1
|
Jakubowski H. The Molecular Bases of Anti-Oxidative and Anti-Inflammatory Properties of Paraoxonase 1. Antioxidants (Basel) 2024; 13:1292. [PMID: 39594433 PMCID: PMC11591180 DOI: 10.3390/antiox13111292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The anti-oxidative and anti-inflammatory properties of high-density lipoprotein (HDL) are thought to be mediated by paraoxonase 1 (PON1), a calcium-dependent hydrolytic enzyme carried on a subfraction of HDL that also carries other anti-oxidative and anti-inflammatory proteins. In humans and mice, low PON1 activity is associated with elevated oxidized lipids and homocysteine (Hcy)-thiolactone, as well as proteins that are modified by these metabolites, which can cause oxidative stress and inflammation. PON1-dependent metabolic changes can lead to atherothrombotic cardiovascular disease, Alzheimer's disease, and cancer. The molecular bases underlying these associations are not fully understood. Biochemical, proteomic, and metabolic studies have significantly expanded our understanding of the mechanisms by which low PON1 leads to disease and high PON1 is protective. The studies discussed in this review highlight the changes in gene expression affecting proteostasis as a cause of the pro-oxidative and pro-inflammatory phenotypes associated with attenuated PON1 activity. Accumulating evidence supports the conclusion that PON1 regulates the expression of anti-oxidative and anti-inflammatory proteins, and that the disruption of these processes leads to disease.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +1-973-972-8733; Fax: 973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Jakubowski H. Homocysteine Thiolactone Detoxifying Enzymes and Alzheimer's Disease. Int J Mol Sci 2024; 25:8095. [PMID: 39125665 PMCID: PMC11312131 DOI: 10.3390/ijms25158095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Elevated levels of homocysteine (Hcy) and related metabolites are associated with Alzheimer's disease (AD). Severe hyperhomocysteinemia causes neurological deficits and worsens behavioral and biochemical traits associated with AD. Although Hcy is precluded from entering the Genetic Code by proofreading mechanisms of aminoacyl-tRNA synthetases, and thus is a non-protein amino acid, it can be attached to proteins via an N-homocysteinylation reaction mediated by Hcy-thiolactone. Because N-homocysteinylation is detrimental to a protein's function and biological integrity, Hcy-thiolactone-detoxifying enzymes-PON1, BLMH, BPHL-have evolved. This narrative review provides an account of the biological function of these enzymes and of the consequences of their impairments, leading to the phenotype characteristic of AD. Overall, accumulating evidence discussed in this review supports a hypothesis that Hcy-thiolactone contributes to neurodegeneration associated with a dysregulated Hcy metabolism.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, International Center for Public Health, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Yi M, Toribio AJ, Salem YM, Alexander M, Ferrey A, Swentek L, Tantisattamo E, Ichii H. Nrf2 Signaling Pathway as a Key to Treatment for Diabetic Dyslipidemia and Atherosclerosis. Int J Mol Sci 2024; 25:5831. [PMID: 38892018 PMCID: PMC11172493 DOI: 10.3390/ijms25115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Arvin John Toribio
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Yusuf Muhammad Salem
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| |
Collapse
|
4
|
Jakubowski H. Proteomic Exploration of Paraoxonase 1 Function in Health and Disease. Int J Mol Sci 2023; 24:7764. [PMID: 37175471 PMCID: PMC10178420 DOI: 10.3390/ijms24097764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
