1
|
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common complication of premature birth, imposing a significant and potentially life-long burden on patients and their families. Despite advances in our understanding of the mechanisms that contribute to patterns of lung injury and dysfunctional repair, current therapeutic strategies remain non-specific with limited success. Contemporary definitions of BPD continue to rely on clinician prescribed respiratory support requirements at specific time points. While these criteria may be helpful in broadly identifying infants at higher risk of adverse outcomes, they do not offer any precise information regarding the degree to which each compartment of the lung is affected. In this review we will outline the different pulmonary phenotypes of BPD and discuss important features in the pathogenesis, clinical presentation, and management of these frequently overlapping scenarios.
Collapse
Affiliation(s)
- Margaret Gilfillan
- Division of Neonatology, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| | - Vineet Bhandari
- Division of Neonatology, The Children's Regional Hospital at Cooper/Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
2
|
Sun T, Yu HY, Yang M, Song YF, Fu JH. Risk of asthma in preterm infants with bronchopulmonary dysplasia: a systematic review and meta-analysis. World J Pediatr 2023; 19:549-556. [PMID: 36857022 PMCID: PMC10198915 DOI: 10.1007/s12519-023-00701-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND This study aimed to systematically review and meta-analyze the available literature on the association between preterm infant bronchopulmonary dysplasia (BPD) and pre-adulthood asthma. METHODS Studies examining the association between BPD and asthma in children and adolescents were systematically reviewed, and a meta-analysis was conducted. We searched Scopus, Embase, Web of Science, PubMed, and Cochrane Library from the database inception to March 26, 2022. The pooled odds ratio (OR) estimate was used in our meta-analysis to calculate the correlation between BPD and the probability of developing asthma before adulthood. Stata 12.0 was used to conduct the statistical analysis. RESULTS The correlation between asthma and BPD in preterm newborns was examined in nine studies. We used a random effect model to pool the OR estimate. Our results indicated a marked increase in the risk of subsequent asthma in preterm infants with BPD [OR = 1.73, 95% confidence interval (CI) = 1.43-2.09]. Moreover, there was no obvious heterogeneity across the studies (P = 0.617, I2 = 0%). The pooled OR remained stable and ranged from 1.65 (95% CI = 1.35-2.01) to 1.78 (95% CI = 1.43-2.21). Regarding publication bias, the funnel plot for asthma risk did not reveal any noticeable asymmetry. We further performed Begg's and Egger's tests to quantitatively evaluate publication bias. There was no evidence of a publication bias for asthma risk (P > |Z| = 0.602 for Begg's test, and P > |t| = 0.991 for Egger's test). CONCLUSIONS Our findings indicate that preterm infants with BPD have a much higher risk of developing asthma in the future (OR = 1.73, 95% CI = 1.43-2.09). Preterm infants with BPD may benefit from long-term follow-up.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Sanhao Street, Heping District, Shenyang, China
| | - Hai-Yang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Sanhao Street, Heping District, Shenyang, China
| | - Yi-Fan Song
- Department of Pediatrics, Shengjing Hospital of China Medical University, Sanhao Street, Heping District, Shenyang, China
| | - Jian-Hua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Sanhao Street, Heping District, Shenyang, China.
| |
Collapse
|
3
|
Zheng B, Fu J. Telomere dysfunction in some pediatric congenital and growth-related diseases. Front Pediatr 2023; 11:1133102. [PMID: 37077333 PMCID: PMC10106694 DOI: 10.3389/fped.2023.1133102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 04/21/2023] Open
Abstract
Telomere wear and dysfunction may lead to aging-related diseases. Moreover, increasing evidence show that the occurrence, development, and prognosis of some pediatric diseases are also related to telomere dysfunction. In this review, we systematically analyzed the relationship between telomere biology and some pediatric congenital and growth-related diseases and proposed new theoretical basis and therapeutic targets for the treatment of these diseases.
