1
|
Ogunbowale A, Georgieva ER. Engineered Chimera Protein Constructs to Facilitate the Production of Heterologous Transmembrane Proteins in E. coli. Int J Mol Sci 2024; 25:2354. [PMID: 38397029 PMCID: PMC10889703 DOI: 10.3390/ijms25042354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
To delve into the structure-function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of the TMPs expressed in E. coli are misfolded. Several strategies have been developed to either direct the foreign TMPs to E. coli's membrane or retain them in a cytosolic soluble form to overcome this deficiency. Here, we summarize protein engineering methods to produce chimera constructs of the desired TMPs fused to either a signal peptide or precursor maltose binding protein (pMBP) to direct the entire construct to the periplasm, therefore depositing the fused TMP in the plasma membrane. We further describe strategies to produce TMPs in soluble form by utilizing N-terminally fused MBP without a signal peptide. Depending on its N- or C-terminus location, a fusion to apolipoprotein AI can either direct the TMP to the membrane or shield the hydrophobic regions of the TMP, maintaining the soluble form. Strategies to produce G-protein-coupled receptors, TMPs of Mycobacterium tuberculosis, HIV-1 Vpu, and other TMPs are discussed. This knowledge could increase the scope of TMPs' expression in E. coli.
Collapse
Affiliation(s)
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
2
|
Lama R, Pereiro P, Novoa B, Coll J. Sea Bass Immunization to Downsize the Betanodavirus Protein Displayed in the Surface of Inactivated Repair-Less Bacteria. Vaccines (Basel) 2019; 7:E94. [PMID: 31434322 PMCID: PMC6789578 DOI: 10.3390/vaccines7030094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023] Open
Abstract
: This work describes immunization of European sea bass (Dicentrarchus labrax) juveniles against viral nervous necrosis virus (VNNV), a betanodavirus causing worldwide mortalities in many fish species. Protection was obtained with the so-called spinycterin vehicles consisting of irreversibly DNA-damaged DNA-repair-less Escherichia coli displaying at their surface a downsized VNNV coat antigen. In this work we have i) maximized bacterial expression levels by downsizing the coat protein of VNNV to a fragment (frgC91-220) containing most of its previously determined antigenicity, ii) developed a scalable autoinduction culture media for E.coli based in soy-bean rather than in casein hydrolysates, iii) enriched surface expression by screening different anchors from several prokaryotic sources (anchor + frgC91-220 recombinant products), iv) preserved frgC91-220 antigenicity by inactivating bacteria by irreversible DNA-damage by means of Ciprofloxacin, and v) increased safety using a repair-less E.coli strain as chassis for the spinycterins. These spinycterins protected fish against VNNV challenge with partial (Nmistic + frgC91-220) or total (YBEL + frgC91-220) levels of protection, in contrast to fish immunized with frgC91-220 spinycterins. The proposed spinycterin platform has high levels of environmental safety and cost effectiveness and required no adjuvants, thus providing potential to further develop VNNV vaccines for sustainable aquaculture.
Collapse
Affiliation(s)
- Raquel Lama
- Institute of Marine Research (IIM). Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM). Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Julio Coll
- National Institute for Agricultural and Food Research and Technology (INIA), Biotechnology Department, La Coruña road, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Ahmad I, Nawaz N, Darwesh NM, ur Rahman S, Mustafa MZ, Khan SB, Patching SG. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 2018; 144:12-18. [DOI: 10.1016/j.pep.2017.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/28/2022]
|
4
|
Krainer G, Hartmann A, Anandamurugan A, Gracia P, Keller S, Schlierf M. Ultrafast Protein Folding in Membrane-Mimetic Environments. J Mol Biol 2018; 430:554-564. [DOI: 10.1016/j.jmb.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023]
|
5
|
Meier BH, Riek R, Böckmann A. Emerging Structural Understanding of Amyloid Fibrils by Solid-State NMR. Trends Biochem Sci 2017; 42:777-787. [PMID: 28916413 DOI: 10.1016/j.tibs.2017.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 11/28/2022]
Abstract
Amyloid structures at atomic resolution have remained elusive mainly because of their extensive polymorphism and because their polymeric properties have hampered structural studies by classical approaches. Progress in sample preparation, as well as solid-state NMR methods, recently enabled the determination of high-resolution 3D structures of fibrils such as the amyloid-β fibril, which is involved in Alzheimer's disease. Notably, the simultaneous but independent structure determination of Aβ1-42, a peptide that forms fibrillar deposits in the brain of Alzheimer patients, by two independent laboratories, which yielded virtually identical results, has highlighted how structures can be obtained that allow further functional investigation.