High-density lipoprotein (HDL) exhibits cardio- and neuro-protective properties, which are thought to be promoted by paraoxonase 1 (PON1), a hydrolytic enzyme associated with an HDL subfraction also enriched with an anticoagulant protein (PROS1) and amyloid beta-transport protein clusterin (CLU, APOJ). Reduced levels of PON1 activity, characterized biochemically by elevated levels of homocysteine (Hcy)-thiolactone, oxidized lipids, and proteins modified by these metabolites in humans and mice, are associated with pathological abnormalities affecting the cardiovascular system (atherothrombosis) and the central nervous system (cognitive impairment, Alzheimer's disease). The molecular bases of these abnormalities have been largely unknown. Proteomic and metabolic studies over the past decade have significantly contributed to our understanding of PON1 function and the mechanisms by which PON1 deficiency can lead to disease. Recent studies discussed in this review highlight the involvement of dysregulated proteostasis in the pro-oxidative, pro-atherothrombotic, and pro-amyloidogenic phenotypes associated with low PON1 activity.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, University of Life Sciences, 60-637 Poznań, Poland; ; Tel.: +48-973-972-8733; Fax: +48-973-972-8981
- Department of Microbiology, Biochemistry and Molecular Genetics, International Center for Public Health, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
5
|
Schilcher I, Stadler JT, Lechleitner M, Hrzenjak A, Berghold A, Pregartner G, Lhomme M, Holzer M, Korbelius M, Reichmann F, Springer A, Wadsack C, Madl T, Kratky D, Kontush A, Marsche G, Frank S. Endothelial Lipase Modulates Paraoxonase 1 Content and Arylesterase Activity of HDL. Int J Mol Sci 2021; 22:E719. [PMID: 33450841 PMCID: PMC7828365 DOI: 10.3390/ijms22020719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/26/2023] Open
Abstract
Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content.
Collapse
Affiliation(s)
- Irene Schilcher
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Julia T. Stadler
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Margarete Lechleitner
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 16, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, 8036 Graz, Austria; (A.B.); (G.P.)
| | - Marie Lhomme
- ICANalytics Lipidomics, Institute of Cardiometabolism and Nutrition, 75013 Paris, France;
| | - Michael Holzer
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Florian Reichmann
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
| | - Anna Springer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Anatol Kontush
- INSERM Research Unit 1166—ICAN, Sorbonne University, 75013 Paris, France;
| | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (J.T.S.); (M.H.); (F.R.); (G.M.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria; (I.S.); (M.L.); (M.K.); (A.S.); (T.M.); (D.K.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
6
|
Marsillach J, Adorni MP, Zimetti F, Papotti B, Zuliani G, Cervellati C. HDL Proteome and Alzheimer's Disease: Evidence of a Link. Antioxidants (Basel) 2020; 9:E1224. [PMID: 33287338 PMCID: PMC7761753 DOI: 10.3390/antiox9121224] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Several lines of epidemiological evidence link increased levels of high-density lipoprotein-cholesterol (HDL-C) with lower risk of Alzheimer's disease (AD). This observed relationship might reflect the beneficial effects of HDL on the cardiovascular system, likely due to the implication of vascular dysregulation in AD development. The atheroprotective properties of this lipoprotein are mostly due to its proteome. In particular, apolipoprotein (Apo) A-I, E, and J and the antioxidant accessory protein paraoxonase 1 (PON1), are the main determinants of the biological function of HDL. Intriguingly, these HDL constituent proteins are also present in the brain, either from in situ expression, or derived from the periphery. Growing preclinical evidence suggests that these HDL proteins may prevent the aberrant changes in the brain that characterize AD pathogenesis. In the present review, we summarize and critically examine the current state of knowledge on the role of these atheroprotective HDL-associated proteins in AD pathogenesis and physiopathology.
Collapse
Affiliation(s)
- Judit Marsillach
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA;
| | - Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| | - Giovanni Zuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (G.Z.); (C.C.)
