1
|
Yang S, Song C. Multiple-Basin Go̅-Martini for Investigating Conformational Transitions and Environmental Interactions of Proteins. J Chem Theory Comput 2025; 21:5304-5321. [PMID: 40359486 DOI: 10.1021/acs.jctc.5c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Proteins are inherently dynamic molecules, and their conformational transitions among various states are essential for numerous biological processes, which are often modulated by their interactions with surrounding environments. Although molecular dynamics (MD) simulations are widely used to investigate these transitions, all-atom (AA) methods are often limited by short time scales and high computational costs, and coarse-grained (CG) implicit-solvent Go̅-like models are usually incapable of studying the interactions between proteins and their environments. Here, we present an approach called Multiple-basin Go̅-Martini, which combines the recent Go̅-Martini model with an exponential mixing scheme to facilitate the simulation of spontaneous protein conformational transitions in explicit environments. We demonstrate the versatility of our method through five diverse case studies: GlnBP, Arc, Hinge, SemiSWEET, and TRAAK, representing ligand-binding proteins, fold-switching proteins, de novo designed proteins, transporters, and mechanosensitive ion channels, respectively. Multiple-basin Go̅-Martini offers a new computational tool for investigating protein conformational transitions, identifying key intermediate states, and elucidating essential interactions between proteins and their environments, particularly protein-membrane interactions. In addition, this approach can efficiently generate thermodynamically meaningful data sets of protein conformational space, which may enhance deep learning-based models for predicting protein conformation distributions.
Collapse
Affiliation(s)
- Song Yang
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Medicine, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chen Song
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Sykes J, Holland BR, Charleston MA. A review of visualisations of protein fold networks and their relationship with sequence and function. Biol Rev Camb Philos Soc 2023; 98:243-262. [PMID: 36210328 PMCID: PMC10092621 DOI: 10.1111/brv.12905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023]
Abstract
Proteins form arguably the most significant link between genotype and phenotype. Understanding the relationship between protein sequence and structure, and applying this knowledge to predict function, is difficult. One way to investigate these relationships is by considering the space of protein folds and how one might move from fold to fold through similarity, or potential evolutionary relationships. The many individual characterisations of fold space presented in the literature can tell us a lot about how well the current Protein Data Bank represents protein fold space, how convergence and divergence may affect protein evolution, how proteins affect the whole of which they are part, and how proteins themselves function. A synthesis of these different approaches and viewpoints seems the most likely way to further our knowledge of protein structure evolution and thus, facilitate improved protein structure design and prediction.
Collapse
Affiliation(s)
- Janan Sykes
- School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001, Australia
| | - Barbara R Holland
- School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001, Australia
| | - Michael A Charleston
- School of Natural Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
3
|
Dishman AF, Tyler RC, Fox JC, Kleist AB, Prehoda KE, Babu MM, Peterson FC, Volkman BF. Evolution of fold switching in a metamorphic protein. Science 2021; 371:86-90. [PMID: 33384377 PMCID: PMC8017559 DOI: 10.1126/science.abd8700] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Metamorphic proteins switch between different folds, defying the protein folding paradigm. It is unclear how fold switching arises during evolution. With ancestral reconstruction and nuclear magnetic resonance, we studied the evolution of the metamorphic human protein XCL1, which has two distinct folds with different functions, making it an unusual member of the chemokine family, whose members generally adopt one conserved fold. XCL1 evolved from an ancestor with the chemokine fold. Evolution of a dimer interface, changes in structural constraints and molecular strain, and alteration of intramolecular protein contacts drove the evolution of metamorphosis. Then, XCL1 likely evolved to preferentially populate the noncanonical fold before reaching its modern-day near-equal population of folds. These discoveries illuminate how one sequence has evolved to encode multiple structures, revealing principles for protein design and engineering.
