1
|
Muronetz VI, Pozdyshev DV, Medvedeva MV, Sevostyanova IA. Potential Effect of Post-Transcriptional Substitutions of Tyrosine for Cysteine Residues on Transformation of Amyloidogenic Proteins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:170-178. [PMID: 35508908 DOI: 10.1134/s0006297922020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The review considers the reasons and consequences of post-transcriptional tyrosine substitutions for cysteine residues. Main attention is paid to the Tyr/Cys substitutions that arise during gene expression in bacterial systems at the stage of protein translation as a result of misrecognition of the similar mRNA codons. Notably, translation errors generally occur relatively rarely - from 10-4 to 10-3 errors per codon for E. coli cells, but in some cases the error rate increases significantly. For example, this is typical for certain pairs of codons, when the culture conditions change or in the presence of antibiotics. Thus, with overproduction of the recombinant human alpha-synuclein in E. coli cells, the content of the mutant form with the replacement of Tyr136 (UAC codon) with a cysteine residue (UGC codon) can reach 50%. Possible reasons for the increased production of alpha-synuclein with the Tyr136Cys substitution are considered, as well as consequences of the presence of mutant forms in preparations of amyloidogenic proteins when studying their pathological transformation in vitro. A separate section is devoted to the Tyr/Cys substitutions occurring due to mRNA editing by adenosine deaminases, which is typical for eukaryotic organisms, and the possible role of this process in the amyloid transformation of proteins associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Denis V Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina A Sevostyanova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Zhang A, Chen Z, Li M, Qiu H, Lawrence S, Bak H, Li N. A general evidence-based sequence variant control limit for recombinant therapeutic protein development. MAbs 2021; 12:1791399. [PMID: 32744138 PMCID: PMC7531532 DOI: 10.1080/19420862.2020.1791399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequence variants (SVs) resulting from unintended amino acid substitutions in recombinant therapeutic proteins have increasingly gained attention from both regulatory agencies and the biopharmaceutical industry given their potential impact on efficacy and safety. With well-optimized production systems, such sequence variants usually exist at very low levels in the final protein products due to the high fidelity of DNA replication and protein biosynthesis process in mammalian expression systems such as Chinese hamster ovary cell lines. However, their levels can be significantly elevated in cases where the selected production cell line has unexpected DNA mutations or the manufacturing process is not fully optimized, for example, if depletion of certain amino acids occurs in the cell culture media in bioreactors. Therefore, it is important to design and implement an effective monitoring and control strategy to prevent or minimize the possible risks of SVs during the early stage of product and process development. However, there is no well-established guidance from the regulatory agencies or consensus across the industry to assess and manage SV risks. A question frequently asked is: What levels of SVs can be considered acceptable during product and process development, but also have no negative effects on drug safety and efficacy in patients? To address this critical question, we have taken a holistic approach and conducted a comprehensive sequence variant analysis. To guide biologic development, a general SV control limit of 0.1% at individual amino acid sites was proposed and properly justified based on extensive literature review, SV benchmark survey of approved therapeutic proteins, and accumulated experience on SV control practice at Regeneron.
Collapse
Affiliation(s)
- Aming Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Zhengwei Chen
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Meinuo Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Shawn Lawrence
- Preclinical Manufacturing and Process Development , Tarrytown, New York, USA
| | - Hanne Bak
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| |
Collapse
|
3
|
Rehder DS, Wisniewski CJ, Liu D, Ren D, Farnan D, Schenauer MR. Expression vector-derived heterogeneity in a therapeutic IgG4 monoclonal antibody. MAbs 2018; 11:145-152. [PMID: 30365358 DOI: 10.1080/19420862.2018.1540254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While characterizing a therapeutic IgG4 monoclonal antibody (mAb), we observed a variant with a mass 1177 Da larger than the predominant mAb form that could not be ascribed to previously described modifications. Through successive rounds of experimentation, we localized the mass addition to the C-terminus of the heavy chain (HC). During this process we observed that when the mAb was broken down into separate domains, the Fc and the 1177 Da-modified Fc could be chromatographically separated. Separation allowed collection of native and modified Fc fractions for LC/MS peptide mapping. A unique peptide present in the modified fraction was de novo sequenced and demonstrated to be a modified form of the HC C-terminus lacking two native residues (GK) and gaining twelve additional non-native residues (EAEAASASELFQ). Aware of other mAb variants with genetic origins, we sought to understand whether this modification too had a genetic basis. In silico translation of the expression vector encoding the mAb demonstrated that a normally non-coding section of nucleotides in the + 1 reading frame relative to the HC C-terminal coding region could have led to a transcript with the non-native C-terminal extension. Two potential mechanisms for how this nucleotide sequence might have fused to the native HC coding region and led to expression of the extension product are presented.
