1
|
Grube P, Nichols H, Ferrell S, Gilham D, Gaylor A, Dunkelberger K. Implementing services for pediatric cystic fibrosis treatment in a community hospital. Am J Health Syst Pharm 2024; 81:219-225. [PMID: 37982450 DOI: 10.1093/ajhp/zxad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 11/21/2023] Open
Abstract
PURPOSE Our community hospital was recently charged with providing care for pediatric people with cystic fibrosis (PwCF). Pediatric PwCF generally need a higher level of care than is required by other pediatric patients cared for at our institution. This project aimed to prepare the pharmacy department to care for this specialized population safely and efficiently. SUMMARY The implementation process was divided into 3 phases to accomplish the larger purpose. These phases were as follows: (1) creating order sets and protocols; (2) providing staff and clinical pharmacists with training and resources; and (3) creating and managing clinical decision support. The central aspect of preparing inpatient pharmacy staff to care for PwCF was the development of antibiotic dosing protocols and order sets comprised of intravenous and oral antibiotics as well as aminoglycoside and vancomycin pharmacokinetic guides. A pharmacokinetic calculator was created to assist with aminoglycoside dosing and monitoring. During phase 2, pharmacist education modules were created to provide guidance on cystic fibrosis and medications commonly used to treat it. As the newly designed protocols were enacted, education was provided on how to use them. Phase 3 occurred concurrently, as clinical decision support was vital to completing phases 1 and 2. CONCLUSION The phased approach was imperative to the project's success and kept individual components on track. All parts were completed in just over one year.
Collapse
Affiliation(s)
- Paige Grube
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Sarah Ferrell
- Parkview Regional Medical Center, Fort Wayne, IN, USA
| | - Denise Gilham
- Pediatric Pulmonary, CF, and Abnormal Newborn Screen Program, Parkview Regional Medical Center, Fort Wayne, IN, USA
| | | | | |
Collapse
|
2
|
Lloyd EC, Cogen JD, Maples H, Bell SC, Saiman L. Antimicrobial Stewardship in Cystic Fibrosis. J Pediatric Infect Dis Soc 2022; 11:S53-S61. [PMID: 36069899 DOI: 10.1093/jpids/piac071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
The chronic airway infection and inflammation characteristic of cystic fibrosis (CF) ultimately leads to progressive lung disease, the primary cause of death in persons with CF (pwCF). Despite many recent advances in CF clinical care, efforts to preserve lung function in many pwCF still necessitate frequent antimicrobial use. Incorporating antimicrobial stewardship (AMS) principles into management of pulmonary exacerbations (PEx) would facilitate development of best practices for antimicrobial utilization at CF care centers. However, AMS can be challenging in CF given the unique aspects of chronic, polymicrobial infection in the CF airways, lack of evidence-based guidelines for managing PEx, limited utility for antimicrobial susceptibility testing, and increased frequency of adverse drug events in pwCF. This article describes current evidence-based antimicrobial treatment strategies for pwCF, highlights the potential for AMS to beneficially impact CF care, and provides practical strategies for integrating AMS programs into the management of PEx in pwCF.
Collapse
Affiliation(s)
- Elizabeth C Lloyd
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jonathan D Cogen
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington, USA
| | - Holly Maples
- Department of Pharmacy Practice, University of Arkansas for Medical Sciences College of Pharmacy, Little Rock, Arkansas, USA.,Quality and Safety Division, Arkansas Children's, Little Rock, Arkansas, USA
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia.,Children's Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,Translational Research Institute, Brisbane, Queensland, Australia
| | - Lisa Saiman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA.,Department of Infection Prevention and Control, NewYork-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
3
|
Grant JJ, McDade EJ, Zobell JT, Young DC. The indispensable role of pharmacy services and medication therapy management in cystic fibrosis. Pediatr Pulmonol 2022; 57 Suppl 1:S17-S39. [PMID: 34347382 DOI: 10.1002/ppul.25613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 11/06/2022]
Abstract
Care for people with cystic fibrosis (PWCF) is highly complex and requires a multidisciplinary approach where the pharmacist plays a vital role. The purpose of this manuscript is to serve as a guideline for pharmacists and pharmacy technicians who provide care for PWCF by providing background and current recommendations for the use of cystic fibrosis (CF)-specific medications in both the acute and ambulatory care settings. The article explores current literature surrounding the role of pharmacists and pharmacy technicians, proven pharmacy models to emulate, and pharmacokinetic idiosyncrasies unique to the CF population while also identifying areas of future research. Clinical recommendations for the use of CF-specific medications are broken down by organ system including mechanism of action, adverse events, dosages, and monitoring parameters. The article also includes quick reference tables essential to the acute and chronic medication therapy management of PWCF.
Collapse
Affiliation(s)
- Jonathan J Grant
- Department of Outpatient Pharmacy-Specialty Services, The John's Hopkins Hospital, Baltimore, Maryland, USA
| | - Erin J McDade
- Pharmacy Department, Texas Children's Hospital, Houston, Texas, USA
| | - Jeffery T Zobell
- Pharmacy Department, Intermountain Primary Children's Hospital, Salt Lake City, Utah, USA
| | - David C Young
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
5
|
Pharmacokinetics and pharmacodynamics of antibiotics in cystic fibrosis: a narrative review. Int J Antimicrob Agents 2021; 58:106381. [PMID: 34157401 DOI: 10.1016/j.ijantimicag.2021.106381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Cystic fibrosis affects several organs, predisposing patients to severe bacterial respiratory infections, including those caused by methicillin-resistant Staphylococcus aureus. Cystic fibrosis is also associated with a wide spectrum of pathological changes that can significantly affect the absorption, distribution, metabolism, and/or elimination of several drugs, including antibacterial agents. Therefore, awareness of the pharmacokinetic derangements in patients with cystic fibrosis is mandatory for the optimisation of antibiotic therapy. This review discusses the basic principles of pharmacokinetics and the pathophysiology of the pharmacokinetics changes associated with cystic fibrosis; it also provides an update of available data for the most widely used antibiotics. Evidence accumulated in the last few years has clearly shown that a significant number of cystic fibrosis patients treated with conventional dosing schemes have sub-therapeutic antibiotic concentrations, increasing their risk of therapeutic failure and/or the emergence of resistant pathogens. Some proposals to optimise antibiotic therapies in this clinical setting based on therapeutic drug monitoring are also discussed.