| |
Collapse
|
7
|
Nalbantoglu S, Abu-Asab M, Suy S, Collins S, Amri H. Metabolomics-Based Biosignatures of Prostate Cancer in Patients Following Radiotherapy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 23:214-223. [PMID: 31009330 DOI: 10.1089/omi.2019.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolomics offers new promise for research on prostate cancer (PCa) and its personalized treatment. Metabolomic profiling of radiation-treated PCa patients is particularly important to reveal their new metabolomic status, and evaluate the radiation effects. In addition, bioinformatics-integrated metabolomics-based approaches for disease profiling and assessment of therapy could help develop precision biomarkers in a context of PCa. We report mass spectrometry-based untargeted (global) serum metabolomics findings from patients with PCa (n = 55) before and after treatment with stereotactic body radiation therapy (SBRT), and intensity-modulated radiation therapy (IMRT) with SBRT, and using parsimony phylogenetic analysis. Importantly, the radiation-treated serum metabolome of patients represented a unique robust cluster on a cladogram that was distinct from the pre-RT metabolome. The altered radiation responsive serum metabolome was defined by predominant aberrations in the metabolic pathways of nitrogen, pyrimidine, purine, porphyrin, alanine, aspartate, glutamate, and glycerophospholipid. Our findings collectively suggest that global metabolomics integrated with parsimony phylogenetics offer a unique and robust systems biology analytical platform for powerful unbiased determination of radiotherapy (RT)-associated biosignatures in patients with PCa. These new observations call for future translational research for evaluation of metabolomic biomarkers in PCa prognosis specifically, and response to radiation treatment broadly. Radiation metabolomics is an emerging specialty of systems sciences and clinical medicine that warrants further research and educational initiatives.
Collapse
Affiliation(s)
- Sinem Nalbantoglu
- 1 Department of Biochemistry, Cellular and Molecular Biology, School of Medicine, Georgetown University, Washington, District of Columbia.,2 TUBITAK Marmara Research Center, Institute of Gene Engineering and Biotechnology, Molecular Oncology Laboratory, Gebze, Kocaeli, Turkey
| | - Mones Abu-Asab
- 3 Section of Ultrastructural Biology, NEI/NIH, Bethesda, Maryland
| | - Simeng Suy
- 4 Department of Radiation Oncology, School of Medicine, Georgetown University, Washington, District of Columbia
| | - Sean Collins
- 4 Department of Radiation Oncology, School of Medicine, Georgetown University, Washington, District of Columbia
| | - Hakima Amri
- 1 Department of Biochemistry, Cellular and Molecular Biology, School of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|
8
|
The Association of Paraoxonase-1 Polymorphism with Carotid Artery Stenosis among Elderly Chinese Population. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3084120. [PMID: 32148648 PMCID: PMC7049405 DOI: 10.1155/2020/3084120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/29/2020] [Indexed: 11/18/2022]
Abstract
Elderly population is in high risk of carotid atherosclerosis and artery stenosis (CAS). It has been proved that PON1 polymorphism is associated with low-density lipoprotein (LDL) oxidation, which plays an important role in artery atherosclerosis. CAS is an important cause of ischemic stroke. This study is aimed at investigating the association of PON1 (rs662) polymorphism with the risk of CAS among elderly Chinese population. Consecutive elderly patients with CAS were enrolled into the study. Genotyping for PON1 (rs662) polymorphism was performed on all participants. There were 310 CAS patients in this study, with 88 symptomatic CAS and 222 asymptomatic CAS. G allele had a frequency of 59.66% in symptomatic CAS (sCAS); and A allele had an incidence of 36.93% in asymptomatic CAS (aCAS) (P < 0.05). In all CAS patients with and without symptom, no associations were found in any genotype comparison. However, among aCAS subjects, based on GA phenotype, the odds ratio (OR) of the mutant GG with stenosis severity was 0.20 (P = 0.01). The OR of GG+GA mutation was 0.28 for moderate/severe severity, compared with GA type (P = 0.03). This study indicates that PON1 (rs662) polymorphism is not associated with the presence of symptom among CAS patients. Moreover, PON1 (rs662) polymorphism correlates with stenosis severity among aCAS.
