilondo N. Biocompatible Hydrogel Nanocomposite with Covalently Embedded Silver Nanoparticles. Biomacromolecules 2015; 16:1301-10. [DOI: 10.1021/acs.biomac.5b00101] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clara García-Astrain
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| | - Cheng Chen
- DGF-Centre
for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wofgang Gaede Str. 1a, 76131 Karlsruhe, Germany
| | - María Burón
- Faculty
of Medicine and Dentistry, University of the Basque Country, Barrio
Sarriena s/n, 48940 Leioa, Spain
| | - Teodoro Palomares
- Faculty
of Medicine and Dentistry, University of the Basque Country, Barrio
Sarriena s/n, 48940 Leioa, Spain
| | - Arantxa Eceiza
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| | - Ljiljana Fruk
- DGF-Centre
for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wofgang Gaede Str. 1a, 76131 Karlsruhe, Germany
| | - M. Ángeles Corcuera
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| | - Nagore Gabilondo
- Materials
+ Technologies Group, Department of Chemical and Environmental Engineering,
Polytechnic School, University of the Basque Country, Plaza Europa
1, 20018 San Sebastián, Spain
| |
Collapse
|
28
|
García-Astrain C, Ahmed I, Kendziora D, Guaresti O, Eceiza A, Fruk L, Corcuera MA, Gabilondo N. Effect of maleimide-functionalized gold nanoparticles on hybrid biohydrogels properties. RSC Adv 2015. [DOI: 10.1039/c5ra06806a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nanoparticle cross-linking. Nanocomposite hydrogels with remarkable viscoelastic properties are prepared using maleimide coated gold nanoparticles as co cross-linkers for furan modified gelatin.
Collapse
Affiliation(s)
- C. García-Astrain
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - I. Ahmed
- DFG-Centre for Functional Nanostrucutres (CFN)
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - D. Kendziora
- DFG-Centre for Functional Nanostrucutres (CFN)
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - O. Guaresti
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - A. Eceiza
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - L. Fruk
- DFG-Centre for Functional Nanostrucutres (CFN)
- Karlsruhe Institute of Technology
- 76131 Karlsruhe
- Germany
| | - M. A. Corcuera
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| | - N. Gabilondo
- ‘Materials + Technologies’ Group
- Dept. of Chemical and Environmental Engineering
- Polytechnic School
- University of the Basque Country
- 20018 Donostia-San Sebastián
| |
Collapse
|
29
|
Lalitha K, Prasad YS, Sridharan V, Maheswari CU, John G, Nagarajan S. A renewable resource-derived thixotropic self-assembled supramolecular gel: magnetic stimuli responsive and real-time self-healing behaviour. RSC Adv 2015. [DOI: 10.1039/c5ra14744a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple fluorescent, self-healing and magnetic responsive molecular gel was developed from a renewable resource.
Collapse
Affiliation(s)
- Krishnamoorthy Lalitha
- Organic Synthesis Group
- Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur - 613401
| | - Y. Siva Prasad
- Organic Synthesis Group
- Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur - 613401
| | - Vellaisamy Sridharan
- Organic Synthesis Group
- Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur - 613401
| | - C. Uma Maheswari
- Organic Synthesis Group
- Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur - 613401
| | - George John
- Department of Chemistry
- The City College of New York
- New York
- USA
| | - Subbiah Nagarajan
- Organic Synthesis Group
- Department of Chemistry & The Centre for Nanotechnology and Advanced Biomaterials
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur - 613401
| |
Collapse
|
30
|
Preiss LC, Landfester K, Muñoz-Espí R. Biopolymer colloids for controlling and templating inorganic synthesis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2129-2138. [PMID: 25551041 PMCID: PMC4273287 DOI: 10.3762/bjnano.5.222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/29/2014] [Indexed: 05/31/2023]
Abstract
Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i) biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii) biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core-shell structures; and (iii) so-called "soft templates", which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers.