Collapse
|
4
|
Kotecha SJ, Gibbons JTD, Course CW, Evans EE, Simpson SJ, Watkins WJ, Kotecha S. Geographical Differences and Temporal Improvements in Forced Expiratory Volume in 1 Second of Preterm-Born Children: A Systematic Review and Meta-analysis. JAMA Pediatr 2022; 176:867-877. [PMID: 35759258 PMCID: PMC9237805 DOI: 10.1001/jamapediatrics.2022.1990] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Although preterm birth is associated with later deficits in lung function, there is a paucity of information on geographical differences and whether improvements occur over time, especially after surfactant was introduced. Objective To determine deficits in percentage predicted forced expiratory volume in 1 second (%FEV1) in preterm-born study participants, including those with bronchopulmonary dysplasia (BPD) in infancy, when compared with term-born control groups. Data Sources Eight databases searched up to December 2021. Study Selection Studies reporting spirometry for preterm-born participants with or without a term-born control group were identified. Data Extraction and Synthesis Data were extracted and quality assessed by 1 reviewer and checked by another. Data were pooled using random-effects models and analyzed using Review Manager and the R metafor package. Main Outcomes and Measures Deficits in %FEV1 between preterm-born and term groups. Associations between deficits in %FEV1 and year of birth, age, introduction of surfactant therapy, and geographical region of birth and residence were also assessed. Results From 16 856 titles, 685 full articles were screened: 86 with and without term-born control groups were included. Fifty studies with term controls were combined with the 36 studies from our previous systematic review, including 7094 preterm-born and 17 700 term-born participants. Of these studies, 45 included preterm-born children without BPD, 29 reported on BPD28 (supplemental oxygen dependency at 28 days), 26 reported on BPD36 (supplemental oxygen dependency at 36 weeks' postmenstrual age), and 86 included preterm-born participants. Compared with the term-born group, the group of all preterm-born participants (all preterm) had deficits of %FEV1 of -9.2%; those without BPD had deficits of -5.8%, and those with BPD had deficits of approximately -16% regardless of whether they had BPD28 or BPD36. As year of birth increased, there was a statistically significant narrowing of the difference in mean %FEV1 between the preterm- and term-born groups for the all preterm group and the 3 BPD groups but not for the preterm-born group without BPD. For the all BPD group, when compared with Scandinavia, North America and western Europe had deficits of -5.5% (95% CI, -10.7 to -0.3; P = .04) and -4.1% (95% CI, -8.8 to 0.5; P = .08), respectively. Conclusions and Relevance Values for the measure %FEV1 were reduced in preterm-born survivors. There were improvements in %FEV1 over recent years, but geographical region had an association with later %FEV1 for the BPD groups.
Collapse
Affiliation(s)
- Sarah J Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - James T D Gibbons
- Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kid's Institute, Perth, Australia.,Department of Respiratory Medicine, Perth Children's Hospital, Perth, Australia.,School of Allied Health, Curtin University, Perth, Australia
| | - Christopher W Course
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Emily E Evans
- Department of Paediatrics, Cardiff and Vale University Health Board, Cardiff, United Kingdom
| | - Shannon J Simpson
- Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kid's Institute, Perth, Australia.,School of Allied Health, Curtin University, Perth, Australia
| | - W John Watkins
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sailesh Kotecha
- Department of Child Health, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
5
|
Ruran HB, Adamkiewicz G, Cunningham A, Petty CR, Greco KF, Gunnlaugsson S, Stamatiadis N, Sierra G, Vallarino J, Alvarez M, Hayden LP, Sheils CA, Weller E, Phipatanakul W, Gaffin JM. Air quality, Environment and Respiratory Outcomes in Bronchopulmonary Dysplasia, the AERO-BPD cohort study: design and adaptation during the SARS-CoV-2 pandemic. BMJ Open Respir Res 2021; 8:e000915. [PMID: 34193433 PMCID: PMC8249170 DOI: 10.1136/bmjresp-2021-000915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Almost half of all school-age children with bronchopulmonary dysplasia (BPD) have asthma-like symptoms and more suffer from lung function deficits. While air pollution and indoor respiratory irritants are known to affect high-risk populations of children, few studies have objectively evaluated environmental contributions to long-term respiratory morbidity in this population. This study aimed to examine the role of indoor environmental exposures on respiratory morbidity in children with BPD. METHODS AND ANALYSIS The Air quality, Environment and Respiratory Ouctomes in BPD (AERO-BPD) study is a prospective, single-centre observational study that will enrol a unique cohort of 240 children with BPD and carefully characterise participants and their indoor home environmental exposures. Measures of indoor air quality constituents will assess the relationship of nitrogen dioxide (NO2), particulate matter (PM2.5), nitric oxide (NO), temperature and humidity, as well as dust concentrations of allergens, with concurrently measured respiratory symptoms and lung function.Adaptations to the research protocol due to the SARS-CoV-2 pandemic included remote home environment and participant assessments. ETHICS AND DISSEMINATION Study protocol was approved by the Boston Children's Hospital Committee on Clinical Investigation. Dissemination will be in the form of peer-reviewed publications and participant information products. TRIAL REGISTRATION NUMBER NCT04107701.