Collapse
|
6
|
Máiz Carro L, Blanco-Aparicio M. Nuevos antibióticos inhalados y formas de administración. OPEN RESPIRATORY ARCHIVES 2020. [DOI: 10.1016/j.opresp.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
7
|
Abstract
Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship. Most bacteria and archaea are infected by latent viruses that change their physiology and responses to environmental stress. We use a population model of the bacterium-phage relationship to examine the role that latent phage play in the bacterial population over time in response to antibiotic treatment. We demonstrate that the stress induced by antibiotic administration, even if bacteria are resistant to killing by antibiotics, is sufficient to control the infection under certain conditions. This work expands the breadth of understanding of phage-antibiotic synergy to include both temperate and chronic viruses persisting in their latent form in bacterial populations. IMPORTANCE Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship.
Collapse
|
8
|
Benke E, Farkas Á, Balásházy I, Szabó-Révész P, Ambrus R. Stability test of novel combined formulated dry powder inhalation system containing antibiotic: physical characterization and in vitro- in silico lung deposition results. Drug Dev Ind Pharm 2019; 45:1369-1378. [PMID: 31096805 DOI: 10.1080/03639045.2019.1620268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective: The aim was to study the stability of dry powder inhaler (DPI) formulations containing antibiotic with different preparation ways - carrier-based, carrier-free, and novel combined formulation - and thereby to compare their physicochemical and in vitro-in silico aerodynamical properties before and after storage. Presenting a novel combined technology in the field of DPI formulation including the carrier-based and carrier-free methods, it is the most important reason to introduce this stable formulation for the further development of DPIs. Methods: The structure, the residual solvent content, the interparticle interactions, the particle size distribution and the morphology of the samples were studied. The aerodynamic values were determined based on the cascade impactor in vitro lung model. We tested the in silico behavior of the novel combined formulated samples before and during storage. Results: The physical measurements showed that the novel combined formulated sample was the most favorable. It was found that thanks to the formulation technique and the use of magnesium stearate (MgSt) has a beneficial effect on the stability compared with the carrier-based formulation without MgSt and carrier-free formulations. The results of in vitro and in silico lung models were consistent with the physical results, so the highest deposition was found for the novel combined formulated sample during the storage. Conclusions: It can be established that after the storage a novel combined formulated DPI contained amorphous drug to have around 2.5 μm mass median aerodynamic diameter and nearly 50% fine particle fraction predicted high lung deposition in silico also.
Collapse
Affiliation(s)
- Edit Benke
- a Institute of Pharmaceutical Technology and Regulatory Affairs , University of Szeged , Szeged , Hungary
| | - Árpád Farkas
- b Centre for Energy Research , Hungarian Academy of Sciences , Budapest , Hungary
| | - Imre Balásházy
- b Centre for Energy Research , Hungarian Academy of Sciences , Budapest , Hungary
| | - Piroska Szabó-Révész
- a Institute of Pharmaceutical Technology and Regulatory Affairs , University of Szeged , Szeged , Hungary
| | - Rita Ambrus
- a Institute of Pharmaceutical Technology and Regulatory Affairs , University of Szeged , Szeged , Hungary
| |
Collapse
|
9
|
Jaggupilli A, Singh N, De Jesus VC, Gounni MS, Dhanaraj P, Chelikani P. Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics. FASEB J 2018; 33:501-517. [PMID: 30011231 DOI: 10.1096/fj.201800521rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many medications including antibiotics taste bitter. The potency of these antibiotics on the 25 bitter taste receptors (T2Rs) in humans remains poorly understood. Here we characterize by sensory and structure-function analyses how antibiotics frequently used to treat airway infections in cystic fibrosis activate multiple human T2Rs. The potency of the broad-spectrum antibiotics, tobramycin, levofloxacin, and azithromycin on the highly expressed T2Rs in airways, T2R4, T2R14, and T2R20 was pursued. The amino acids and structural features of T2R4, T2R14, and T2R20 important for antibiotic binding were characterized by mutational analysis in heterologous cell-based assays. Strikingly, extracellular loop 2 in T2Rs performs a key function in binding to antibiotics with contribution from residues in transmembrane helices. Our results suggest that different antibiotics activate multiple T2Rs with different potencies. An understanding of the nonantibiotic and physiologic effects mediated through T2Rs on the host cells is much needed.-Jaggupilli, A., Singh, N., De Jesus, V. C., Gounni, M. S., Dhanaraj, P., Chelikani, P. Chemosensory bitter taste receptors (T2Rs) are activated by multiple antibiotics.