Collapse
Affiliation(s)
- Douglas S Rehder
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Chris J Wisniewski
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Denfeng Liu
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Diya Ren
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | - Dell Farnan
- a Biologics Analytical Operations , Gilead Sciences , Oceanside , CA , USA
| | | |
Collapse
|
4
|
Wong HE, Huang CJ, Zhang Z. Amino acid misincorporation in recombinant proteins. Biotechnol Adv 2017; 36:168-181. [PMID: 29107148 DOI: 10.1016/j.biotechadv.2017.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/12/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
Proteins provide the molecular basis for cellular structure, catalytic activity, signal transduction, and molecular transport in biological systems. Recombinant protein expression is widely used to prepare and manufacture novel proteins that serve as the foundation of many biopharmaceutical products. However, protein translation bioprocesses are inherently prone to low-level errors. These sequence variants caused by amino acid misincorporation have been observed in both native and recombinant proteins. Protein sequence variants impact product quality, and their presence can be exacerbated through cellular stress, overexpression, and nutrient starvation. Therefore, the cell line selection process, which is used in the biopharmaceutical industry, is not only directed towards maximizing productivity, but also focuses on selecting clones which yield low sequence variant levels, thereby proactively avoiding potentially inauspicious patient safety and efficacy outcomes. Here, we summarize a number of hallmark studies aimed at understanding the mechanisms of amino acid misincorporation, as well as exacerbating factors, and mitigation strategies. We also describe key advances in analytical technologies in the identification and quantification of sequence variants, and some practical considerations when using LC-MS/MS for detecting sequence variants.
Collapse
Affiliation(s)
- H Edward Wong
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chung-Jr Huang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
5
|
Liu Y, Sharp JS, Do DHT, Kahn RA, Schwalbe H, Buhr F, Prestegard JH. Mistakes in translation: Reflections on mechanism. PLoS One 2017; 12:e0180566. [PMID: 28662217 PMCID: PMC5491249 DOI: 10.1371/journal.pone.0180566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/16/2017] [Indexed: 01/25/2023] Open
Abstract
Mistakes in translation of messenger RNA into protein are clearly a detriment to the recombinant production of pure proteins for biophysical study or the biopharmaceutical market. However, they may also provide insight into mechanistic details of the translation process. Mistakes often involve the substitution of an amino acid having an abundant codon for one having a rare codon, differing by substitution of a G base by an A base, as in the case of substitution of a lysine (AAA) for arginine (AGA). In these cases one expects the substitution frequency to depend on the relative abundances of the respective tRNAs, and thus, one might expect frequencies to be similar for all sites having the same rare codon. Here we demonstrate that, for the ADP-ribosylation factor from yeast expressed in E. coli, lysine for arginine substitutions frequencies are not the same at the 9 sites containing a rare arginine codon; mis-incorporation frequencies instead vary from less than 1 to 16%. We suggest that the context in which the codons occur (clustering of rare sites) may be responsible for the variation. The method employed to determine the frequency of mis-incorporation involves a novel mass spectrometric analysis of the products from the parallel expression of wild type and codon-optimized genes in 15N and 14N enriched media, respectively. The high sensitivity and low material requirements of the method make this a promising technology for the collection of data relevant to other mis-incorporations. The additional data could be of value in refining models for the ribosomal translation elongation process.