Collapse
Affiliation(s)
- Hana B Ruran
- Boston Children's Hospital Division of Pulmonary and Respiratory Diseases, Boston, Massachusetts, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Amparito Cunningham
- Boston Children's Hospital Division of Immunology, Boston, Massachusetts, USA
| | - Carter R Petty
- Boston Children's Hospital, Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston, Massachusetts, USA
| | - Kimberly F Greco
- Boston Children's Hospital, Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston, Massachusetts, USA
| | - Sigfus Gunnlaugsson
- Boston Children's Hospital Division of Pulmonary and Respiratory Diseases, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Natalie Stamatiadis
- Boston Children's Hospital Division of Pulmonary and Respiratory Diseases, Boston, Massachusetts, USA
| | - Gabriella Sierra
- Boston Children's Hospital Division of Pulmonary and Respiratory Diseases, Boston, Massachusetts, USA
| | - Jose Vallarino
- Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Marty Alvarez
- Department of Environmental Health, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Lystra P Hayden
- Boston Children's Hospital Division of Pulmonary and Respiratory Diseases, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Catherine A Sheils
- Boston Children's Hospital Division of Pulmonary and Respiratory Diseases, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Edie Weller
- Boston Children's Hospital, Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Wanda Phipatanakul
- Boston Children's Hospital Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan M Gaffin
- Boston Children's Hospital Division of Pulmonary and Respiratory Diseases, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
James AJ, Nordlund B, Konradsen JR, Ebersjö C, Dahlén S, Berggren Broström E, Hedlin G. YKL-40 is a proposed biomarker of inflammation and remodelling elevated in children with bronchopulmonary dysplasia compared to asthma. Acta Paediatr 2021; 110:641-642. [PMID: 32772428 PMCID: PMC7891389 DOI: 10.1111/apa.15525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Anna J. James
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Björn Nordlund
- Astrid Lindgren Children’s Hospital Lung and Allergy Unit Karolinska University Hospital Stockholm Sweden
- Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
| | - Jon R. Konradsen
- Astrid Lindgren Children’s Hospital Lung and Allergy Unit Karolinska University Hospital Stockholm Sweden
- Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
| | - Christina Ebersjö
- Department of Clinical Science and Education Södersjukhuset Karolinska Institutet Stockholm Sweden
- Sach’s Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Sven‐Erik Dahlén
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Eva Berggren Broström
- Department of Clinical Science and Education Södersjukhuset Karolinska Institutet Stockholm Sweden
- Sach’s Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Gunilla Hedlin
- Astrid Lindgren Children’s Hospital Lung and Allergy Unit Karolinska University Hospital Stockholm Sweden
- Department of Women’s and Children’s Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
7
|
A Novel Association between YKL-40, a Marker of Structural Lung Disease, and Short Telomere Length in 10-Year-Old Children with Bronchopulmonary Dysplasia. CHILDREN-BASEL 2021; 8:children8020080. [PMID: 33498968 PMCID: PMC7912154 DOI: 10.3390/children8020080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Extremely preterm infants are born with immature lungs and are exposed to an inflammatory environment as a result of oxidative stress. This may lead to airway remodeling, cellular aging and the development of bronchopulmonary dysplasia (BPD). Reliable markers that predict the long-term consequences of BPD in infancy are still lacking. We analyzed two biomarkers of cellular aging and lung function, telomere length and YKL-40, respectively, at 