Collapse
Affiliation(s)
- Appalaraju Jaggupilli
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Nisha Singh
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Vivianne Cruz De Jesus
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Mohamed Soussi Gounni
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Premnath Dhanaraj
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology Research Group and Department of Oral Biology, University of Manitoba, Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Effect of pH and leucine concentration on aerosolization properties of carrier-free formulations of levofloxacin. Eur J Pharm Sci 2018; 118:13-23. [DOI: 10.1016/j.ejps.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
|
11
|
Antimicrobial molecules in the lung: formulation challenges and future directions for innovation. Future Med Chem 2018; 10:575-604. [PMID: 29473765 DOI: 10.4155/fmc-2017-0162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhaled antimicrobials have been extremely beneficial in treating respiratory infections, particularly chronic infections in a lung with cystic fibrosis. The pulmonary delivery of antibiotics has been demonstrated to improve treatment efficacy, reduce systemic side effects and, critically, reduce drug exposure to commensal bacteria compared with systemic administration, reducing selective pressure for antimicrobial resistance. This review will explore the specific challenges of pulmonary delivery of a number of differing antimicrobial molecules, and the formulation and technological approaches that have been used to overcome these difficulties. It will also explore the future challenges being faced in the development of inhaled products and respiratory infection treatment, and identify future directions of innovation, with a particular focus on respiratory infections caused by multiple drug-resistant pathogens.
Collapse
|
12
|
Faghihi T, Tekmehdash LY, Radfar M, Gholami K. Ciprofloxacin Use in Hospitalized Children: Approved or Off-label? J Res Pharm Pract 2017; 6:193-198. [PMID: 29417077 PMCID: PMC5787903 DOI: 10.4103/jrpp.jrpp_17_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective: Fluoroquinolones are not routinely used as the first-line antimicrobial therapy in pediatrics. The American Academy of Pediatrics (AAP) and the United States Food and Drug Administration (FDA) approved fluoroquinolones on certain indications in children. The aim of this study was to evaluate to what extent and how ciprofloxacin is used on approved indication or as off-label. Besides, dose adequacy and treatment duration were assessed. Methods: In a 10-month observational study, all children receiving systemic ciprofloxacin were assessed. We classified ciprofloxacin prescription to an AAP/FDA or off-label indication. The off-label prescriptions were further categorized to justified and unjustified therapy subgroups. The AAP/FDA category and the justified subgroup constituted the appropriate prescriptions. Findings: During the study period, 32 patients were prescribed ciprofloxacin. In general, 37% (12) of prescriptions determined to be appropriate. Of the appropriate prescriptions, 7 were AAP/FDA-approved indications. Children with Crohn's disease with abdominal abscess and children with infectious bloody diarrhea constituted the off-label; justified therapy subgroup. Unjustified prescriptions mainly occurred in the presence of a suitable alternative antibiotic for ciprofloxacin. Mean ± SD of ciprofloxacin dose (mg/kg/day) and duration (days) were 21.25 ± 6.35 and 13.56 ± 8.48, respectively. Of the appropriate prescriptions, 41% were underdosed. Underdosing was more encountered in patients with cystic fibrosis. Duration of treatment of the appropriate prescriptions was determined to be appropriate. Conclusion: The majority of children were receiving ciprofloxacin off-label and in an inappropriate manner. This issue emphasizes that antimicrobial stewardship program on ciprofloxacin use in pediatric hospitals should be implemented. Further studies evaluating clinical and microbiological outcomes of these programs in children are needed.
Collapse
Affiliation(s)
- Toktam Faghihi
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mania Radfar
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kheirollah Gholami
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The current guidelines and recent clinical research in the management of Pseudomonas aeruginosa respiratory infections in cystic fibrosis (CF) are reviewed. Areas where further research is required will also be highlighted. RECENT FINDINGS P. aeruginosa is a key respiratory pathogen in CF. Inhaled tobramycin or colistin is recommended for early eradication to prevent establishment of chronic infection. Other antibiotic options are currently being investigated. The long-term success of eradication strategies is also now being assessed. The use of inhaled antibiotics in the management of chronic P. aeruginosa infection is an area of active investigation. Acute pulmonary exacerbations are still a major cause of morbidity and mortality. Guidelines continue to recommend combination intravenous therapy but further research is required to clarify the advantage of this approach. Multidrug resistance is common and potentially more effective antipseudomonal antibiotics may soon become available. SUMMARY The management of P. aeruginosa respiratory infection in CF remains a challenging area, especially in the setting of multidrug resistance. The role of inhaled antibiotics continues to be expanded. Further research is required in the key areas of eradication and management of chronic infection and acute pulmonary exacerbations to identify those treatments that optimize long-term, clinical benefits.
Collapse
|
14
|
Muirhead CA, Sanford JN, McCullar BG, Nolt D, MacDonald KD. One Center's Guide to Outpatient Management of Pediatric Cystic Fibrosis Acute Pulmonary Exacerbation. Clin Med Insights Pediatr 2016; 10:57-65. [PMID: 27429564 PMCID: PMC4944828 DOI: 10.4137/cmped.s38336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Cystic fibrosis (CF) is a chronic disorder characterized by acute pulmonary exacerbations that comprise increased cough, chest congestion, increased mucus production, shortness of breath, weight loss, and fatigue. Typically, severe episodes are treated in the inpatient setting and include intravenous antimicrobials, airway clearance therapy, and nutritional support. Children with less-severe findings can often be managed as outpatients with oral antimicrobials and increased airway clearance therapy at home without visiting the specialty CF center to begin treatment. Selection of specific antimicrobial agents is dependent on pathogens found in surveillance culture, activity of an agent in patients with CF, and the unique physiology of these patients. In this pediatric review, we present our practice for defining acute pulmonary exacerbation, deciding treatment location, initiating treatment either in-person or remotely, determining the frequency of airway clearance, selecting antimicrobial therapy, recommending timing for follow-up visit, and recognizing and managing treatment failures.