Collapse
Affiliation(s)
- Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, United States of America
| | - Duc H-T. Do
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, United States of America
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Florian Buhr
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
6
|
Elhoul MB, Machillot P, Benoît M, Lederer F. Translational misreading, amino acid misincorporation and misinterpretations. The case of the flavocytochrome b 2 H373Q variant. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:353-358. [PMID: 28007443 DOI: 10.1016/j.bbapap.2016.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/24/2016] [Accepted: 12/16/2016] [Indexed: 11/19/2022]
Abstract
Amino acid misincorporation during protein synthesis occurs naturally at a low level. Protein sequence errors, depending on the level and the nature of the misincorporation, can have various consequences. When site-directed mutagenesis is used as a tool for understanding the role of a side chain in enzyme catalysis, misincorporation in a variant with intrinsically low activity may lead to misinterpretations concerning the enzyme mechanism. We report here one more example of such a problem, dealing with flavocytochrome b2 (Fcb2), a lactate dehydrogenase, member of a family of FMN-dependent L-2-hydroxy acid oxidizing enzymes. Two papers have described the properties of the Fcb2 catalytic base H373Q variant, each one using a different expression system with the same base change for the mutation. The two papers found similar apparent kinetic parameters. But the first one demonstrated the existence of a low level of histidine misincorporation, which led to an important correction of the variant residual activity (Gaume et al. (1995) Biochimie, 77, 621). The second paper did not investigate the possibility of a misincorporation (Tsai et al. (2007) Biochemistry, 46, 7844). The two papers had different mechanistic conclusions. We show here that in this case the misincorporation does not depend on the expression system. We bring the proof that Tsai et al. (2007) were led to an erroneous mechanistic conclusion for having missed the phenomenon as well as for having misinterpreted the crystal structure of the variant. This work is another illustration of the caution one should exercise when characterizing enzyme variants with low activity.
Collapse
Affiliation(s)
- Mouna Ben Elhoul
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Paul Machillot
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Mireille Benoît
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Florence Lederer
- Laboratoire de Chimie Physique, CNRS UMR 8000, Faculté des Sciences, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France.
| |
Collapse
|
7
|
Scott RA, Rogers R, Balland A, Brady LJ. Rapid identification of an antibody DNA construct rearrangement sequence variant by mass spectrometry. MAbs 2015; 6:1453-63. [PMID: 25484040 DOI: 10.4161/mabs.36222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During cell line development for an IgG1 antibody candidate (mAb1), a C-terminal extension was identified in 2 product candidate clones expressed in CHO-K1 cell line. The extension was initially observed as the presence of anomalous new peaks in these clones after analysis by cation exchange chromatography (CEX-HPLC) and reduced capillary electrophoresis (rCE-SDS). Reduced mass analysis of these CHO-K1 clones revealed that a larger than expected mass was present on a sub-population of the heavy chain species, which could not be explained by any known chemical or post-translational modifications. It was suspected that this additional mass on the heavy chain was due to the presence of an additional amino acid sequence. To identify the suspected additional sequence, de novo sequencing in combination with proteomic searching was performed against translated DNA vectors for the heavy chain and light chain. Peptides unique to the clones containing the extension were identified matching short sequences (corresponding to 9 and 35 amino acids, respectively) from 2 non-coding sections of the light chain vector construct. After investigation, this extension was observed to be due to the re-arrangement of the DNA construct, with the addition of amino acids derived from the light chain vector non-translated sequence to the C-terminus of the heavy chain. This observation showed the power of proteomic mass spectrometric techniques to identify an unexpected antibody sequence variant using de novo sequencing combined with database searching, and allowed for rapid identification of the root cause for new peaks in the cation exchange and rCE-SDS assays.