Collapse
Affiliation(s)
- Acacia F Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert C Tyler
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jamie C Fox
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Kumirov VK, Dykstra EM, Hall BM, Anderson WJ, Szyszka TN, Cordes MHJ. Multistep mutational transformation of a protein fold through structural intermediates. Protein Sci 2018; 27:1767-1779. [PMID: 30051937 DOI: 10.1002/pro.3488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022]
Abstract
New protein folds may evolve from existing folds through metamorphic evolution involving a dramatic switch in structure. To mimic pathways by which amino acid sequence changes could induce a change in fold, we designed two folded hybrids of Xfaso 1 and Pfl 6, a pair of homologous Cro protein sequences with ~40% identity but different folds (all-α vs. α + β, respectively). Each hybrid, XPH1 or XPH2, is 85% identical in sequence to its parent, Xfaso 1 or Pfl 6, respectively; 55% identical to its noncognate parent; and ~70% identical to the other hybrid. XPH1 and XPH2 also feature a designed hybrid chameleon sequence corresponding to the C-terminal region, which switched from α-helical to β-sheet structure during Cro evolution. We report solution nuclear magnetic resonance (NMR) structures of XPH1 and XPH2 at 0.3 Å and 0.5 Å backbone root mean square deviation (RMSD), respectively. XPH1 retains a global fold generally similar to Xfaso 1, and XPH2 retains a fold similar to Pfl 6, as measured by TM-align scores (~0.7), DALI Z-scores (7-9), and backbone RMSD (2-3 Å RMSD for the most ordered regions). However, these scores also indicate significant deviations in structure. Most notably, XPH1 and XPH2 have different, and intermediate, secondary structure content relative to Xfaso 1 and Pfl 6. The multistep progression in sequence, from Xfaso 1 to XPH1 to XPH2 to Pfl 6, thus involves both abrupt and gradual changes in folding pattern. The plasticity of some protein folds may allow for "polymetamorphic" evolution through intermediate structures.
Collapse
Affiliation(s)
- Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Emily M Dykstra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Branwen M Hall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - William J Anderson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Taylor N Szyszka
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721-0088
| |
Collapse
|
5
|
Stewart KL, Rathore D, Dodds ED, Cordes MHJ. Increased sequence hydrophobicity reduces conformational specificity: A mutational case study of the Arc repressor protein. Proteins 2018; 87:23-33. [PMID: 30315592 DOI: 10.1002/prot.25613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022]
Abstract
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.
Collapse
Affiliation(s)
- Katie L Stewart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| | - Deepali Rathore
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | - Eric D Dodds
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
Eaton KV, Anderson WJ, Dubrava MS, Kumirov VK, Dykstra EM, Cordes MHJ. Studying protein fold evolution with hybrids of differently folded homologs. Protein Eng Des Sel 2015; 28:241-50. [PMID: 25991865 DOI: 10.1093/protein/gzv027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
To study the sequence determinants governing protein fold evolution, we generated hybrid sequences from two homologous proteins with 40% identity but different folds: Pfl 6 Cro, which has a mixed α + β structure, and Xfaso 1 Cro, which has an all α-helical structure. First, we first examined eight chimeric hybrids in which the more structurally conserved N-terminal half of one protein was fused to the more structurally divergent C-terminal half of the other. None of these chimeras folded, as judged by circular dichroism spectra and thermal melts, suggesting that both halves have strong intrinsic preferences for the native global fold pattern, and/or that the interfaces between the halves are not readily interchangeable. Second, we examined 10 hybrids in which blocks of the structurally divergent C-terminal region were exchanged. These hybrids showed varying levels of thermal stability and suggested that the key residues in the Xfaso 1 C terminus specifying the all-α fold were concentrated near the end of helix 4 in Xfaso 1, which aligns to the end of strand 2 in Pfl 6. Finally, we generated hybrid substitutions for each individual residue in this critical region and measured thermal stabilities. The results suggested that R47 and V48 were the strongest factors that excluded formation of the α + β fold in the C-terminal region of Xfaso 1. In support of this idea, we found that the folding stability of one of the original eight chimeras could be rescued by back-substituting these two residues. Overall, the results show not only that the key factors for Cro fold specificity and evolution are global and multifarious, but also that some all-α Cro proteins have a C-terminal subdomain sequence within a few substitutions of switching to the α + β fold.
Collapse
Affiliation(s)
- Karen V Eaton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - William J Anderson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Matthew S Dubrava
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Emily M Dykstra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
7
|
Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 2015; 11:20140419. [PMID: 25165599 DOI: 10.1098/rsif.2014.0419] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
Collapse
Affiliation(s)
- Tobias Sikosek
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|