Collapse
Affiliation(s)
- Corinne A. Muirhead
- Department of Pharmacy, Oregon Health and Science University, Doernbecher Children’s Hospital, Portland, OR, USA
| | - Jillian N. Sanford
- Department of Pediatrics, Oregon Health and Science University, Doernbecher Children’s Hospital, Portland, OR, USA
| | - Benjamin G. McCullar
- Department of Nursing, Oregon Health and Science University, Doernbecher Children’s Hospital, Portland, OR, USA
| | - Dawn Nolt
- Department of Pediatrics, Oregon Health and Science University, Doernbecher Children’s Hospital, Portland, OR, USA
| | - Kelvin D. MacDonald
- Department of Pediatrics, Oregon Health and Science University, Doernbecher Children’s Hospital, Portland, OR, USA
| |
Collapse
|
15
|
Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, Noone PG, Bilton D, Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 2016; 71 Suppl 1:i1-22. [PMID: 26666259 PMCID: PMC4717371 DOI: 10.1136/thoraxjnl-2015-207360] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous environmental organisms that can cause chronic pulmonary infection, particularly in individuals with pre-existing inflammatory lung disease such as cystic fibrosis (CF). Pulmonary disease caused by NTM has emerged as a major threat to the health of individuals with CF but remains difficult to diagnose and problematic to treat. In response to this challenge, the US Cystic Fibrosis Foundation (CFF) and the European Cystic Fibrosis Society (ECFS) convened an expert panel of specialists to develop consensus recommendations for the screening, investigation, diagnosis and management of NTM pulmonary disease in individuals with CF. Nineteen experts were invited to participate in the recommendation development process. Population, Intervention, Comparison, Outcome (PICO) methodology and systematic literature reviews were employed to inform draft recommendations. An anonymous voting process was used by the committee to reach consensus. All committee members were asked to rate each statement on a scale of: 0, completely disagree, to 9, completely agree; with 80% or more of scores between 7 and 9 being considered ‘good’ agreement. Additionally, the committee solicited feedback from the CF communities in the USA and Europe and considered the feedback in the development of the final recommendation statements. Three rounds of voting were conducted to achieve 80% consensus for each recommendation statement. Through this process, we have generated a series of pragmatic, evidence-based recommendations for the screening, investigation, diagnosis and treatment of NTM infection in individuals with CF as an initial step in optimising management for this challenging condition.
Collapse
Affiliation(s)
- R Andres Floto
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | - Kenneth N Olivier
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lisa Saiman
- Department of Pediatrics, Columbia University Medical Center, Pediatric Infectious Diseases, New York, New York, USA
| | - Charles L Daley
- Division of Mycobacterial and Respiratory Infections, National Jewish Health, Denver, Colorado, USA
| | - Jean-Louis Herrmann
- INSERM U1173, UFR Simone Veil, Versailles-Saint-Quentin University, Saint-Quentin en Yvelines, France AP-HP, Service de Microbiologie, Hôpital Raymond Poincaré, Garches, France
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Peadar G Noone
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Diana Bilton
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Paul Corris
- Department of Respiratory Medicine, Freeman Hospital, High Heaton, Newcastle, UK
| | - Ronald L Gibson
- Department of Pediatrics University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah E Hempstead
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Karsten Koetz
- Department of Pediatrics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kathryn A Sabadosa
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Isabelle Sermet-Gaudelus
- Service de Pneumo-Pédiatrie, Université René Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology, University of Nottingham, Nottingham, UK
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J Wallace
- Department of Microbiology, University of Texas Health Science Center, Tyler, Texas, USA
| | | | | | - Charles S Haworth
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
| | | |
Collapse
|
16
|
Determination of ciprofloxacin and levofloxacin in human sputum collected from cystic fibrosis patients using microextraction by packed sorbent-high performance liquid chromatography photodiode array detector. J Chromatogr A 2015; 1419:58-66. [DOI: 10.1016/j.chroma.2015.09.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/08/2015] [Accepted: 09/21/2015] [Indexed: 11/20/2022]
|
17
|
Molloy L, Nichols K. Infectious Diseases Pharmacotherapy for Children With Cystic Fibrosis. J Pediatr Health Care 2015; 29:565-78; quiz 579-80. [PMID: 26498903 DOI: 10.1016/j.pedhc.2015.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/15/2022]
Abstract
Cystic fibrosis (CF) affects several organs, most notably the lungs, which become predisposed to infections with potentially severe consequences. Because of physiologic changes and infection characteristics, unique approaches to antimicrobial agent selection, dosing, and administration are needed. To provide optimal acute and long-term care, pediatric health care providers must be aware of these patient features and common approaches to antimicrobial therapy in CF, which can differ significantly from those of other infectious diseases. The purpose of this article is to review common respiratory pathogens, pharmacology of commonly used antimicrobial agents, and unique pharmacokinetics and dosing strategies often used when treating children with CF.
Collapse
|
18
|
Stockmann C, Roberts JK, Yellepeddi VK, Sherwin CMT. Clinical pharmacokinetics of inhaled antimicrobials. Clin Pharmacokinet 2015; 54:473-92. [PMID: 25735634 DOI: 10.1007/s40262-015-0250-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Administration of inhaled antimicrobials affords the ability to achieve targeted drug delivery into the respiratory tract, rapid entry into the systemic circulation, high bioavailability and minimal metabolism. These unique pharmacokinetic characteristics make inhaled antimicrobial delivery attractive for the treatment of many pulmonary diseases. This review examines recent pharmacokinetic trials with inhaled antibacterials, antivirals and antifungals, with an emphasis on the clinical implications of these studies. The majority of these studies revealed evidence of high antimicrobial concentrations in the airway with limited systemic exposure, thereby reducing the risk of toxicity. Sputum pharmacokinetics varied widely, which makes it challenging to interpret the result of sputum pharmacokinetic studies. Many no vel inhaled antimicrobial therapies are currently under investigation that will require detailed pharmacokinetic studies, including combination inhaled antimicrobial therapies, inhaled nanoparticle formulations of several antibacterials, inhaled non-antimicrobial adjuvants, inhaled antiviral recombinant protein therapies and semi-synthetic inhaled antifungal agents. Additionally, the development of new inhaled delivery devices, particularly for mechanically ventilated patients, will result in a pressing need for additional pharmacokinetic studies to identify optimal dosing regimens.
