1
|
Labriffe M, Woillard JB, Gwinner W, Braesen JH, Anglicheau D, Rabant M, Koshy P, Naesens M, Marquet P. Machine learning-supported interpretation of kidney graft elementary lesions in combination with clinical data. Am J Transplant 2022; 22:2821-2833. [PMID: 36062389 DOI: 10.1111/ajt.17192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 01/25/2023]
Abstract
Interpretation of kidney graft biopsies using the Banff classification is still heterogeneous. In this study, extreme gradient boosting classifiers learned from two large training datasets (n = 631 and 304 cases) where the "reference diagnoses" were not strictly defined following the Banff rules but from central reading by expert pathologists and further interpreted consensually by experienced transplant nephrologists, in light of the clinical context. In three external validation datasets (n = 3744, 589, and 360), the classifiers yielded a mean ROC curve AUC (95%CI) of: 0.97 (0.92-1.00), 0.97 (0.96-0.97), and 0.95 (0.93-0.97) for antibody-mediated rejection (ABMR); 0.94 (0.91-0.96), 0.94 (0.92-0.95), and 0.91 (0.88-0.95) for T cell-mediated rejection; >0.96 (0.90-1.00) with all three for interstitial fibrosis-tubular atrophy. We also developed a classifier to discriminate active and chronic active ABMR with 95% accuracy. In conclusion, we built highly sensitive and specific artificial intelligence classifiers able to interpret kidney graft scoring together with a few clinical data and automatically diagnose rejection, with excellent concordance with the Banff rules and reference diagnoses made by a group of experts. Some discrepancies may point toward possible improvements that could be made to the Banff classification.
Collapse
Affiliation(s)
- Marc Labriffe
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France.,Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France
| | - Jean-Baptiste Woillard
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France.,Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France
| | - Wilfried Gwinner
- Nephrology, Internal Medicine, Hannover Medical School, Hannover, Germany
| | - Jan-Hinrich Braesen
- Institute for Pathology, Nephropathology Unit, Hannover Medical School, Germany
| | - Dany Anglicheau
- Université de Paris, Paris, France.,INSERM U1151, Paris, France.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marion Rabant
- Department of Pathology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Priyanka Koshy
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Marquet
- Pharmacology & Transplantation, INSERM U1248, Université de Limoges, Limoges, France.,Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France
| |
Collapse
|
2
|
Li Y, Nieuwenhuis LM, Keating BJ, Festen EA, de Meijer VE. The Impact of Donor and Recipient Genetic Variation on Outcomes After Solid Organ Transplantation: A Scoping Review and Future Perspectives. Transplantation 2022; 106:1548-1557. [PMID: 34974452 PMCID: PMC9311456 DOI: 10.1097/tp.0000000000004042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022]
Abstract
At the outset of solid organ transplantation, genetic variation between donors and recipients was recognized as a major player in mechanisms such as allograft tolerance and rejection. Genome-wide association studies have been very successful in identifying novel variant-trait associations, but have been difficult to perform in the field of solid organ transplantation due to complex covariates, era effects, and poor statistical power for detecting donor-recipient interactions. To overcome a lack of statistical power, consortia such as the International Genetics and Translational Research in Transplantation Network have been established. Studies have focused on the consequences of genetic dissimilarities between donors and recipients and have reported associations between polymorphisms in candidate genes or their regulatory regions with transplantation outcomes. However, knowledge on the exact influence of genetic variation is limited due to a lack of comprehensive characterization and harmonization of recipients' or donors' phenotypes and validation using an experimental approach. Causal research in genetics has evolved from agnostic discovery in genome-wide association studies to functional annotation and clarification of underlying molecular mechanisms in translational studies. In this overview, we summarize how the recent advances and progresses in the field of genetics and genomics have improved the understanding of outcomes after solid organ transplantation.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lianne M. Nieuwenhuis
- Department of Surgery, section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Brendan J. Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Eleonora A.M. Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Weissenbacher A, Huang H, Surik T, Lo Faro ML, Ploeg RJ, Coussios CC, Friend PJ, Kessler BM. Urine recirculation prolongs normothermic kidney perfusion via more optimal metabolic homeostasis-a proteomics study. Am J Transplant 2021; 21:1740-1753. [PMID: 33021021 PMCID: PMC8246941 DOI: 10.1111/ajt.16334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 01/25/2023]
Abstract
