1
|
Thommen BT, Dziekan JM, Achcar F, Tjia S, Passecker A, Buczak K, Gumpp C, Schmidt A, Rottmann M, Grüring C, Marti M, Bozdech Z, Brancucci NMB. Genetic validation of PfFKBP35 as an antimalarial drug target. eLife 2023; 12:RP86975. [PMID: 37934560 PMCID: PMC10629825 DOI: 10.7554/elife.86975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Plasmodium falciparum accounts for the majority of over 600,000 malaria-associated deaths annually. Parasites resistant to nearly all antimalarials have emerged and the need for drugs with alternative modes of action is thus undoubted. The FK506-binding protein PfFKBP35 has gained attention as a promising drug target due to its high affinity to the macrolide compound FK506 (tacrolimus). Whilst there is considerable interest in targeting PfFKBP35 with small molecules, a genetic validation of this factor as a drug target is missing and its function in parasite biology remains elusive. Here, we show that limiting PfFKBP35 levels are lethal to P. falciparum and result in a delayed death-like phenotype that is characterized by defective ribosome homeostasis and stalled protein synthesis. Our data furthermore suggest that FK506, unlike the action of this drug in model organisms, exerts its antiproliferative activity in a PfFKBP35-independent manner and, using cellular thermal shift assays, we identify putative FK506-targets beyond PfFKBP35. In addition to revealing first insights into the function of PfFKBP35, our results show that FKBP-binding drugs can adopt non-canonical modes of action - with major implications for the development of FK506-derived molecules active against Plasmodium parasites and other eukaryotic pathogens.
Collapse
Affiliation(s)
- Basil T Thommen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Jerzy M Dziekan
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Seth Tjia
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Christin Gumpp
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | | | - Matthias Rottmann
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Christof Grüring
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
- Institute for Parasitology, University of ZurichZurichSwitzerland
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological UniversitySingaporeSingapore
| | - Nicolas MB Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
2
|
Roterman I, Stapor K, Konieczny L. New insights on the catalytic center of proteins from peptidylprolyl isomerase group based on the FOD-M model. J Cell Biochem 2023. [PMID: 37139783 DOI: 10.1002/jcb.30407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Generating the structure of the hydrophobic core is based on the orientation of hydrophobic residues towards the central part of the protein molecule with the simultaneous exposure of polar residues. Such a course of the protein folding process takes place with the active participation of the polar water environment. While the self-assembly process leading to the formation of micelles concerns freely moving bi-polar molecules, bipolar amino acids in polypeptide chain have limited mobility due to the covalent bonds. Therefore, proteins form a more or less perfect micelle-like structure. The criterion is the hydrophobicity distribution, which to a greater or lesser extent reproduces the distribution expressed by the 3D Gaussian function on the protein body. The vast majority of proteins must ensure solubility, so a certain part of it-as it is expected-should reproduce the structuring of micelles. The biological activity of proteins is encoded in the part that does not reproduce the micelle-like system. The location and quantitative assessment of the contribution of orderliness to disorder is of critical importance for the determination of biological activity. The form of maladjustment to the 3D Gauss function may be varied-hence the obtained high diversity of specific interactions with strictly defined molecules: ligands or substrates. The correctness of this interpretation was verified on the basis of the group of enzymes Peptidylprolyl isomerase-E.C.5.2.1.8. In proteins representing this class of enzymes, zones responsible for solubility-micelle-like hydrophobicity system-the location and specificity of the incompatible part in which the specific activity of the enzyme is located and coded were identified. The present study showed that the enzymes of the discussed group show two different schemes of the structure of catalytic center (taking into account the status as defined by the fuzzy oil drop model).