Collapse
Affiliation(s)
- Laura C Preiss
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rafael Muñoz-Espí
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
31
|
Bancelin S, Decencière E, Machairas V, Albert C, Coradin T, Schanne-Klein MC, Aimé C. Fibrillogenesis from nanosurfaces: multiphoton imaging and stereological analysis of collagen 3D self-assembly dynamics. SOFT MATTER 2014; 10:6651-6657. [PMID: 25058449 DOI: 10.1039/c4sm00819g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The assembly of proteins into fibrillar structures is an important process that concerns different biological contexts, including molecular medicine and functional biomaterials. Engineering of hybrid biomaterials can advantageously provide synergetic interactions of the biopolymers with an inorganic component to ensure specific supramolecular organization and dynamics. To this aim, we designed hybrid systems associating collagen and surface-functionalized silica particles and we built a new strategy to investigate fibrillogenesis processes in such multicomponents systems, working at the crossroads of chemistry, physics and mathematics. The self-assembly process was investigated by bimodal multiphoton imaging coupling second harmonic generation (SHG) and 2 photon excited fluorescence (2PEF). The in-depth spatial characterization of the system was further achieved using the three-dimensional analysis of the SHG/2PEF data via mathematical morphology processing. Quantitation of collagen distribution around particles offers strong evidence that the chemically induced confinement of the protein on the silica nanosurfaces has a key influence on the spatial extension of fibrillogenesis. This new approach is unique in the information it can provide on 3D dynamic hybrid systems and may be extended to other associations of fibrillar molecules with optically responsive nano-objects.
Collapse
Affiliation(s)
- Stéphane Bancelin
- Laboratoire d'Optique et Biosciences, CNRS, Ecole Polytechnique, Inserm U696, 91128 Palaiseau, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Effect of carbon nanotube functionalization on the structure and properties of poly(3-hydroxybutyrate)/MWCNTs biocomposites. Macromol Res 2014. [DOI: 10.1007/s13233-014-2141-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
D’Amico D, Fasce LA, Hoppe CE, Arturo López-Quintela M, Cyras VP. Superparamagnetic nanocomposites obtained by dispersion of ultrafine magnetic iron oxide nanoparticles in poly(3-hydroxybutyrate). Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Gonzalez JS, Hoppe CE, Mendoza Zélis P, Arciniegas L, Pasquevich GA, Sánchez FH, Alvarez VA. Simple and Efficient Procedure for the Synthesis of Ferrogels Based on Physically Cross-Linked PVA. Ind Eng Chem Res 2013. [DOI: 10.1021/ie402652j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jimena S. Gonzalez
- Institute
of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Avenida J. B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Cristina E. Hoppe
- Institute
of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Avenida J. B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Pedro Mendoza Zélis
- Physics
Department, Physics Institute of La Plata (IFLP-FCE), University of La Plata and National Research Council (CONICET), CC 67, 1900 La
Plata, Argentina
| | - Lorena Arciniegas
- Physics
Department, Physics Institute of La Plata (IFLP-FCE), University of La Plata and National Research Council (CONICET), CC 67, 1900 La
Plata, Argentina
| | - Gustavo A. Pasquevich
- Physics
Department, Physics Institute of La Plata (IFLP-FCE), University of La Plata and National Research Council (CONICET), CC 67, 1900 La
Plata, Argentina
| | - Francisco H. Sánchez
- Physics
Department, Physics Institute of La Plata (IFLP-FCE), University of La Plata and National Research Council (CONICET), CC 67, 1900 La
Plata, Argentina
| | - Vera A. Alvarez
- Institute
of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), Avenida J. B. Justo 4302, 7600 Mar del Plata, Argentina
| |
Collapse
|
35
|
|
36
|