We describe a proteomics analysis to determine the molecular differences between normothermically perfused (normothermic machine perfusion, NMP) human kidneys with urine recirculation (URC) and urine replacement (UR). Proteins were extracted from 16 kidney biopsies with URC (n = 8 donors after brain death [DBD], n = 8 donors after circulatory death [DCD]) and three with UR (n = 2 DBD, n = 1 DCD), followed by quantitative analysis by mass spectrometry. Damage-associated molecular patterns (DAMPs) were decreased in kidney tissue after 6 hours NMP with URC, suggesting reduced inflammation. Vasoconstriction was also attenuated in kidneys with URC as angiotensinogen levels were reduced. Strikingly, kidneys became metabolically active during NMP, which could be enhanced and prolonged by URC. For instance, mitochondrial succinate dehydrogenase enzyme levels as well as carbonic anhydrase were enhanced with URC, contributing to pH stabilization. Levels of cytosolic and the mitochondrial phosphoenolpyruvate carboxykinase were elevated after 24 hours of NMP, more prevalent in DCD than DBD tissue. Key enzymes involved in glucose metabolism were also increased after 12 and 24 hours of NMP with URC, including mitochondrial malate dehydrogenase and glutamic-oxaloacetic transaminase, predominantly in DCD tissue. We conclude that NMP with URC permits prolonged preservation and revitalizes metabolism to possibly better cope with ischemia reperfusion injury in discarded kidneys.
Collapse
Affiliation(s)
- Annemarie Weissenbacher
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Present address:
Annemarie WeissenbacherDepartment of Visceral, Transplant and Thoracic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Honglei Huang
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
- Present address:
Honglei HuangOxford BioMedica PlcOxfordUK
| | - Tomas Surik
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Maria L. Lo Faro
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Rutger J. Ploeg
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Constantin C. Coussios
- Institute of Biomedical EngineeringDepartment of Engineering ScienceUniversity of OxfordOxfordUK
| | - Peter J. Friend
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - Benedikt M. Kessler
- Target Discovery InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Wells MA, See Hoe LE, Heather LC, Molenaar P, Suen JY, Peart J, McGiffin D, Fraser JF. Peritransplant Cardiometabolic and Mitochondrial Function: The Missing Piece in Donor Heart Dysfunction and Graft Failure. Transplantation 2021; 105:496-508. [PMID: 33617201 DOI: 10.1097/tp.0000000000003368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary graft dysfunction is an important cause of morbidity and mortality after cardiac transplantation. Donor brain stem death (BSD) is a significant contributor to donor heart dysfunction and primary graft dysfunction. There remain substantial gaps in the mechanistic understanding of peritransplant cardiac dysfunction. One of these gaps is cardiac metabolism and metabolic function. The healthy heart is an "omnivore," capable of utilizing multiple sources of nutrients to fuel its enormous energetic demand. When this fails, metabolic inflexibility leads to myocardial dysfunction. Data have hinted at metabolic disturbance in the BSD donor and subsequent heart transplantation; however, there is limited evidence demonstrating specific metabolic or mitochondrial dysfunction. This review will examine the literature surrounding cardiometabolic and mitochondrial function in the BSD donor, organ preservation, and subsequent cardiac transplantation. A more comprehensive understanding of this subject may then help to identify important cardioprotective strategies to improve the number and quality of donor hearts.
Collapse
Affiliation(s)
- Matthew A Wells
- School of medical Science, Griffith University Gold Coast, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
| | - Louise E See Hoe
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter Molenaar
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane City, Australia
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Jason Peart
- School of medical Science, Griffith University Gold Coast, Australia
| | - David McGiffin
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| | - John F Fraser
- School of medical Science, Griffith University Gold Coast, Australia
- Critical Care Research Group, The Prince Charles Hospital, Chermside, Australia
- Prince Charles Hospital Northside Clinical Unit, Faculty of Medicine, University of Queensland, St Lucia, Australia
| |
Collapse
|
5
|
Jeong HJ. Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res Clin Pract 2020; 39:17-31. [PMID: 32164120 PMCID: PMC7105630 DOI: 10.23876/j.krcp.20.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Diagnosis of renal transplant rejection is dependent on interpretation of renal allograft biopsies. The Banff Classification of Allograft Pathology, which was developed as a standardized working classification system in 1991, has contributed to the standardization of definitions for histologic injuries resulting from renal allograft rejections and provided a universal grading system for assessing these injuries. It has also helped to provide insight into the underlying pathogenic mechanisms that contribute to transplant rejection. In addition to histological and immunologic parameters, molecular tools are now being used to facilitate the diagnosis of rejection. In this review, I will discuss morphologic features of renal transplant rejections as well as major revisions and pitfalls of the Banff classification system, and provide future perspectives.