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Kraków, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Faculty of Automatic, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University-Medical College, Kraków, Poland
| |
Collapse
|
3
|
Rajan S, Yoon HS. Structural insights into Plasmodium PPIases. Front Cell Infect Microbiol 2022; 12:931635. [PMID: 36118020 PMCID: PMC9478106 DOI: 10.3389/fcimb.2022.931635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria is one of the most prevalent infectious diseases posing a serious challenge over the years, mainly owing to the emergence of drug-resistant strains, sparking a need to explore and identify novel protein targets. It is a well-known practice to adopt a chemo-genomics approach towards identifying targets for known drugs, which can unravel a novel mechanism of action to aid in better drug targeting proficiency. Immunosuppressive drugs cyclosporin A, FK506 and rapamycin, were demonstrated to inhibit the growth of the malarial parasite, Plasmodium falciparum. Peptidyl prolyl cis/trans isomerases (PPIases), comprising cylcophilins and FK506-binding proteins (FKBPs), the specific target of these drugs, were identified in the Plasmodium parasite and proposed as an antimalarial drug target. We previously attempted to decipher the structure of these proteins and target them with non-immunosuppressive drugs, predominantly on FKBP35. This review summarizes the structural insights on Plasmodium PPIases, their inhibitor complexes and perspectives on drug discovery.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- College of Pharmacy, CHA University, Pocheon-si, South Korea
- CHA Advanced Research Institute, Seongnam-si, South Korea
- *Correspondence: Ho Sup Yoon,
| |
Collapse
|
4
|
Hsp90 and Associated Co-Chaperones of the Malaria Parasite. Biomolecules 2022; 12:biom12081018. [PMID: 35892329 PMCID: PMC9332011 DOI: 10.3390/biom12081018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 12/14/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is one of the major guardians of cellular protein homeostasis, through its specialized molecular chaperone properties. While Hsp90 has been extensively studied in many prokaryotic and higher eukaryotic model organisms, its structural, functional, and biological properties in parasitic protozoans are less well defined. Hsp90 collaborates with a wide range of co-chaperones that fine-tune its protein folding pathway. Co-chaperones play many roles in the regulation of Hsp90, including selective targeting of client proteins, and the modulation of its ATPase activity, conformational changes, and post-translational modifications. Plasmodium falciparum is responsible for the most lethal form of human malaria. The survival of the malaria parasite inside the host and the vector depends on the action of molecular chaperones. The major cytosolic P. falciparum Hsp90 (PfHsp90) is known to play an essential role in the development of the parasite, particularly during the intra-erythrocytic stage in the human host. Although PfHsp90 shares significant sequence and structural similarity with human Hsp90, it has several major structural and functional differences. Furthermore, its co-chaperone network appears to be substantially different to that of the human host, with the potential absence of a key homolog. Indeed, PfHsp90 and its interface with co-chaperones represent potential drug targets for antimalarial drug discovery. In this review, we critically summarize the current understanding of the properties of Hsp90, and the associated co-chaperones of the malaria parasite.
Collapse
|
5
|
Stofberg ML, Caillet C, de Villiers M, Zininga T. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, Present and Future. Cells 2021; 10:2849. [PMID: 34831072 PMCID: PMC8616389 DOI: 10.3390/cells10112849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Malaria is still one of the major killer parasitic diseases in tropical settings, posing a public health threat. The development of antimalarial drug resistance is reversing the gains made in attempts to control the disease. The parasite leads a complex life cycle that has adapted to outwit almost all known antimalarial drugs to date, including the first line of treatment, artesunate. There is a high unmet need to develop new strategies and identify novel therapeutics to reverse antimalarial drug resistance development. Among the strategies, here we focus and discuss the merits of the development of antimalarials targeting the Heat shock protein 90 (Hsp90) due to the central role it plays in protein quality control.
Collapse
Affiliation(s)
| | | | | | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (M.L.S.); (C.C.); (M.d.V.)
| |
Collapse
|
6
|
Basu S, Olieric V, Leonarski F, Matsugaki N, Kawano Y, Takashi T, Huang CY, Yamada Y, Vera L, Olieric N, Basquin J, Wojdyla JA, Bunk O, Diederichs K, Yamamoto M, Wang M. Long-wavelength native-SAD phasing: opportunities and challenges. IUCRJ 2019; 6:373-386. [PMID: 31098019 PMCID: PMC6503925 DOI: 10.1107/s2052252519002756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/22/2019] [Indexed: 05/04/2023]
Abstract
Native single-wavelength anomalous dispersion (SAD) is an attractive experimental phasing technique as it exploits weak anomalous signals from intrinsic light scatterers (Z < 20). The anomalous signal of sulfur in particular, is enhanced at long wavelengths, however the absorption of diffracted X-rays owing to the crystal, the sample support and air affects the recorded intensities. Thereby, the optimal measurable anomalous signals primarily depend on the counterplay of the absorption and the anomalous scattering factor at a given X-ray wavelength. Here, the benefit of using a wavelength of 2.7 over 1.9 Å is demonstrated for native-SAD phasing on a 266 kDa multiprotein-ligand tubulin complex (T2R-TTL) and is applied in the structure determination of an 86 kDa helicase Sen1 protein at beamline BL-1A of the KEK Photon Factory, Japan. Furthermore, X-ray absorption at long wavelengths was controlled by shaping a lysozyme crystal into spheres of defined thicknesses using a deep-UV laser, and a systematic comparison between wavelengths of 2.7 and 3.3 Å is reported for native SAD. The potential of laser-shaping technology and other challenges for an optimized native-SAD experiment at wavelengths >3 Å are discussed.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Naohiro Matsugaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Yoshiaki Kawano
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Tomizaki Takashi
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Yusuke Yamada
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Jerome Basquin
- Department of Biochemistry, Max Planck Institute of Biochemistry, Munich, Germany
| | - Justyna A. Wojdyla
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Oliver Bunk
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Konstanz, 78457, Germany
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
7
|
Goh CKW, Silvester J, Wan Mahadi WNS, Chin LP, Ying LT, Leow TC, Kurahashi R, Takano K, Budiman C. Expression and characterization of functional domains of FK506-binding protein 35 from Plasmodium knowlesi. Protein Eng Des Sel 2018; 31:489-498. [PMID: 31120120 DOI: 10.1093/protein/gzz008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/24/2018] [Accepted: 04/06/2019] [Indexed: 11/13/2022] Open
Abstract
The FK506-binding protein of Plasmodium knowlesi (Pk-FKBP35) is considerably a viable antimalarial drug target, which belongs to the peptidyl-prolyl cis-trans isomerase (PPIase) protein family member. Structurally, this protein consists of an N-terminal FK506-binding domain (FKBD) and a C-terminal tetratricopeptide repeat domain (TPRD). This study aims to decipher functional properties of these domains as a platform for development of novel antimalarial drugs. Accordingly, full-length Pk-FKBP35 as well as its isolated domains, Pk-FKBD and Pk-TPRD were overexpressed, purified, and characterized. The results showed that catalytic PPIase activity was confined to the full-length Pk-FKBP35 and Pk-FKBD, suggesting that the catalytic activity is structurally regulated by the FKBD. Meanwhile, oligomerization analysis revealed that Pk-TPRD is essential for dimerization. Asp55, Arg60, Trp77 and Phe117 in the Pk-FKBD were considerably important for catalysis as underlined by significant reduction of PPIase activity upon mutations at these residues. Further, inhibition activity of Pk-FKBP35 towards calcineurin phosphatase activity revealed that the presence of FKBD is essential for the inhibitory property, while TPRD may be important for efficient binding to calcineurin. We then discussed possible roles of FKBP35 in Plasmodium cells and proposed mechanisms by which the immunosuppressive drug, FK506, interacts with the protein.