Collapse
Affiliation(s)
- Beat H Meier
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Roland Riek
- ETH Zürich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon,7 passage du Vercors, 69367 Lyon, France.
| |
Collapse
|
6
|
Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 2016; 612:57-77. [DOI: 10.1016/j.abb.2016.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
|
7
|
Lantez V, Nikolaidis I, Rechenmann M, Vernet T, Noirclerc-Savoye M. Rapid automated detergent screening for the solubilization and purification of membrane proteins and complexes. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Violaine Lantez
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Ioulia Nikolaidis
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
- Department of Biochemistry of Membranes; Bijvoet Center for Biomolecular Research, Utrecht University; The Netherlands
| | - Mathias Rechenmann
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | - Thierry Vernet
- Université Grenoble Alpes, IBS; Grenoble France
- CEA, IBS; Grenoble France
- CNRS, IBS; Grenoble France
| | | |
Collapse
|
8
|
Marino J, Bordag N, Keller S, Zerbe O. Mistic's membrane association and its assistance in overexpression of a human GPCR are independent processes. Protein Sci 2014; 24:38-48. [PMID: 25297828 DOI: 10.1002/pro.2582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 01/19/2023]
Abstract
The interaction of the Bacillus subtilis protein Mistic with the bacterial membrane and its role in promoting the overexpression of other membrane proteins are still matters of debate. In this study, we aimed to determine whether individual helical fragments of Mistic are sufficient for its interaction with membranes in vivo and in vitro. To this end, fragments encompassing each of Mistic's helical segments and combinations of them were produced as GFP-fusions, and their cellular localization was studied in Escherichia coli. Furthermore, peptides corresponding to the four helical fragments were synthesized by solid-phase peptide synthesis, and their ability to acquire secondary structure in a variety of lipids and detergents was studied by circular dichroism spectroscopy. Both types of experiments demonstrate that the third helical fragment of Mistic interacts only with LDAO micelles but does not partition into lipid bilayers. Interestingly, the other three helices interact with membranes in vivo and in vitro. Nevertheless, all of these short sequences can replace full-length Mistic as N-terminal fusions to achieve overexpression of a human G-protein-coupled receptor in E. coli, although with different effects on quantity and quality of the protein produced. A bioinformatic analysis of the Mistic family expanded the number of homologs from 4 to 20, including proteins outside the genus Bacillus. This information allowed us to discover a highly conserved Shine-Dalgarno sequence in the operon mstX-yugO that is important for downstream translation of the potassium ion channel yugO.
Collapse
Affiliation(s)
- Jacopo Marino
- Department of Chemistry, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
9
|
Broecker J, Fiedler S, Gimpl K, Keller S. Polar Interactions Trump Hydrophobicity in Stabilizing the Self-Inserting Membrane Protein Mistic. J Am Chem Soc 2014; 136:13761-8. [DOI: 10.1021/ja5064795] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jana Broecker
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Sebastian Fiedler
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Katharina Gimpl
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Bacterial-based membrane protein production. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1739-49. [PMID: 24200679 DOI: 10.1016/j.bbamcr.2013.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/20/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023]
Abstract
Escherichia coli is by far the most widely used bacterial host for the production of membrane proteins. Usually, different strains, culture conditions and production regimes are screened for to design the optimal production process. However, these E. coli-based screening approaches often do not result in satisfactory membrane protein production yields. Recently, it has been shown that (i) E. coli strains with strongly improved membrane protein production characteristics can be engineered or selected for, (ii) many membrane proteins can be efficiently produced in E. coli-based cell-free systems, (iii) bacteria other than E. coli can be used for the efficient production of membrane proteins, and, (iv) membrane protein variants that retain functionality but are produced at higher yields than the wild-type protein can be engineered or selected for. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
|
11
|
Lundberg ME, Becker EC, Choe S. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis. PLoS One 2013; 8:e60993. [PMID: 23737939 PMCID: PMC3667857 DOI: 10.1371/journal.pone.0060993] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 03/06/2013] [Indexed: 01/25/2023] Open
Abstract
Biofilms constitute the predominant form of microbial life and a potent reservoir for innate antibiotic resistance in systemic infections. In the spore-forming bacterium Bacillus subtilis, the transition from a planktonic to sessile state is mediated by mutually exclusive regulatory pathways controlling the expression of genes required for flagellum or biofilm formation. Here, we identify mstX and yugO as novel regulators of biofilm formation in B. subtilis. We show that expression of mstX and the downstream putative K+ efflux channel, yugO, is necessary for biofilm development in B. subtilis, and that overexpression of mstX induces biofilm assembly. Transcription of the mstX-yugO operon is under the negative regulation of SinR, a transcription factor that governs the switch between planktonic and sessile states. Furthermore, mstX regulates the activity of Spo0A through a positive autoregulatory loop involving KinC, a histidine kinase that is activated by potassium leakage. The addition of potassium abrogated mstX-mediated biofilm formation. Our findings expand the role of Spo0A and potassium homeostasis in the regulation of bacterial development.