Collapse
Affiliation(s)
- Chris Stockmann
- Division of Clinical Pharmacology, Department of Paediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | | | | | | |
Collapse
|
19
|
Cantón R, Máiz L, Escribano A, Olveira C, Oliver A, Asensio O, Gartner S, Roma E, Quintana-Gallego E, Salcedo A, Girón R, Barrio MI, Pastor MD, Prados C, Martínez-Martínez MT, Barberán J, Castón JJ, Martínez-Martínez L, Poveda JL, Vázquez C, de Gracia J, Solé A. Spanish Consensus on the Prevention and Treatment of Pseudomonas aeruginosa Bronchial Infections in Cystic Fibrosis Patients. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.arbr.2014.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Role of therapeutic drug monitoring in pulmonary infections: use and potential for expanded use of dried blood spot samples. Bioanalysis 2015; 7:481-95. [DOI: 10.4155/bio.14.318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Respiratory tract infections are among the most common infections in men. We reviewed literature to document their pharmacological treatments, and the extent to which therapeutic drug monitoring (TDM) is needed during treatment. We subsequently examined potential use of dried blood spots as sample procedure for TDM. TDM was found to be an important component of clinical care for many (but not all) pulmonary infections. For gentamicin, linezolid, voriconazole and posaconazole dried blood spot methods and their use in TDM were already evident in literature. For glycopeptides, β-lactam antibiotics and fluoroquinolones it was determined that development of a dried blood spot (DBS) method could be useful. This review identifies specific antibiotics for which development of DBS methods could support the optimization of treatment of pulmonary infections.
Collapse
|
21
|
Principi N, Esposito S. Appropriate use of fluoroquinolones in children. Int J Antimicrob Agents 2015; 45:341-6. [PMID: 25726705 DOI: 10.1016/j.ijantimicag.2015.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/19/2022]
Abstract
With the increasing resistance to antibiotics among common bacterial pathogens, challenges associated with the use of fluoroquinolones (FQs) in paediatrics have emerged. The majority of FQs have favourable pharmacokinetic properties, although these properties can differ in children compared with adults. Moreover, all FQs have broad antimicrobial activity both against Gram-positive and Gram-negative bacteria. However, only some FQs for which adequate studies are available have been approved for use in children in a limited number of clinical situations owing to the supposed risk of development of severe musculoskeletal disorders, as demonstrated in juvenile animals. Recent short- and long-term evaluations appear to indicate that, at least for levofloxacin, this risk, if present at all, is marginal. This marginal risk could lead to more frequent use of FQs in children, even to treat diseases for which several other drugs with documented efficacy, safety and tolerability are considered the first-line antibiotics. However, for most of the FQs, adequate long-term studies of safety are not available. This indicates that the use of FQs should be limited to selected respiratory infections (including tuberculosis), exacerbation of lung disease in cystic fibrosis, central nervous system infections, enteric infections, febrile neutropenia, as well as serious infections attributable to FQ-susceptible pathogen(s) in children with life-threatening allergies to alternative agents. When considering diseases that could benefit from the use of FQs, particular attention must be paid to the choice of drug and its dosage, considering that not all of the FQs have been evaluated in different diseases.
Collapse
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milan, Italy
| | - Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122 Milan, Italy.
| |
Collapse
|
22
|
Cantón R, Máiz L, Escribano A, Olveira C, Oliver A, Asensio O, Gartner S, Roma E, Quintana-Gallego E, Salcedo A, Girón R, Barrio MI, Pastor MD, Prados C, Martínez-Martínez MT, Barberán J, Castón JJ, Martínez-Martínez L, Poveda JL, Vázquez C, de Gracia J, Solé A. Spanish consensus on the prevention and treatment of Pseudomonas aeruginosa bronchial infections in cystic fibrosis patients. Arch Bronconeumol 2015; 51:140-50. [PMID: 25614377 DOI: 10.1016/j.arbres.2014.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is the main pathogen in bronchopulmonary infections in cystic fibrosis (CF) patients. It can only be eradicated at early infection stages while reduction of its bacterial load is the therapeutic goal during chronic infection or exacerbations. Neonatal screening and pharmacokinetic/pharmacodynamic knowledge has modified the management of CF-patients. A culture based microbiological follow-up should be performed in patients with no infection with P.aeruginosa. At initial infection, inhaled colistin (0,5-2MU/tid), tobramycin (300mg/bid) or aztreonam (75mg/tid) with or without oral ciprofloxacin (15-20mg/kg/bid, 2-3weeks) are recommended. In chronic infections, treatment is based on continuous administration of colistin or with a 28-day on-off regimen with tobramycin or aztreonam. During mild-moderate exacerbations oral ciprofloxacin (2-3weeks) can be administered while serious exacerbations must be treated with intravenous combination therapy (beta-lactam with an aminoglycoside or a fluoroquinolone). Future studies will support antibiotic rotation and/or new combination therapies. Epidemiological measures are also recommended to avoid new P.aeruginosa infections and "patient-to-patient transmission" of this pathogen.