Collapse
|
9
|
Distribution of Paraoxonase-1 (PON-1) and Lipoprotein Phospholipase A2 (Lp-PLA2) across Lipoprotein Subclasses in Subjects with Type 2 Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1752940. [PMID: 30524650 PMCID: PMC6247389 DOI: 10.1155/2018/1752940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Paraoxonase-1 (PON1) and lipoprotein phospholipase A2 (Lp-PLA2) may exert an important protective role by preventing the oxidative transformation of high- and low-density lipoproteins (HDL and LDL, respectively). The activity of both enzymes is influenced by lipidome and proteome of the lipoprotein carriers. T2DM typically presents significant changes in the molecular composition of the lipoprotein subclasses. Thus, it becomes relevant to understand the interaction of PON1 and Lp-PLA2 with the subspecies of HDL, LDL, and other lipoproteins in T2DM. Serum levels of PON1-arylesterase and PON1-lactonase and Lp-PLA2 activities and lipoprotein subclasses were measured in 202 nondiabetic subjects (controls) and 92 T2DM outpatients. Arylesterase, but not lactonase or Lp-PLA2 activities, was inversely associated with TD2M after adjusting for potential confounding factors such as age, sex, smoking, body mass index, hypertension, and lipoprotein subclasses (odds ratio = 3.389, 95% confidence interval 1.069–14.756). Marked difference between controls and T2DM subjects emerged from the analyses of the associations of the three enzyme activities and lipoprotein subclasses. Arylesterase was independently related with large HDL-C and small intermediate-density lipoprotein cholesterol (IDL-C) in controls while, along with lactonase, it was related with small low-density lipoprotein cholesterol LDL-C, all IDL-C subspecies, and very low-density lipoprotein cholesterol (VLDL-C) in T2DM (p < 0.05 for all). Concerning Lp-PLA2, there were significant relationships with small LDL-C, large IDL-C, and VLDL-C only among T2DM subjects. Our study showed that T2DM subjects have lower levels of PON1-arylesterase compared to controls and that T2DM occurrence may coincide with a shift of PON1 and Lp-PLA2 towards the more proatherogenic lipoprotein subclasses. The possibility of a link between the two observed phenomena requires further investigations.
Collapse
|
10
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
11
|
Peng J, Luo F, Ruan G, Peng R, Li X. Hypertriglyceridemia and atherosclerosis. Lipids Health Dis 2017; 16:233. [PMID: 29212549 PMCID: PMC5719571 DOI: 10.1186/s12944-017-0625-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/27/2017] [Indexed: 11/12/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death and it has been confirmed that increased low density lipoprotein cholesterol (LDL-C) is an independent risk factor for atherosclerosis. Recently, the increasing evidence has showed that hypertriglyceridemia is associated with incremental ASCVD risk. But the proatherogenic mechanism of triglyceride (TG) remains unclear. Therefore, this article focuses on the clinical studies and proatherogenic mechanism related to hypertriglyceridemia, in order to provide reference for the prevention and treatment of ASCVD.
Collapse
Affiliation(s)
- Jia Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Guiyun Ruan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Ran Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Xiangping Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China.
| |
Collapse
|
12
|
Ten Cate H, Hackeng TM, García de Frutos P. Coagulation factor and protease pathways in thrombosis and cardiovascular disease. Thromb Haemost 2017; 117:1265-1271. [PMID: 28594052 DOI: 10.1160/th17-02-0079] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023]
Abstract
The biochemical characterisation of the proteolytic pathways that constitute blood coagulation was one of the most relevant achievements in biomedical research during the second half of the 20th century. Understanding these pathways was of crucial importance for improving global health through application in haemostasis and thrombosis pathologies. Immediately after the cloning of the genes corresponding to these proteins, mutations were discovered in them that were associated with imbalances in haemostasis. Later, the importance of coagulation pathways in other pathological processes was demonstrated, such as in atherosclerosis and inflammation, both essential processes involved in vascular disease. In the present review we evaluate the concepts that have allowed us to reach the integrated vision on coagulation that we have today. The thrombo-inflammation model encompassing these aspects includes a pivotal role for the proteases of the coagulation pathway as well as the regulatory proteins thereof. These concepts illustrate the importance of the coagulation cascade in cardiovascular pathology, not only in thrombotic processes, but also in atherosclerotic processes and in the response to ischaemia-reperfusion injury, making it a central mechanism in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Pablo García de Frutos
