1
|
Mokhtarinia K, Rezvanian P, Masaeli E. Sustainable hydrogel-based cell therapy. SUSTAINABLE HYDROGELS 2023:443-470. [DOI: 10.1016/b978-0-323-91753-7.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Soroushzadeh S, Karamali F, Masaeli E, Atefi A, Nasr Esfahani MH. Scaffold free retinal pigment epithelium sheet engineering using modified alginate-RGD hydrogel. J Biosci Bioeng 2022; 133:579-586. [PMID: 35339352 DOI: 10.1016/j.jbiosc.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Tissue-specific extracellular matrix (ECM) plays a critical role in cell survival and homeostasis, which are particularly essential for directing differentiation of different complex tissues such as retina. However, ECM maintenance should be considered to design an effective therapeutic strategy for retina regeneration. To achieve this, cell sheet engineering has emerged as a growing approach to closely reconstruct basal membrane of cells through a scaffold-free manner. Several irreversible sight-threatening diseases are characterized by the dysfunction and lose of retinal pigment epithelium (RPE), leading to vision loss and eventually total blindness in patients. According to impressive developments in achievement of RPE from human embryonic stem cells (hESCs), we obtained RPE cells without any extrinsic factors in a co-culture system, and cultured them on a temporary alginate hydrogel substrate. Subsequently, Arg-Gly-Asp (RGD) peptide was superficially immobilized on the upper layer of hydrogel to improve cell attachment before harvesting sheet layer. RPE cell sheet layer was released by treating pre-seeded hydrogels with sodium citrate as a calcium chelating agent and characterized in both in vitro and in vivo models. RPE sheets formed tight junction and expressed high levels of retina structural markers such as ZO-1, Bestrophin and Collagen type IV. One week after in vivo transplantation of RPE sheet, cells survived in the subretinal space, indicating that our harvesting method is non-invasive. To sum up, we introduced a unique scaffold-free method for RPE cell sheet engineering, which can find potential use for future therapeutic purposes.
Collapse
Affiliation(s)
- Sareh Soroushzadeh
- ACECR Institute of Higher Education (Isfahan Branch), P.O. Box: 84175443, Iran; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Atefeh Atefi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, P.O. Box 8159358686, Iran.
| |
Collapse
|
3
|
Qu Y, Lu K, Zheng Y, Huang C, Wang G, Zhang Y, Yu Q. Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact Mater 2022; 8:449-477. [PMID: 34541413 PMCID: PMC8429475 DOI: 10.1016/j.bioactmat.2021.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of cell behaviors and even cell fates is of great significance in diverse biomedical applications such as cancer treatment, cell-based therapy, and tissue engineering. During the past decades, diverse methods have been developed to regulate cell behaviors such as applying external stimuli, delivering exogenous molecules into cell interior and changing the physicochemical properties of the substrates where cells adhere. Photothermal scaffolds/surfaces refer to a kind of materials embedded or coated with photothermal agents that can absorb light with proper wavelength (usually in near infrared region) and convert light energy to heat; the generated heat shows great potential for regulation of cell behaviors in different ways. In the current review, we summarize the recent research progress, especially over the past decade, of using photothermal scaffolds/surfaces to regulate cell behaviors, which could be further categorized into three types: (i) killing the tumor cells via hyperthermia or thermal ablation, (ii) engineering cells by intracellular delivery of exogenous molecules via photothermal poration of cell membranes, and (iii) releasing a single cell or an intact cell sheet via modulation of surface physicochemical properties in response to heat. In the end, challenges and perspectives in these areas are commented.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guannan Wang
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
4
|
Firoozi M, Entezam M, Masaeli E, Ejeian F, Nasr‐Esfahani MH. Physical modification approaches to enhance cell supporting potential of poly (vinyl alcohol)‐based hydrogels. J Appl Polym Sci 2022. [DOI: 10.1002/app.51485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mahtab Firoozi
- Department of Chemical and Polymer Engineering, Faculty of Engineering Yazd University Yazd Iran
- Department of Animal Biotechnology Cell Science Research Center, Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Mehdi Entezam
- Department of Chemical and Polymer Engineering, Faculty of Engineering Yazd University Yazd Iran
| | - Elahe Masaeli
- Department of Animal Biotechnology Cell Science Research Center, Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology Cell Science Research Center, Royan Institute for Biotechnology, ACECR Isfahan Iran
| | | |
Collapse
|
5
|