A modifier that enables the easy dispersion of alkyl-coated nanoparticles in an epoxy network. Colloid Polym Sci 2013. [DOI: 10.1007/s00396-013-2902-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Heinemann S, Coradin T, Desimone MF. Bio-inspired silica–collagen materials: applications and perspectives in the medical field. Biomater Sci 2013; 1:688-702. [DOI: 10.1039/c3bm00014a] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Wu J, Coradin T, Aimé C. Reversible bioresponsive aptamer-based nanocomposites: ATP binding and removal from DNA-grafted silica nanoparticles. J Mater Chem B 2013; 1:5353-5359. [DOI: 10.1039/c3tb20499e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Schnepp Z. Biopolymers as a Flexible Resource for Nanochemistry. Angew Chem Int Ed Engl 2012; 52:1096-108. [DOI: 10.1002/anie.201206943] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Indexed: 11/06/2022]
|
40
|
|
41
|
|
42
|
Aimé C, Mosser G, Pembouong G, Bouteiller L, Coradin T. Controlling the nano-bio interface to build collagen-silica self-assembled networks. NANOSCALE 2012; 4:7127-7134. [PMID: 23070474 DOI: 10.1039/c2nr31901b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bio-hybrid networks are designed based on the self-assembly of surface-engineered collagen-silica nanoparticles. Collagen triple helices can be confined on the surface of sulfonate-modified silica particles in a controlled manner. This gives rise to hybrid building blocks with well-defined diameters and surface potentials. Taking advantage of the self-assembling properties of collagen, collagen-silica networks are further built-up in solution. The structural and specific recognition properties of the collagen fibrils are well-preserved within the hybrid assembly. A combination of calorimetry, dynamic light scattering, zetametry and microscopy studies indicates that network formation occurs via a surface-mediated mechanism where pre-organization of the protein chains on the particle surface favors the fibrillogenesis process. These results enlighten the importance of the nano-bio interface on the formation and properties of self-assembled bionanocomposites.
Collapse
Affiliation(s)
- Carole Aimé
- UPMC Univ Paris 06, CNRS, Chimie de la Matière Condensée de Paris Collège de France, 11 place Marcelin Berthelot, F-75005 Paris, France.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Bionanocomposites are a novel class of nanosized materials. They contain the constituent of biological origin and particles with at least one dimension in the range of 1–100 nm. There are similarities with nanocomposites but also fundamental differences in the methods of preparation, properties, functionalities, biodegradability, biocompatibility, and applications. The article includes two parts. Bionanocomposite definition and classification along with nanoparticles, biomaterials, and methods of their preparation are initially reviewed. Then, novel approaches developed by our team are presented. The first approach concerns the preparation of bionanocomposites from chitosan and nanoparticles. It is based on the regulated charging of polysaccharide by the gradual shift of solution pH. When charges appear, the biomacromolecules come into the electrostatic interactions with negatively charged nanoparticles that cause the jellification of solutions. It is also applied to form films. They have a nacre-like structure from stacked planar nanoparticles separated by aligned biomacromolecules. The second approach deals with the biomimicking mineralization of biopolymers by using a novel silica precursor. Its advantage over the current sol-gel processing is in the compatibility and regulation of processes and structure of generated silica. Another example of the mineralization is presented by titania. Syntheses are performed in anhydrous ethylene glycol. Processes and structure of bionanocomposites are regulated by water that is added in an amount to only hydrate functional groups in the carbohydrate macromolecule.
Collapse
Affiliation(s)
- Yury Shchipunov
- 1Institute of Chemistry, Far East Department, Russian Academy of Sciences, 690022 Vladivostok, Russia; The WCU Center for Synthetic Polymer Bioconjugate Hybrid Materials, Department of Polymer Science and Engineering, Pusan National University, San 30, Jangjun Dong, Geumjung Gu, Busan, 609-735 Korea
| |
Collapse
|
44
|
Blondeau M, Coradin T. Living materials from sol–gel chemistry: current challenges and perspectives. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33647b] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|