Collapse
Affiliation(s)
- Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal e Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, España; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, España.
| | - Luis Máiz
- Unidad de Bronquiectasias y Fibrosis Quística, Servicio de Neumología, Hospital Universitario Ramón y Cajal e Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, España
| | - Amparo Escribano
- Unidad de Neumología Pediátrica y Fibrosis Quística, Servicio de Pediatría, Hospital Clínico Universitario, Universidad de Valencia, Valencia, España
| | - Casilda Olveira
- Unidad de Gestión Clínica de Enfermedades Respiratorias, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, España
| | - Antonio Oliver
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología y Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, España
| | - Oscar Asensio
- Unidad de Neumología y Alergia Pediátrica, Hospital Universitario de Sabadell. Corporació Sanitària Parc Taulí, Sabadell, Barcelona, España
| | - Silvia Gartner
- Unidad de Neumología Pediátrica y Fibrosis Quística, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Eva Roma
- Servicio de Farmacia, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Esther Quintana-Gallego
- Unidad de Fibrosis Quística, Servicio de Neumología, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Antonio Salcedo
- Unidad de Fibrosis Quística Interhospitalaria Niño Jesús-Gregorio Marañón, Madrid, España
| | - Rosa Girón
- Unidad de Bronquiectasias y Fibrosis Quística, Hospital Universitario La Princesa, Instituto La Princesa de Investigación Sanitaria, Madrid, España
| | - María Isabel Barrio
- Sección de Neumología Pediátrica y Unidad de Fibrosis Quística, Hospital Universitario La Paz, Madrid, España
| | - María Dolores Pastor
- Unidad de Neumología Pediátrica y Fibrosis Quística, Hospital Universitario Virgen de la Arrixaca, Murcia, España
| | - Concepción Prados
- Unidad de Fibrosis Quística y Bronquiectasias, Servicio de Neumología, Hospital Universitario La Paz, Madrid, España
| | | | - José Barberán
- Departamento de Medicina Interna, Hospital Montepríncipe, Universidad CEU San Pablo, Madrid, España
| | - Juan José Castón
- Unidad de Enfermedades Infecciosas, Hospital General Universitario de Ciudad Real, Ciudad Real, España
| | - Luis Martínez-Martínez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, España; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL y Departamento de Biología Molecular, Universidad de Cantabria, Santander, España
| | - José Luis Poveda
- Servicio de Farmacia, Hospital Universitario y Politécnico La Fe, Valencia, España
| | - Carlos Vázquez
- Unidad de Neumología Pediátrica y Fibrosis Quística, Hospital Universitario de Cruces, Baracaldo, Vizcaya, España
| | - Javier de Gracia
- Servicio de Neumología y CIBER en Enfermedades Respiratorias (CibeRES), Hospital Universitari Vall d'Hebron, Universidad Autónoma, Barcelona, España
| | - Amparo Solé
- Unidad de Trasplante Pulmonar y Fibrosis Quística, Hospital Universitario y Politécnico la Fe, Valencia, España.
| | | |
Collapse
|
23
|
Stockmann C, Hillyard B, Ampofo K, Spigarelli MG, Sherwin CMT. Levofloxacin inhalation solution for the treatment of chronic Pseudomonas aeruginosa infection among patients with cystic fibrosis. Expert Rev Respir Med 2014; 9:13-22. [PMID: 25417708 DOI: 10.1586/17476348.2015.986469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic pulmonary infections are common among patients with cystic fibrosis. By 10 years of age, Pseudomonas aeruginosa is the predominant pathogen. Inhaled levofloxacin solution (MP-376) is a promising new therapy that exhibits rapid antibacterial activity and excellent biofilm penetration against P. aeruginosa. In the largest trial to date, 151 patients were randomized to receive MP-376 or placebo. At the end of the 28-day treatment period, patients who received MP-376 had decreased P. aeruginosa density in sputum, improved lung function parameters and improved respiratory symptoms. MP-376 also appeared to be safe and well tolerated. The results of two recently completed Phase III trials have not yet been released; however, these data will be critical in determining whether MP-376 is a safe and effective maintenance therapy for chronic pulmonary P. aeruginosa infections among patients with cystic fibrosis.
Collapse
Affiliation(s)
- Chris Stockmann
- Department of Pediatrics, Division of Clinical Pharmacology, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT, 84108, USA
| | | | | | | | | |
Collapse
|
24
|
Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Ther Deliv 2014; 5:409-27. [PMID: 24856168 DOI: 10.4155/tde.14.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that causes serious lung infections in cystic fibrosis, non-cystic fibrosis bronchiectasis, immunocompromised, and mechanically ventilated patients. The arsenal of conventional antipseudomonal antibiotic drugs include the extended-spectrum penicillins, cephalosporins, carbapenems, monobactams, polymyxins, fluoroquinolones, and aminoglycosides but their toxicity and/or increasing antibiotic resistance are of particular concern. Improvement of existing therapies against Pseudomonas aeruginosa infections involves the use of liposomes - artificial phospholipid vesicles that are biocompatible, biodegradable, and nontoxic and able to entrap and carry hydrophilic, hydrophobic, and amphiphilic molecules to the site of action. The goal of developing liposomal antibiotic formulations is to improve their therapeutic efficacy by reducing drug toxicity and/or by enhancing the delivery and retention of antibiotics at the site of infection. The focus of this review is to appraise the current progress of the development and application of liposomal antibiotic delivery systems for the treatment pulmonary infections caused by P. aeruginosa.