10 years of age in children born preterm with a history of BPD (n = 29). For comparison, these markers were also evaluated in sex-and-age-matched children born at term with childhood asthma (n = 28). Relative telomere length (RTL) was measured in whole blood with qPCR and serum YKL-40 with ELISA, and both were studied in relation to gas exchange and the regional ventilation/perfusion ratio using three-dimensional V/Q-scintigraphy (single photon emission computer tomography, SPECT) in children with BPD. Higher levels of YKL-40 were associated with shorter leukocyte RTL (Pearson's correlation: -0.55, p = 0.002), but were not associated with a lower degree of matching between ventilation and perfusion within the lung. Serum YKL-40 levels were significantly higher in children with BPD compared to children with asthma (17.7 vs. 13.2 ng/mL, p < 0.01). High levels of YKL-40 and short RTLs were associated to the need for ventilatory support more than 1 month in the neonatal period (p < 0.01). The link between enhanced telomere shortening in childhood and structural remodeling of the lung, as observed in children with former BPD but not in children with asthma at the age of 10 years, suggests altered lung development related to prematurity and early life inflammatory exposure. In conclusion, relative telomere length and YKL-40 may serve as biomarkers of altered lung development as a result of early-life inflammation in children with a history of prematurity.
Collapse
|
8
|
Anthracopoulos MB, Everard ML. Asthma: A Loss of Post-natal Homeostatic Control of Airways Smooth Muscle With Regression Toward a Pre-natal State. Front Pediatr 2020; 8:95. [PMID: 32373557 PMCID: PMC7176812 DOI: 10.3389/fped.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The defining feature of asthma is loss of normal post-natal homeostatic control of airways smooth muscle (ASM). This is the key feature that distinguishes asthma from all other forms of respiratory disease. Failure to focus on impaired ASM homeostasis largely explains our failure to find a cure and contributes to the widespread excessive morbidity associated with the condition despite the presence of effective therapies. The mechanisms responsible for destabilizing the normal tight control of ASM and hence airways caliber in post-natal life are unknown but it is clear that atopic inflammation is neither necessary nor sufficient. Loss of homeostasis results in excessive ASM contraction which, in those with poor control, is manifest by variations in airflow resistance over short periods of time. During viral exacerbations, the ability to respond to bronchodilators is partially or almost completely lost, resulting in ASM being "locked down" in a contracted state. Corticosteroids appear to restore normal or near normal homeostasis in those with poor control and restore bronchodilator responsiveness during exacerbations. The mechanism of action of corticosteroids is unknown and the assumption that their action is solely due to "anti-inflammatory" effects needs to be challenged. ASM, in evolutionary terms, dates to the earliest land dwelling creatures that required muscle to empty primitive lungs. ASM appears very early in embryonic development and active peristalsis is essential for the formation of the lungs. However, in post-natal life its only role appears to be to maintain airways in a configuration that minimizes resistance to airflow and dead space. In health, significant constriction is actively prevented, presumably through classic negative feedback loops. Disruption of this robust homeostatic control can develop at any age and results in asthma. In order to develop a cure, we need to move from our current focus on immunology and inflammatory pathways to work that will lead to an understanding of the mechanisms that contribute to ASM stability in health and how this is disrupted to cause asthma. This requires a radical change in the focus of most of "asthma research."