Collapse
Affiliation(s)
- Matthew E. Lundberg
- Structural Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Eric C. Becker
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
| | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute, La Jolla, California, United States of America
- Division of Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Xu Y, Kong J, Kong W. Improved membrane protein expression in Lactococcus lactis by fusion to Mistic. MICROBIOLOGY-SGM 2013; 159:1002-1009. [PMID: 23519161 DOI: 10.1099/mic.0.066621-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Difficulty overexpressing (eukaryotic) membrane proteins is generally considered as the major impediment in their structural and functional research. Lactococcus lactis possesses many properties ideal for membrane protein expression. In order to investigate membrane protein expression in L. lactis, we created a novel expression system by introducing Mistic, a short peptide previously identified in Bacillus subtilis, into L. lactis. The potential of this system was demonstrated in the overexpression of a eukaryotic membrane protein (pkjDes4) and a prokaryotic membrane protein (pkjLi), a newly isolated linoleate isomerase from Lactobacillus acidophilus. The expression levels reached up to 4.4 % and 45.2 % for pkjDes4 and pkjLi, respectively, which represented an exceptionally robust ability to overproduce membrane proteins. Moreover, the expressed pkjLi was functional, with its catalysing nature characterized for the first time in this species. Up to 0.852 mg ml(-1) conjugated linoleic acid was obtained during the linoleic acid conversion catalysed by the recombinant lactococcal strains. In summary, we established a membrane protein expression system in L. lactis and examined its functionality. Our results demonstrate that the Mistic chaperoning strategy can be efficiently applied to L. lactis hosts and show its extraordinary capacity to facilitate the high-yield production of intractable membrane proteins.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong Province, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong Province, China
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
13
|
Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol J 2012; 7:620-34. [DOI: 10.1002/biot.201100155] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
|
14
|
Heterologous overexpression of a novel delta-4 desaturase gene from the marine microalga Pavlova viridis in Escherichia coli as a Mistic fusion. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0776-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Debnath DK, Basaiawmoit RV, Nielsen KL, Otzen DE. The role of membrane properties in Mistic folding and dimerisation. Protein Eng Des Sel 2010; 24:89-97. [DOI: 10.1093/protein/gzq095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Dvir H, Choe S. Bacterial expression of a eukaryotic membrane protein in fusion to various Mistic orthologs. Protein Expr Purif 2009; 68:28-33. [PMID: 19524676 PMCID: PMC2728152 DOI: 10.1016/j.pep.2009.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/27/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
Mistic, a bacterial membrane-associating protein family, uniquely found in Bacillus species. It enhances expression of eukaryotic membrane proteins at the bacterial membrane. Mistic from B. subtilis (M110), expresses at the Escherichia coli membrane, however its shorter orthologs have been recently shown to be mainly cytoplasmic with varying membrane affinities. Based on that, we hypothesized that the expression level of membrane proteins fused to Mistic is correlated with the degree of membrane association of the particular Mistic protein. We compared expression levels by various Mistic proteins as fusion partners for the Aplysia californica Kv1.1 (aKv1.1) channel as a cargo membrane protein. Mistic from B. atrophaeus (M4), which has the highest membrane association among the shorter orthologs, enhanced expression of the transmembrane domain of aKv1.1 to the highest extent. In contrast, M1, which consists of the 84 C-terminal amino acids of M110 is the most soluble protein and showed the least capacity to express the channel. A chimeric Mistic, constructed with the first alpha-helix (H1) of M110 N-terminally fused to M4, did not increase the level of expression of aKv1.1 beyond those of either the M110 or the M4 fusions. The channel fused to M110, M4 or the aforementioned H1-M4 chimera, expresses in the highest quantity and quality among Mistic proteins, providing suitable sample for structural studies. Our data support the concept that expression levels of 'Misticated' membrane proteins are related to the independent chaperoning character of Mistic via direct membrane association, rather than related to specific sequence-dependent interaction with the E. coli translocon machinery.
Collapse
Affiliation(s)
- Hay Dvir
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
17
|
Maji SK, Wang L, Greenwald J, Riek R. Structure-activity relationship of amyloid fibrils. FEBS Lett 2009; 583:2610-7. [PMID: 19596006 DOI: 10.1016/j.febslet.2009.07.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022]
Abstract
Protein aggregation is a process in which proteins self-associate into imperfectly ordered macroscopic entities. Such aggregates are generally classified as either amorphous or highly ordered, the most common form of the latter being amyloid fibrils. Amyloid fibrils composed of cross-beta-sheet structure are the pathological hallmarks of several diseases including Alzheimer's disease, but are also associated with functional states such as the fungal HET-s prion. This review aims to summarize the recent high-resolution structural studies of amyloid fibrils in light of their (potential) activities. We propose that the repetitive nature of the cross-beta-sheet structure of amyloids is key for their multiple properties: the repeating motifs can translate a rather non-specific interaction into a specific one through cooperativity.
Collapse
Affiliation(s)
- Samir K Maji
- School of Bioscience and Bioengineering, IIT-Bombay, Powai, Mumbai, India.
| | | | | | | |
Collapse
|