Collapse
Key Words
- C-terminal extension
- CAN, acetonitrile
- CEX, cation exchange
- CHO, Chinese hamster ovary
- DNA, deoxyribonucleic acid
- DTT, dithiothreitol
- Da, Dalton
- FDR, false discovery rate
- HC, heavy chain
- HPLC, high performance liquid chromatography
- LC, light chain
- MS, mass spectrometer
- MS/MS, tandem mass spectrometry
- MW, molecular weight
- NCBI, National Center for Biotechnology Information
- NCG, non-concensus glycosylation
- PSM, peptide-spectrum matches
- RP-UPLC, reversed phase ultra-high pressure liquid chromatography
- SEC, size exclusion chromatography
- TFA, trifluoracetic acid
- TOF, time of flight mass spectrometer
- UV, ultraviolet
- aa, amino acids
- mass spectrometry
- ppm, parts per million
- rCE-SDS, reduced capillary electrophoresis-sodium dodecyl sulfate
- sequence variant
Collapse
|
8
|
Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA) and HIV-1 nef Genes in Escherichia coli. PLoS One 2015; 10:e0130446. [PMID: 26147991 PMCID: PMC4492947 DOI: 10.1371/journal.pone.0130446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/20/2015] [Indexed: 11/19/2022] Open
Abstract
Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.
Collapse
|
9
|
An optimized approach to the rapid assessment and detection of sequence variants in recombinant protein products. Anal Bioanal Chem 2015; 407:3851-60. [PMID: 25795027 DOI: 10.1007/s00216-015-8618-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/01/2023]
Abstract
The development of sensitive techniques to detect sequence variants (SVs), which naturally arise due to DNA mutations and errors in transcription/translation (amino acid misincorporations), has resulted in increased attention to their potential presence in protein-based biologic drugs in recent years. Often, these SVs may be below 0.1%, adding challenges for consistent and accurate detection. Furthermore, the presence of false-positive (FP) signals, a hallmark of SV analysis, requires time-consuming analyst inspection of the data to sort true from erroneous signal. Consequently, gaps in information about the prevalence, type, and impact of SVs in marketed and in-development products are significant. Here, we report the results of a simple, straightforward, and sensitive approach to sequence variant analysis. This strategy employs mixing of two samples of an antibody or protein with the same amino acid sequence in a dilution series followed by subsequent sequence variant analysis. Using automated peptide map analysis software, a quantitative assessment of the levels of SVs in each sample can be made based on the signal derived from the mass spectrometric data. We used this strategy to rapidly detect differences in sequence variants in a monoclonal antibody after a change in process scale, and in a comparison of three mAbs as part of a biosimilar program. This approach is powerful, as true signals can be readily distinguished from FP signal, even at a level well below 0.1%, by using a simple linear regression analysis across the data set with none to minimal inspection of the MS/MS data. Additionally, the data produced from these studies can also be used to make a quantitative assessment of relative levels of product quality attributes. The information provided here extends the published knowledge about SVs and provides context for the discussion around the potential impact of these SVs on product heterogeneity and immunogenicity.
Collapse
|
10
|
Ragionieri L, Vitorino R, Frommlet J, Oliveira JL, Gaspar P, Ribas de Pouplana L, Santos MAS, Moura GR. Improving the accuracy of recombinant protein production through integration of bioinformatics, statistical and mass spectrometry methodologies. FEBS J 2015; 282:769-87. [DOI: 10.1111/febs.13181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/09/2014] [Accepted: 12/16/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Lapo Ragionieri
- RNA and Genome Biology Laboratories; Department of Biology/Health Sciences; Centro de Estudos do Ambiente e do Mar iBiMED; University of Aveiro; Portugal
| | - Rui Vitorino
- Department of Chemistry; University of Aveiro; Portugal
| | - Joerg Frommlet
- Department of Biology and Centro de Estudos do Ambiente e do Mar; University of Aveiro; Portugal
| | - José L. Oliveira
- Department of Electronics; Telecommunications and Informatics and Instituto de Engenharia Electrónica e Telemática de Aveiro; University of Aveiro; Portugal
| | - Paulo Gaspar
- Department of Electronics; Telecommunications and Informatics and Instituto de Engenharia Electrónica e Telemática de Aveiro; University of Aveiro; Portugal
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine; Barcelona Spain
- Catalan Institution for Research and Advanced Studies; Barcelona Spain
| | - Manuel A. Silva Santos