Collapse
Affiliation(s)
| | - Mark L. Everard
- Division of Paediatrics & Child Health, Perth Children's Hospital, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
9
|
Kjellberg M, Sanchez-Crespo A, Jonsson B. Ten-year-old children with a history of bronchopulmonary dysplasia have regional abnormalities in ventilation perfusion matching. Pediatr Pulmonol 2019; 54:602-609. [PMID: 30887678 DOI: 10.1002/ppul.24273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/16/2019] [Indexed: 01/25/2023]
Abstract
AIM The ratio of ventilation to blood flow is an important determinant for regional gas exchange in the lung and hypoxemia is one of the clinical hallmarks in infants with bronchopulmonary dysplasia (BPD). We have previously demonstrated ventilation/perfusion ratio (V/Q) abnormalities in infants with BPD at 36 weekś postconceptional age. The status of V/Q matching in older children with a history of BPD in infancy is unknown. In this study, we examined if 10-year-old children with a history of BPD had V/Q impairments. METHODS Three-dimensional V/Q-scintigraphy (SPECT) was performed in 26 children. RESULTS In the BPD group, lung volume with mismatch, (V>Q) was larger compared to areas with reverse mismatch (Q>V), 26.2% and 11.8%, respectively, implying that perfusion defects contribute more than ventilation defects in the V/Q mismatch. Also, the mean fractional distribution of V and Q to V/Q in children with BPD was reduced compared to healthy children, 31% and 51% compared to 64% and 89%, respectively (P < 0.01). CONCLUSION At 10 years of age children with a history of BPD had ventilation/perfusion abnormalities, with prominent perfusion defects. These V/Q abnormalities suggest the presence of residual alveolar-capillary impairment.
Collapse
Affiliation(s)
- Malin Kjellberg
- Institute of Women's and Children's Health, Department of Neonatology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Alejandro Sanchez-Crespo
- Institution of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska Univeristy Hospital, Stockholm, Sweden
| | - Baldvin Jonsson
- Institute of Women's and Children's Health, Department of Neonatology, Karolinska Institute and University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Course CW, Kotecha S, Kotecha SJ. Fractional exhaled nitric oxide in preterm-born subjects: A systematic review and meta-analysis. Pediatr Pulmonol 2019; 54:595-601. [PMID: 30694610 PMCID: PMC6519366 DOI: 10.1002/ppul.24270] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Decreased lung function is common in preterm-born survivors. Increased fractional exhaled nitric oxide (FeNO) appears to be a reliable test for eosinophillic airway inflammation especially in asthma. We, systematically, reviewed the literature to compare FeNO levels in preterm-born children and adults who did or did not have chronic lung disease of prematurity (CLD) in infancy with term-born controls. METHODS We searched eight databases up to February 2018. Studies comparing FeNO levels in preterm-born subjects (<37 weeks' gestation) in childhood and adulthood with and without (CLD) with term-born subjects were identified and extracted by two reviewers. Data were analysed using Review Manager v5.3. RESULTS From 6042 article titles, 183 full articles were screened for inclusion. Nineteen studies met the inclusion criteria. Seventeen studies compared FeNO levels in preterm- and term-born children and adults; 11 studies (preterm n = 640 and term n = 4005) were included in a meta-analysis. The mean FeNO concentration difference between the preterm-born and term-born group was -0.74 (95% CI -1.88 to 0.41) ppb. For the six studies reporting data on CLD (preterm n = 204 and term n = 211) the mean difference for FeNO levels was -2.82 (95% CI -5.87 to 0.22) ppb between the preterm-born CLD and term-born groups. CONCLUSIONS Our data suggest that preterm born children with and without CLD have similar FeNO levels to term-born children suggesting an alternative mechanism to eosinophilic inflammation for symptoms of wheezing and airway obstruction observed in preterm-born subjects.