Nair DSR, Seiler MJ, Patel KH, Thomas V, Camarillo JCM, Humayun MS, Thomas BB. Tissue Engineering Strategies for Retina Regeneration. APPLIED SCIENCES-BASEL 2021; 11. [PMID: 35251703 PMCID: PMC8896578 DOI: 10.3390/app11052154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The retina is a complex and fragile photosensitive part of the central nervous system which is prone to degenerative diseases leading to permanent vision loss. No proven treatment strategies exist to treat or reverse the degenerative conditions. Recent investigations demonstrate that cell transplantation therapies to replace the dysfunctional retinal pigment epithelial (RPE) cells and or the degenerating photoreceptors (PRs) are viable options to restore vision. Pluripotent stem cells, retinal progenitor cells, and somatic stem cells are the main cell sources used for cell transplantation therapies. The success of retinal transplantation based on cell suspension injection is hindered by limited cell survival and lack of cellular integration. Recent advances in material science helped to develop strategies to grow cells as intact monolayers or as sheets on biomaterial scaffolds for transplantation into the eyes. Such implants are found to be more promising than the bolus injection approach. Tissue engineering techniques are specifically designed to construct biodegradable or non-degradable polymer scaffolds to grow cells as a monolayer and construct implantable grafts. The engineered cell construct along with the extracellular matrix formed, can hold the cells in place to enable easy survival, better integration, and improved visual function. This article reviews the advances in the use of scaffolds for transplantation studies in animal models and their application in current clinical trials.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Magdalene J. Seiler
- Departments of Physical Medicine & Rehabilitation, Ophthalmology, Anatomy & Neurobiology, Sue and Bill Gross Stem Cell Research Centre, University of California, Irvine, CA 92697-1705, USA
| | - Kahini H. Patel
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Vinoy Thomas
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Juan Carlos Martinez Camarillo
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|
6
|
Zeng W, Huang Y, Xia A, Liao Q, Chen K, Zhu X, Zhu X. Thermoresponsive Surfaces Grafted by Shrinkable Hydrogel Poly( N-isopropylacrylamide) for Controlling Microalgae Cells Adhesion during Biofilm Cultivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1178-1189. [PMID: 33403849 DOI: 10.1021/acs.est.0c03084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microalgae is a promising candidate for reducing greenhouse gas and producing renewable biofuels. For microalgae biofilm cultivation, a strong adhesion ability of microalgae cells onto the surface is a prerequisite to resist the fluid shear stress, while strong adhesion is not of benefit to the biofilm harvesting process. To solve this dilemma, a thermoresponsive surface (TMRS) with lower critical solution temperature of 33 °C was made by grafting N-isopropylacrylamide onto a silicate glass slide. The wettability of the TMRS changed from hydrophilic (contact angle of 59.4°) to hydrophobic (contact angle of 91.6°) when the temperature rose from 15 to 35 °C, resulting in the increase of adhesion energy of the TMRS to Chlorella vulgaris cells by 135.6%. The experiments showed that the cells were more likely to attach onto the TMRS at the higher temperature of 35 °C owing to the surface microstructures generated by the hydrogel layer shrinkage, which is similar in size to the microalgae cells. And the cell coverage rate on TMRS increased by 32% compared to the original glass surface. Conversely, the cells separate easily from the TMRS at a lower temperature of 15 °C, and the cell adhesion density was reduced by 19% due to hydrogel layer swelling to a relatively flat surface.
Collapse
Affiliation(s)
- Weida Zeng
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yun Huang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Ao Xia
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Qiang Liao
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Keming Chen
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xun Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xianqing Zhu
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400044, P. R. China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
7
|
Nguyen T, Urrutia-Cabrera D, Liou RHC, Luu CD, Guymer R, Wong RCB. New Technologies to Study Functional Genomics of Age-Related Macular Degeneration. Front Cell Dev Biol 2021; 8:604220. [PMID: 33505962 PMCID: PMC7829507 DOI: 10.3389/fcell.2020.604220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible vision loss in people over 50 years old in developed countries. Currently, we still lack a comprehensive understanding of the genetic factors contributing to AMD, which is critical to identify effective therapeutic targets to improve treatment outcomes for AMD patients. Here we discuss the latest technologies that can facilitate the identification and functional study of putative genes in AMD pathology. We review improved genomic methods to identify novel AMD genes, advances in single cell transcriptomics to profile gene expression in specific retinal cell types, and summarize recent development of in vitro models for studying AMD using induced pluripotent stem cells, organoids and biomaterials, as well as new molecular technologies using CRISPR/Cas that could facilitate functional studies of AMD-associated genes.