Collapse
Affiliation(s)
- Hyeon Joo Jeong
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Sirolli V, Pieroni L, Di Liberato L, Urbani A, Bonomini M. Urinary Peptidomic Biomarkers in Kidney Diseases. Int J Mol Sci 2019; 21:E96. [PMID: 31877774 PMCID: PMC6982248 DOI: 10.3390/ijms21010096] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
In order to effectively develop personalized medicine for kidney diseases we urgently need to develop highly accurate biomarkers for use in the clinic, since current biomarkers of kidney damage (changes in serum creatinine and/or urine albumin excretion) apply to a later stage of disease, lack accuracy, and are not connected with molecular pathophysiology. Analysis of urine peptide content (urinary peptidomics) has emerged as one of the most attractive areas in disease biomarker discovery. Urinary peptidome analysis allows the detection of short and long-term physiological or pathological changes occurring within the kidney. Urinary peptidomics has been applied extensively for several years now in renal patients, and may greatly improve kidney disease management by supporting earlier and more accurate detection, prognostic assessment, and prediction of response to treatment. It also promises better understanding of kidney disease pathophysiology, and has been proposed as a "liquid biopsy" to discriminate various types of renal disorders. Furthermore, proteins being the major drug targets, peptidome analysis may allow one to evaluate the effects of therapies at the protein signaling pathway level. We here review the most recent findings on urinary peptidomics in the setting of the most common kidney diseases.
Collapse
Affiliation(s)
- Vittorio Sirolli
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS.Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (V.S.); (L.D.L.)
| | - Luisa Pieroni
- Proteomics and Metabonomics Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS.Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (V.S.); (L.D.L.)
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, G. d’Annunzio University, Chieti-Pescara, SS.Annunziata Hospital, Via dei Vestini, 66013 Chieti, Italy; (V.S.); (L.D.L.)
| |
Collapse
|
7
|
Frantzi M, Mischak H, Latosinska A. Clinical Proteomics on the Path Toward Implementation: First Promises Delivered. Proteomics Clin Appl 2019; 13:e1800094. [DOI: 10.1002/prca.201800094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maria Frantzi
- Mosaiques diagnostics GmbH Rotenburger Str. 20 D-30659 Hannover Germany
| | - Harald Mischak
- Mosaiques diagnostics GmbH Rotenburger Str. 20 D-30659 Hannover Germany
- BHF Glasgow Cardiovascular Research CentreUniversity of Glasgow 126 University Avenue G12 8TA Glasgow United Kingdom
| | | |
Collapse
|
8
|
Ortiz A. Proteomics for Clinical Assessment of Kidney Disease. Proteomics Clin Appl 2019; 13:e1900004. [PMID: 30768767 DOI: 10.1002/prca.201900004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Indexed: 01/08/2023]
Abstract
Kidney disease is one of the fastest growing causes of death worldwide, disclosing an unmet clinical need for early diagnosis and optimized risk stratification that allows high risk patient selection for clinical trials and for more intensive nephroprotective interventions in the clinic. The current issue of PROTEOMICS-Clinical Applications contains four manuscripts that explore different aspects of clinical proteomics implementation in the context of acute kidney injury, chronic kidney disease and, more specifically, diabetic kidney disease, and kidney transplantation from a diagnostic and risk stratification point of view. Overall, the evidence discussed suggests that chronic kidney disease is an example where clinical proteomics has become a valuable tool ready for clinical implementation, expected to have a major impact in patient management.
Collapse
Affiliation(s)
- Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN and REDINREN, Madrid, 28040, Spain
| |
Collapse
|