Collapse
|
25
|
Dalhoff A. Pharmacokinetics and pharmacodynamics of aerosolized antibacterial agents in chronically infected cystic fibrosis patients. Clin Microbiol Rev 2014; 27:753-82. [PMID: 25278574 PMCID: PMC4187638 DOI: 10.1128/cmr.00022-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria adapt to growth in lungs of patients with cystic fibrosis (CF) by selection of heterogeneously resistant variants that are not detected by conventional susceptibility testing but are selected for rapidly during antibacterial treatment. Therefore, total bacterial counts and antibiotic susceptibilities are misleading indicators of infection and are not helpful as guides for therapy decisions or efficacy endpoints. High drug concentrations delivered by aerosol may maximize efficacy, as decreased drug susceptibilities of the pathogens are compensated for by high target site concentrations. However, reductions of the bacterial load in sputum and improvements in lung function were within the same ranges following aerosolized and conventional therapies. Furthermore, the use of conventional pharmacokinetic/pharmacodynamic (PK/PD) surrogates correlating pharmacokinetics in serum with clinical cure and presumed or proven eradication of the pathogen as a basis for PK/PD investigations in CF patients is irrelevant, as minimization of systemic exposure is one of the main objectives of aerosolized therapy; in addition, bacterial pathogens cannot be eradicated, and chronic infection cannot be cured. Consequently, conventional PK/PD surrogates are not applicable to CF patients. It is nonetheless obvious that systemic exposure of patients, with all its sequelae, is minimized and that the burden of oral treatment for CF patients suffering from chronic infections is reduced.
Collapse
Affiliation(s)
- Axel Dalhoff
- University Medical Center Schleswig-Holstein, Institute for Infection Medicine, Kiel, Germany
| |
Collapse
|
26
|
Thigpen J, Odle B. Intravenous and Inhaled Antimicrobials at Home in Cystic Fibrosis Patients. HOME HEALTH CARE MANAGEMENT AND PRACTICE 2014. [DOI: 10.1177/1084822313501322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary clinical characteristics of cystic fibrosis (CF) are malnutrition caused by malabsorption secondary to pancreatic insufficiency, chronic pulmonary infections, and male infertility. The major cause of morbidity and mortality are bronchiectasis and obstructive pulmonary disease. Lung disease in CF is manifested by this chronic lung disease progression, with intermittent episodes of acute worsening of symptoms called pulmonary exacerbations. Once the patient has stabilized, and if suitable care can be arranged, these interventions are often transitioned to the home. This review summarizes important points pertinent to the use of intravenous and inhaled antimicrobials that may be encountered by prescribers, nurses, technicians, and case managers in the home health setting. Appropriate dosing, indications, adverse drug reactions, monitoring parameters, and practicality of both intravenous and inhaled antimicrobials are discussed.
Collapse
Affiliation(s)
- Jim Thigpen
- East Tennessee State University, Johnson City, USA
| | - Brian Odle
- East Tennessee State University, Johnson City, USA
| |
Collapse
|
27
|
Denning DW, Pashley C, Hartl D, Wardlaw A, Godet C, Del Giacco S, Delhaes L, Sergejeva S. Fungal allergy in asthma-state of the art and research needs. Clin Transl Allergy 2014; 4:14. [PMID: 24735832 PMCID: PMC4005466 DOI: 10.1186/2045-7022-4-14] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/19/2014] [Indexed: 01/31/2023] Open
Abstract
Sensitization to fungi and long term or uncontrolled fungal infection are associated with poor control of asthma, the likelihood of more severe disease and complications such as bronchiectasis and chronic pulmonary aspergillosis. Modelling suggests that >6.5 million people have severe asthma with fungal sensitizations (SAFS), up to 50% of adult asthmatics attending secondary care have fungal sensitization, and an estimated 4.8 million adults have allergic bronchopulmonary aspergillosis (ABPA). There is much uncertainty about which fungi and fungal allergens are relevant to asthma, the natural history of sensitisation to fungi, if there is an exposure response relationship for fungal allergy, and the pathogenesis and frequency of exacerbations and complications. Genetic associations have been described but only weakly linked to phenotypes. The evidence base for most management strategies in ABPA, SAFS and related conditions is weak. Yet straightforward clinical practice guidelines for management are required. The role of environmental monitoring and optimal means of controlling disease to prevent disability and complications are not yet clear. In this paper we set out the key evidence supporting the role of fungal exposure, sensitisation and infection in asthmatics, what is understood about pathogenesis and natural history and identify the numerous areas for research studies.