Collapse
Affiliation(s)
- Tu Nguyen
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Chi D Luu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Malekzadeh E, Zhang Newby BM. Thermoresponsive Poly(vinyl methyl ether) (PVME) Retained by 3-Aminopropyltriethoxysilane (APTES) Network. ACS Biomater Sci Eng 2020; 6:7051-7060. [PMID: 33320596 DOI: 10.1021/acsbiomaterials.0c01376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermoresponsive polymers (TRP)s have been widely used for various applications from controlling membrane fouling in separation to cell/cell sheet harvesting in regenerative medicine. While poly(N-isopropylacrylamide) (pNIPAAm) is the most commonly used TRP, less expensive and easily processed poly(vinyl methyl ether) (PVME) also shows a hydrophilic to hydrophobic transition at 32-35 °C, near physiological conditions. In this study, we investigated the processing conditions for retaining a stable layer of PVME thin film on silica surfaces via entrapment in a 3-aminopropyltriethoxysilane (APTES) network. In addition, the thermoresponsive behaviors (TRB) of the retained PVME films were evaluated. Blend thin films of PVME/APTES with 90:10 and 50:50 mass ratios were spin-coated from their solutions in ethanol under ambient conditions and then annealed in a vacuum oven at 40, 60, 80, or 120 °C for 1, 2, or 3 days. The annealed films were then thoroughly rinsed with room temperature water and then soaked in water for 3 days. Our results showed that annealing at a temperature of ≥40 °C was necessary for retaining a PVME film on the surface. The higher annealing temperature led to greater film retention, probably due to the formation of a tighter APTES network. Regardless of processing conditions, all retained PVME films showed TRB, determined by water contact angles below and above the transition temperature of PVME. Additionally, particle attachment and protein adsorption on retained PVME films showed lower attachment or adsorption at room temperature as compared to that at 37 °C, and a greater difference was observed for the 90:10 blend where more PVME was consisted. Furthermore, human mesenchymal stem cells attached and proliferated on the retained PVME surfaces at 37 °C and rapidly detached at room temperature. These results illustrated the potential applications of PVME surfaces as thermoresponsive supports for low-fouling applications and noninvasive cell harvesting.
Collapse
Affiliation(s)
- Elham Malekzadeh
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 200 East Buchtel Commons, Akron, Ohio 44325-3906, United States
| | - Bi-Min Zhang Newby
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, 200 East Buchtel Commons, Akron, Ohio 44325-3906, United States
| |
Collapse
|
9
|
Mokhtarinia K, Masaeli E. Transiently thermally responsive surfaces: Concepts for cell sheet engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Masaeli E, Forster V, Picaud S, Karamali F, Nasr-Esfahani MH, Marquette C. Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication 2020; 12:025006. [PMID: 31578006 DOI: 10.1088/1758-5090/ab4a20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mammalian retina contains multiple cellular layers, each carrying out a specific task. Such a controlled organization should be considered as a crucial factor for designing retinal therapies. The maintenance of retinal layered complexity through the use of scaffold-free techniques has recently emerged as a promising approach for clinical ocular tissue engineering. In an attempt to fabricate such layered retinal model, we are proposing herein a unique inkjet bioprinting system applied to the deposition of a photoreceptor cells (PRs) layer on top of a bioprinted retinal pigment epithelium (RPE), in a precise arrangement and without any carrier material. The results showed that, after bioprinting, both RPE and PRs were well positioned in a layered structure and expressed their structural markers, which was further demonstrated by ZO1, MITF, rhodopsin, opsin B, opsin R/G and PNA immunostaining, three days after bioprinting. We also showed that considerable amounts of human vascular endothelial growth factors (hVEGF) were released from the RPE printed layer, which confirmed the formation of a functional RPE monolayer after bioprinting. Microstructures of bioprinted cells as well as phagocytosis of photoreceptor outer segments by apical RPE microvilli were finally established through transmission electron microscopy (TEM) imaging. In summary, using this carrier-free bioprinting method, it was possible to develop a reasonable in vitro retina model for studying some sight-threatening diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. 3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bat. Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
11
|
Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering - a review. J Mater Chem B 2020; 8:607-628. [PMID: 31939978 DOI: 10.1039/c9tb02052g] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers hold great potential in the biomedical field, since they enable the fabrication of cell sheets, in situ drug delivery and 3D-printing under physiological conditions. In this review we provide an overview of several thermoresponsive polymers and their application, with focus on poly(N-isopropylacrylamide)-surfaces for cell sheet engineering. Basic knowledge of important processes like protein adsorption on surfaces and cell adhesion is provided. For different thermoresponsive polymers, namely PNIPAm, Pluronics, elastin-like polypeptides (ELP) and poly(N-vinylcaprolactam) (PNVCL), synthesis and basic chemical and physical properties have been described and the mechanism of their thermoresponsive behavior highlighted. Fabrication methods of thermoresponsive surfaces have been discussed, focusing on PNIPAm, and describing several methods in detail. The latter part of this review is dedicated to the application of the thermoresponsive polymers and with regard to cell sheet engineering, the process of temperature-dependent cell sheet detachment is explained. We provide insight into several applications of PNIPAm surfaces in cell sheet engineering. For Pluronics, ELP and PNVCL we show their application in the field of drug delivery and tissue engineering. We conclude, that research of thermoresponsive polymers has made big progress in recent years, especially for PNIPAm since the 1990s. However, manifold research possibilities, e.g. in surface fabrication and 3D-printing and further translational applications are conceivable in near future.
Collapse
Affiliation(s)
- Falko Doberenz
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kui Zeng
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kai Zhang
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany. and Interdisciplinary Center of Material Science, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale), Germany and Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 1, 19991, Trubetskaya st. 8, Moscow, Russian Federation
| |
Collapse
|