- RNA and Genome Biology Laboratories; Department of Biology/Health Sciences; Centro de Estudos do Ambiente e do Mar iBiMED; University of Aveiro; Portugal
| | - Gabriela Ribeiro Moura
- RNA and Genome Biology Laboratories; Department of Biology/Health Sciences; Centro de Estudos do Ambiente e do Mar iBiMED; University of Aveiro; Portugal
| |
Collapse
|
11
|
Borisov OV, Alvarez M, Carroll JA, Brown PW. Sequence Variants and Sequence Variant Analysis in Biotherapeutic Proteins. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Oleg V. Borisov
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Melissa Alvarez
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - James A. Carroll
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| | - Paul W. Brown
- Novavax, Inc., Gaithersburg, Maryland 20878, United States
- Roche Group Member, Genentech, Inc., South San Francisco, California 94080, United States
- Pfizer Worldwide Research & Development, Chesterfield, Missouri 63017, United States
| |
Collapse
|
12
|
Krefft D, Zylicz-Stachula A, Mulkiewicz E, Papkov A, Jezewska-Frackowiak J, Skowron PM. Two-stage gene assembly/cloning of a member of the TspDTI subfamily of bifunctional restriction endonucleases, TthHB27I. J Biotechnol 2014; 194:67-80. [PMID: 25486633 DOI: 10.1016/j.jbiotec.2014.11.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
The Thermus sp. family of bifunctional type IIS/IIG/IIC restriction endonucleases (REase)-methyltransferases (MTase) comprises thermo-stable TaqII, TspGWI, TspDTI, TsoI, Tth111II/TthHB27I enzymes as well as a number of putative enzymes/open reading frames (ORFs). All of the family members share properties including a large protein size (ca. 120kDa), amino acid (aa) sequence homologies, enzymatic activity modulation by S-adenosylmethionine (SAM), recognition of similar asymmetric cognate DNA sites and cleavage at a distance of 11/9 nt. Analysis of the enzyme aa sequences and domain/motif organisation led to further Thermus sp. family division into the TspDTI and TspGWI subfamilies. The latter exhibits an unprecedented phenomenon of DNA recognition change upon substitution of SAM by its analogue, sinefungin (SIN), towards a very frequent DNA cleavage. We report cloning in Escherichia coli (E. coli), using a two-stage procedure and a putative tthHB27IRM gene, detected by bioinformatics analysis of the Thermus thermophilus HB27 (T. thermophilus) genome. The functionality of a 3366 base pair (bp)-/1121 aa-long, high GC content ORF was validated experimentally through the expression in E. coli. Protein features corroborated with the reclassification of TthHB27I into the TspDTI subfamily, which manifested in terms of aa-sequence/motif homologies and insensitivity to SIN-induced specificity shift. However, both SAM and SIN stimulated the REase DNA cleavage activity by at least 16-32 times; the highest was observed for the Thermus sp. family. The availability of TthHB27I and the need to include SAM or SIN in the reaction in order to convert the enzyme from "hibernation" status to efficient DNA cleavage is of practical significance in molecular biotechnology, extending the palette of available REase specificities.
Collapse
Affiliation(s)
- Daria Krefft
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Ewa Mulkiewicz
- Department of Environment Analysis, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Aliaksei Papkov
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Institute for Environmental and Human Health Protection, Division of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| |
Collapse
|
13
|
Harris RP, Kilby PM. Amino acid misincorporation in recombinant biopharmaceutical products. Curr Opin Biotechnol 2014; 30:45-50. [PMID: 24922333 DOI: 10.1016/j.copbio.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Microbial and mammalian host systems have been used extensively for the production of protein biotherapeutics. Generally these systems rely on the production of a specific gene sequence encoding one therapeutic product. Analysis of these protein products over many years has proven that this was not always the case, with multiple species of the intended product being produced due to amino acid misincorporation or mistranslation during biosynthesis of the protein. This review is the first to give a comprehensive overview of the occurrence and analysis of these misincorporations. Furthermore, using the latest data on misincorporation in native human proteins we explore potential considerations for producing a specification for misincorporation for the development of a human biotherapeutic protein product in a production environment.
Collapse
Affiliation(s)
- Robert P Harris
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks RG42 6EY, UK.
| | - Peter M Kilby
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berks RG42 6EY, UK
| |
Collapse
|