Collapse
Affiliation(s)
- Christopher W Course
- Welsh Regional Neonatal Intensive Care Unit, University Hospital of Wales, Cardiff, UK
| | - Sailesh Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah J Kotecha
- Department of Child Health, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
11
|
Henckel E, Svenson U, Nordlund B, Berggren Broström E, Hedlin G, Degerman S, Bohlin K. Telomere length was similar in school-age children with bronchopulmonary dysplasia and allergic asthma. Acta Paediatr 2018; 107:1395-1401. [PMID: 29476624 DOI: 10.1111/apa.14294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 11/26/2022]
Abstract
AIM Inflammation is a major factor in the pathophysiology of bronchopulmonary dysplasia (BPD), and it contributes to accelerated telomere shortening and cellular ageing. This study aimed to determine its effect on telomere length and lung function in school-aged children born preterm with BPD. METHODS We examined 29 children with BPD, born preterm in Stockholm county 1998-99, along with 28 children with allergic asthma born at term matched for age and gender. At 10 years of age, we measured relative telomere length (RTL) in blood by quantitative polymerase chain reaction, lung function by spirometry and inflammation by fractional exhaled nitric oxide and blood cytokines. RESULTS RTL was not different in preterm born with BPD compared to term born children with asthma. The gender effect was strong in both groups; girls had significantly longer median RTL than boys (1.8 versus 1.5, p < 0.01). Short RTL was associated with low forced expiratory flow, also after adjusting for gender, but was not affected by severity of BPD or ongoing inflammation. CONCLUSION Telomere length was similar in 10-year-old children born preterm with a history of BPD and term born children with allergic asthma. However, impaired lung function and male gender were associated with short telomeres.
Collapse
Affiliation(s)
- E Henckel
- Department of Clinical Science, Intervention and Technology; Karolinska Institutet; Stockholm Sweden
- Department of Neonatology; Karolinska University Hospital; Stockholm Sweden
| | - U Svenson
- Department of Medical Biosciences; Umeå University; Umeå Sweden
| | - B Nordlund
- Department of Women and Children′s Health; Karolinska Institutet and Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
| | - E Berggren Broström
- Department of Paediatrics; Sachs' Children and Youth Hospital; Stockholm Sweden
- Department of Clinical Science and Education; Södersjukhuset; Karolinska Institutet; Stockholm Sweden
| | - G Hedlin
- Department of Women and Children′s Health; Karolinska Institutet and Astrid Lindgren Children's Hospital; Karolinska University Hospital; Stockholm Sweden
| | - S Degerman
- Department of Medical Biosciences; Umeå University; Umeå Sweden
| | - K Bohlin
- Department of Clinical Science, Intervention and Technology; Karolinska Institutet; Stockholm Sweden
- Department of Neonatology; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
12
|
Auten RL. 2017 pediatric pulmonology year in review part 2-neonatology. Pediatr Pulmonol 2018; 53:1147-1151. [PMID: 29737005 DOI: 10.1002/ppul.24040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/11/2022]
Abstract
The articles published in 2017 in topic areas relevant to neonatal pulmonology are reviewed in Part 2 of the Year-in-Review.
Collapse
Affiliation(s)
- Richard L Auten
- Cone Health System, Greensboro, North Carolina.,Duke University, Durham, North Carolina
| |
Collapse
|
13
|
Ren CL, Muston HN, Yilmaz O, Noah TL. Pediatric Pulmonology year in review 2017: Part 3. Pediatr Pulmonol 2018; 53:1152-1158. [PMID: 29806188 DOI: 10.1002/ppul.24052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/10/2022]
Abstract
Pediatric Pulmonology publishes original research, reviews, and case reports related to a wide range of children's respiratory disorders. We here summarize the past year's publications in our major topic areas, in the context of selected literature in these areas from other journals relevant to our discipline. This review (Part 3 of a 5-part series) covers selected articles on asthma, physiology/lung function testing, and respiratory infections.
Collapse
Affiliation(s)
- Clement L Ren
- Riley Children's Hospital, Indiana University School of Medicine, Department of Pediatrics, Indianapolis, Indiana
| | - Heather N Muston
- Riley Children's Hospital, Indiana University School of Medicine, Department of Pediatrics, Indianapolis, Indiana
| | - Ozge Yilmaz
- Pediatric Allergy and Pulmonology, Celal Bayar University Department of Pediatrics, Manisa, Turkey
| | - Terry L Noah
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|