Collapse
Affiliation(s)
- David W Denning
- The National Aspergillosis Centre, University Hospital of South Manchester, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK ; Education and Research Centre, UHSM, Southmoor Road, Manchester M23 9LT, UK
| | - Catherine Pashley
- Leicester Institute for Lung Health and Respiratory Biomedical Research Unit, Department of Infection Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Domink Hartl
- Department of Pediatrics, Infectious Diseases & Immunology, University of Tübingen, Tübingen, Germany
| | - Andrew Wardlaw
- Leicester Institute for Lung Health and Respiratory Biomedical Research Unit, Department of Infection Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Cendrine Godet
- Department of Infectious Diseases, CHU la Milétrie, Poitiers, France
| | - Stefano Del Giacco
- Department of Medical Sciences "M. Aresu", University of Cagliari, Cagliari, Italy
| | - Laurence Delhaes
- Biology & Diversity of Emerging Eukaryotic Pathogens (BDEEP), Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, IFR142, Lille Pasteur Institute, Lille Nord de France University (EA4547), Lille, France ; Department of Parasitology-Mycology, Regional Hospital Center, Faculty of Medicine, Lille, France
| | - Svetlana Sergejeva
- Translational Immunology Group, Institute of Technology, Tartu University, Tartu, Estonia ; North Estonia Medical Centre, Tallinn, Estonia
| |
Collapse
|
28
|
Stockmann C, Sherwin CMT, Ampofo K, Spigarelli MG. Development of levofloxacin inhalation solution to treat Pseudomonas aeruginosa in patients with cystic fibrosis. Ther Adv Respir Dis 2013; 8:13-21. [PMID: 24334337 DOI: 10.1177/1753465813508445] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inhaled therapies allow for the targeted delivery of antimicrobials directly into the lungs and have been widely used in the treatment of cystic fibrosis (CF) acute pulmonary exacerbations. Nebulized levofloxacin solution (MP-376) is a novel therapy that is currently being evaluated in phase I, II, and III clinical trials among patients with stable CF and recent isolation of Pseudomonas aeruginosa from sputum. Phase I studies have investigated the single and multiple-dose pharmacokinetics of MP-376 and shown that it is rapidly absorbed from the lungs and results in low systemic concentrations. A subsequent phase IB study found that MP-376 pharmacokinetics were comparable among adults and children 6-16 years of age. Further phase II studies reported that sputum P. aeruginosa density decreased in a dose-dependent manner among patients who were randomized to MP-376 when compared with patients who received placebo. Improvements in pulmonary function and a decrease in the need for other antipseudomonal antibiotics were also reported for patients who received inhaled levofloxacin. The most common adverse event was dysgeusia (abnormal taste sensation), which was reported by nearly half of the participants who received MP-376. No serious drug-related adverse events were reported. These findings are encouraging; however, data from the two ongoing phase III trials are needed to determine whether MP-376 demonstrates substantial evidence of safety and efficacy as a chronic CF maintenance therapy and therefore may be useful in routine clinical practice.
Collapse
Affiliation(s)
- Chris Stockmann
- University of Utah Health Sciences Center, 295 Chipeta Way, Clinical Pharmacology, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
29
|
Young DC, Zobell JT, Stockmann C, Waters CD, Ampofo K, Sherwin CMT, Spigarelli MG. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: V. Aminoglycosides. Pediatr Pulmonol 2013; 48:1047-61. [PMID: 24000183 DOI: 10.1002/ppul.22813] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 11/09/2022]
Abstract
Intravenous (IV) anti-pseudomonal aminoglycosides (i.e., amikacin and tobramycin) have been shown to be tolerable and effective in the treatment of acute pulmonary exacerbations (APEs) in both pediatric and adult patients with cystic fibrosis. The aim of this review is to provide an evidence-based summary of pharmacokinetic/pharmacodynamic, tolerability, and efficacy studies utilizing IV amikacin, gentamicin, and tobramycin in the treatment of APE and to highlight areas where further investigation is needed. The Cystic Fibrosis Foundation Pulmonary Guidelines recommend that once-daily administration of aminoglycosides is preferred over three times per day in the treatment of an APE. The literature supports dosing ranges for amikacin and tobramycin of 30-35 and 7-15 mg/kg/day, respectively, given once daily, with subsequent doses determined by therapeutic drug concentration monitoring. The literature does not support the routine use of gentamicin in the treatment of APE due to a lack of studies showing efficacy and evidence indicating an increased risk of nephrotoxicity. Further studies are needed to determine the optimal dosing strategy of amikacin in the treatment of an APE, and to further identify risk factors and determinants that influence the development of P. aeruginosa resistance with once-daily administration of tobramycin.
Collapse
Affiliation(s)
- David C Young
- University of Utah College of Pharmacy, Salt Lake City, Utah; Intermountain Cystic Fibrosis Adult Center, Salt Lake City, Utah
| | | | | | | | | | | | | |
Collapse
|
30
|
Current ciprofloxacin usage in children hospitalized in a referral hospital in Paris. BMC Infect Dis 2013; 13:245. [PMID: 23710669 PMCID: PMC3668209 DOI: 10.1186/1471-2334-13-245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 05/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluoroquinolones are used with increasing frequency in children with a major risk of increasing the emergence of FQ resistance. FQ use has expanded off-label for primary antibacterial prophylaxis or treatment of infections in immune-compromised children and life-threatening multi-resistant bacteria infections. Here we assessed the prescriptions of ciprofloxacin in a pediatric cohort and their appropriateness. METHODS A monocenter audit of ciprofloxacin prescription was conducted for six months in a University hospital in Paris. Infected site, bacteriological findings and indication, were evaluated in children receiving ciprofloxacin in hospital independently by 3 infectious diseases consultants and 1 hospital pharmacist. RESULTS Ninety-eight ciprofloxacin prescriptions in children, among which 52 (53.1%) were oral and 46 (46.9%) parenteral, were collected. 45 children had an underlying condition, cystic fibrosis (CF) (21) or an innate or acquired immune deficiency (24). Among CF patients, the most frequent indication was a broncho-pulmonary Pseudomonas aeruginosa infection (20). In non-CF patient, the major indications were broncho-pulmonary (25), urinary (8), intra-abdominal (7), operative site infection (5) and bloodstream/catheter (2/4) infection. 62.2% were microbiologically documented. Twenty-three (23.4%) were considered "mandatory", 48 (49.0%) "alternative" and 27 (27.6%) "unjustified". CONCLUSION In our university hospital, only 23.4% of fluoroquinolones prescriptions were mandatory in children, especially in Pseudomonas aeruginosa healthcare associated infection. Looking to the ecological risk of fluoroquinolones and the increase consumption in children population we think that a control program should be developed to control FQ use in children. It could be done with the help of an antimicrobial stewardship team.
Collapse
|
31
|
Gaspar MC, Couet W, Olivier JC, Pais AACC, Sousa JJS. Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review. Eur J Clin Microbiol Infect Dis 2013; 32:1231-52. [DOI: 10.1007/s10096-013-1876-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022]
|