- Dr. Pablo García de Frutos, Institute of Biomedical Research of Barcelona (IIBB-CSIC), C/Roselló 161, 08036 Barcelona, Spain, Tel.: +34 933632382, E-mail:
| |
Collapse
|
13
|
Quintanilla-Cantú A, Peña-de-la-Sancha P, Flores-Castillo C, Mejía-Domínguez AM, Posadas-Sánchez R, Pérez-Hernández N, Bautista-Pérez R, Enriquez-Calderón RE, Juárez-Oropeza MA, Fragoso JM, Vargas-Alarcón G, Pérez-Méndez O. Small HDL subclasses become cholesterol-poor during postprandial period after a fat diet intake in subjects with high triglyceridemia increases. Clin Chim Acta 2016; 464:98-105. [PMID: 27847194 DOI: 10.1016/j.cca.2016.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Postprandial triglyceridemia may transitory affect the structure of HDL subclasses and probably their antiatherogenic properties but little is known in this field. We analyzed the HDL subclasses lipid content along postprandial period. METHODS Fifteen metabolic syndrome (MS) patients and 15 healthy controls were enrolled. HDL were isolated from plasma samples obtained at fasting and every 2-h up to 8-h, after a 75-g fat meal. Cholesterol (C), triglycerides (TAG), and phospholipid (Ph) plasma concentrations of five HDL subclasses were determined by densitometry of electrophoresis gels enzymatically stained. RESULTS The increase of postprandial triglyceridemia expressed as the incremental area under the curve (iAUC) was twice in MS patients than in controls. Only large HDL2b-TAG were higher in MS than controls at 4, 6 and 8h after meal intake, whereas cholesterol of HDL2a, 3a and 3b were lower at 8h. HDL size distribution shifted towards large HDL and HDL3a-, 3b- and 3c-subclasses had a lower content of cholesterol (estimated by the C-to-Ph ratio) in subjects whose iAUC>289.5mgh/dl (n=15) in comparison with those subjects with iAUC below this cutoff point (n=15), independently of the MS status and fasting TAG. Triglycerides content of HDL subclasses changed only discreetly along the postprandial period, whereas paraoxonase-1 remained unchanged. CONCLUSIONS A high postprandial triglyceridemia conditions the shift of HDL size distribution towards large particles and the decrease of cholesterol in HDL3 subclasses. These data demonstrate that postprandial hypertriglyceridemia contributes to a transitory hypoalphalipoproteinemia that may increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rocío Bautista-Pérez
- Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | | | | | - José Manuel Fragoso
- Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | | | - Oscar Pérez-Méndez
- Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The clinical utility of HDLs has been scrutinized upon the publication of Mendelian randomization studies showing no effect of HDL-cholesterol (HDL-C) modifying variants on cardiovascular disease (CVD) outcome. The failures of randomized controlled HDL-C-directed intervention trials have further fueled this skepticism. This general criticism originates from oversimplification that has equated 'HDL-C' with 'HDL' and misconceived both as the 'good cholesterol'. RECENT FINDINGS HDL particles are heterogeneous and carry hundreds of different lipids, proteins, and microRNAs. Many of them but not cholesterol, that is, HDL-C, contributes to the multiple protective functions of HDLs that probably evolved to manage potentially life-threatening crises. Inflammatory processes modify the composition of HDL particles as well as their individual protein and lipid components, and, as a consequence, also their functionality. Gain of dominant-negative functions makes dysfunctional HDL a part rather than a solution of the endangering situation. Quantification of HDL particle numbers, distinct proteins or lipids, and modifications thereof as well as bioassays of HDL functionality are currently explored toward their diagnostic performance in risk prediction and monitoring of treatment response. SUMMARY Any successful clinical exploitation of HDLs will depend on the identification of the most relevant (dys)functions and their structural correlates. Stringent or prioritized structure-(dys)function relationships may provide biomarkers for better risk assessment and monitoring of treatment response. The most relevant agonists carried by either functional or dysfunctional HDLs as well as their cellular responders are interesting targets for drug development.
Collapse
|