1
|
Vernardis SI, Demichev V, Lemke O, Grüning NM, Messner C, White M, Pietzner M, Peluso A, Collet TH, Henning E, Gille C, Campbell A, Hayward C, Porteous DJ, Marioni RE, Mülleder M, Zelezniak A, Wareham NJ, Langenberg C, Farooqi IS, Ralser M. The Impact of Acute Nutritional Interventions on the Plasma Proteome. J Clin Endocrinol Metab 2023; 108:2087-2098. [PMID: 36658456 PMCID: PMC10348471 DOI: 10.1210/clinem/dgad031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
CONTEXT Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. OBJECTIVE Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. METHODS We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. RESULTS Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. CONCLUSION Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system.
Collapse
Affiliation(s)
- Spyros I Vernardis
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Vadim Demichev
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Oliver Lemke
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Nana-Maria Grüning
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Messner
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Matt White
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Alina Peluso
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
| | - Tinh-Hai Collet
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
- Service of Endocrinology, Diabetology, Nutrition and Therapeutic Education, Department of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Elana Henning
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christoph Gille
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Aleksej Zelezniak
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius SE-412 96, Lithuania
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, SE1 1UL London, UK
| | | | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
- Computational Medicine, Berlin Institute of Health at Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Precision Healthcare University Research Institute, Queen Mary University of London, London, E1 1HH, UK
| | - I Sadaf Farooqi
- Metabolic Research Laboratories and National Institute for Health Research Cambridge Biomedical Research Centre, Wellcome-Medical Research Council Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW1 1HT, UK
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
2
|
Induced Endothelial Cell-Integrated Liver Assembloids Promote Hepatic Maturation and Therapeutic Effect on Cholestatic Liver Fibrosis. Cells 2022; 11:cells11142242. [PMID: 35883684 PMCID: PMC9317515 DOI: 10.3390/cells11142242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/02/2022] Open
Abstract
The transplantation of pluripotent stem cell (PSC)-derived liver organoids has been studied to solve the current donor shortage. However, the differentiation of unintended cell populations, difficulty in generating multi-lineage organoids, and tumorigenicity of PSC-derived organoids are challenges. However, direct conversion technology has allowed for the generation lineage-restricted induced stem cells from somatic cells bypassing the pluripotent state, thereby eliminating tumorigenic risks. Here, liver assembloids (iHEAs) were generated by integrating induced endothelial cells (iECs) into the liver organoids (iHLOs) generated with induced hepatic stem cells (iHepSCs). Liver assembloids showed enhanced functional maturity compared to iHLOs in vitro and improved therapeutic effects on cholestatic liver fibrosis animals in vivo. Mechanistically, FN1 expressed from iECs led to the upregulation of Itgα5/β1 and Hnf4α in iHEAs and were correlated to the decreased expression of genes related to hepatic stellate cell activation such as Lox and Spp1 in the cholestatic liver fibrosis animals. In conclusion, our study demonstrates the possibility of generating transplantable iHEAs with directly converted cells, and our results evidence that integrating iECs allows iHEAs to have enhanced hepatic maturation compared to iHLOs.
Collapse
|
3
|
Wang Z, Wang C, Liu S, He W, Wang L, Gan J, Huang Z, Wang Z, Wei H, Zhang J, Dong L. Specifically Formed Corona on Silica Nanoparticles Enhances Transforming Growth Factor β1 Activity in Triggering Lung Fibrosis. ACS NANO 2017; 11:1659-1672. [PMID: 28085241 DOI: 10.1021/acsnano.6b07461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A corona is a layer of macromolecules formed on a nanoparticle surface in vivo. It can substantially change the biological identity of nanomaterials and possibly trigger adverse responses from the body tissues. Dissecting the role of the corona in the development of a particular disease may provide profound insights for understanding toxicity of nanomaterials in general. In our present study, we explored the capability of different silica nanoparticles (SiNPs) to induce silicosis in the mouse lung and analyzed the composition of coronas formed on these particles. We found that SiNPs of certain size and surface chemistry could specifically recruit transforming growth factor β1 (TGF-β1) into their corona, which subsequently induces the development of lung fibrosis. Once embedded into the corona on SiNPs, TGF-β1 was remarkably more stable than in its free form, and its fibrosis-triggering activity was significantly prolonged. Our study meaningfully demonstrates that a specific corona component on a certain nanoparticle could initiate a particular pathogenic process in a clinically relevant disease model. Our findings may shed light on the understanding of molecular mechanisms of human health risks correlated with exposure to small-scale substances.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR, China
| | - Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Wei He
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - JingJing Gan
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Zhenheng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Haoyang Wei
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
- Jiangsu Provincial Laboratory for Nano-Technology, Nanjing University , Nanjing 210093, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University , 163 Xianlin Avenue, Nanjing 210093, China
| |
Collapse
|
4
|
Amiral J, Dunois C, Amiral C, Seghatchian J. The various assays for measuring activity states of factor VIIa in plasma and therapeutic products: Diagnostic value and analytical usefulness in various pathophysiological states. Transfus Apher Sci 2016; 56:91-97. [PMID: 28089408 DOI: 10.1016/j.transci.2016.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The key coagulation factor FVII, and its activated form FVIIa, present a major interest for their role at the initiation phase of blood coagulation, and because they can activate all blood coagulation cascade, through the extrinsic, but also the intrinsic pathway. Blood activation initiated through FVII is first presented, as it is understood nowadays. Measurement of FVII and FVIIa were of main interest for epidemiological studies, but FVIIa contribution to assay results was only deduced. The introduction of specific FVIIa assays, functional or immunoassays, allowed measuring directly FVIIa without any interference of non-activated FVII, or other coagulation factors or their activated forms. The various methods available, and their characteristics are presented, with a special focus on two assays developed by our group for FVIIa (a clotting one and a chromogenic one). The FVIIa clotting assay shows evident superiority for measuring its activity in plasma, in pathophysiological conditions. The normal range is <2.5ng/ml, which represents less than 0.5% of the FVII protein. FVIIa is elevated in some pathological states. The chromogenic assay is of interest for assigning the potency of FVIIa concentrates, as it has a higher dynamic range. Both assays are fully automatable on laboratory instruments, and standardized in a satisfactory manner thanks to the use of the FVIIa concentrate WHO International Standard (NIBSC). The various applications and usefulness of FVIIa laboratory assays are discussed, for the measurement of therapeutic products, or for following recoveries in treated patients, including hemophiliacs with inhibitors, patients with severe bleeding risk (liver diseases, surgery, trauma, …), and lastly for measurement of its activity in therapeutic products.
Collapse
Affiliation(s)
- Jean Amiral
- Hyphen BioMed, Sysmex Group, Neuville sur Oise, France.
| | - Claire Dunois
- Hyphen BioMed, Sysmex Group, Neuville sur Oise, France
| | - Cédric Amiral
- Hyphen BioMed, Sysmex Group, Neuville sur Oise, France
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
5
|
Leiting S, Seidl S, Martinez-Palacian A, Muhl L, Kanse SM. Transforming Growth Factor-β (TGF-β) Inhibits the Expression of Factor VII-activating Protease (FSAP) in Hepatocytes. J Biol Chem 2016; 291:21020-21028. [PMID: 27462075 DOI: 10.1074/jbc.m116.744631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 01/09/2023] Open
Abstract
Deletion of the Habp2 gene encoding Factor VII-activating protease (FSAP) increases liver fibrosis in mice. A single nucleotide polymorphism (G534E) in HABP2 leads to lower enzymatic activity and is associated with enhanced liver fibrosis in humans. Liver fibrosis is associated with a decrease in FSAP expression but, to date, nothing is known about how this might be regulated. Primary mouse hepatocytes or the hepatocyte cell line, AML12, were treated with different factors, and expression of FSAP was determined. Of the various regulatory factors tested, only transforming growth factor-β (TGF-β) demonstrated a concentration- and time-dependent inhibition of FSAP expression at the mRNA and protein level. The TGF-β-Type I receptor (ALK-5) antagonist SB431542 and Smad2 siRNA, but neither SIS3, which inhibits SMAD3, nor siRNA against Smad3 could block this effect. Various regions of the HABP2 promoter region were cloned into reporter constructs, and the promoter activity was determined. Accordingly, the promoter activity, which could phenocopy changes in Habp2 mRNA in response to TGF-β, was found to be located in the 177-bp region upstream of the transcription start site, and this region did not contain any SMAD binding sites. Mutation analysis of the promoter and chromatin immunoprecipitation assays were performed to identify an important role for the ATF3 binding element. Thus, TGF-β is the most likely mediator responsible for the decrease in FSAP expression in liver fibrosis.
Collapse
Affiliation(s)
- Silke Leiting
- From the Institute for Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Sandip M Kanse
- From the Institute for Biochemistry, Justus-Liebig-University, 35392 Giessen, Germany, Oslo University Hospital and Institute for Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway, and
| |
Collapse
|