Collapse
Affiliation(s)
- Carlmond Kah Wun Goh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jovi Silvester
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Lee Ping Chin
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Lau Tiek Ying
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Malaysia
| | - Ryo Kurahashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Kazufumi Takano
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan
| | - Cahyo Budiman
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
8
|
Ma F, Hu Y, Ju Y, Jiang Q, Cheng Z, Zhang Q. A novel tetratricopeptide repeat protein, WHITE TO GREEN1, is required for early chloroplast development and affects RNA editing in chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5829-5843. [PMID: 29140512 PMCID: PMC5854136 DOI: 10.1093/jxb/erx383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/05/2017] [Indexed: 05/24/2023]
Abstract
The chloroplast is essential for plant photosynthesis and production, but the regulatory mechanism of chloroplast development is still elusive. Here, a novel gene, WHITE TO GREEN1 (WTG1), was identified to have a function in chloroplast development and plastid gene expression by screening Arabidopsis leaf coloration mutants. WTG1 encodes a chloroplast-localized tetratricopeptide repeat protein that is expressed widely in Arabidopsis cells. Disruption of WTG1 suppresses plant growth, retards leaf greening and chloroplast development, and represses photosynthetic gene expression, but complemented expression of WTG1 restored a normal phenotype. Moreover, WTG1 protein is associated with the organelle RNA editing factors MORF8 and MORF9, and RNA editing of the plastid petL-5 and ndhG-50 transcripts was affected in wtg1 mutants. These results indicate that WTG1 affects both transcriptional and posttranscriptional regulation of plastid gene expression, and provide evidence for the involvement of a tetratricopeptide repeat protein in chloroplast RNA editing in Arabidopsis.
Collapse
Affiliation(s)
- Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, China
| | - Yingchun Hu
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, China
| | - Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, China
| | - Qianru Jiang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, China
| |
Collapse
|
9
|
Olczak A, Cianci M. The signal-to-noise ratio in SAD experiments. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2017.1386182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andrzej Olczak
- Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
10
|
The antimalarial action of FK506 and rapamycin: evidence for a direct effect on FK506-binding protein PfFKBP35. Parasitology 2017; 144:869-876. [PMID: 28274284 DOI: 10.1017/s0031182017000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FK506 and rapamycin (Rap) are immunosuppressive drugs that act principally on T-lymphocytes. The receptors for both drugs are FK506-binding proteins (FKBPs), but the molecular mechanisms of immunosuppression differ. An FK506-FKBP complex inhibits the protein phosphatase calcineurin, blocking a key step in T-cell activation, while the Rap -FKBP complex binds to the protein kinase target of rapamycin (TOR), which is involved in a subsequent signalling pathway. Both drugs, and certain non-immunosuppressive compounds related to FK506, have potent antimalarial activity. There is however conflicting evidence on the involvement of Plasmodium calcineurin in the action of FK506, and the parasite lacks an apparent TOR homologue. We therefore set out to establish whether inhibition of the Plasmodium falciparum FKBP PfFKBP35 itself might be responsible for the antimalarial effects of FK506 and Rap. Similarities in the antiparasitic actions of FK506 and Rap would constitute indirect evidence for this hypothesis. FK506 and Rap acted indistinguishably on: (i) specificity for different intra-erythrocytic stages in culture, (ii) kinetics of killing or irreversible growth arrest of parasites and (iii) interactions with other antimalarial agents. Furthermore, PfFKBP35's inhibitory effect on calcineurin was independent of FK506 under a range of conditions, suggesting that calcineurin is unlikely to be involved in the antimalarial action of FK506.
Collapse
|
11
|
Gorgel M, Bøggild A, Ulstrup JJ, Weiss MS, Müller U, Nissen P, Boesen T. Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1095-101. [PMID: 25945575 DOI: 10.1107/s1399004715003272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Abstract
Exploiting the anomalous signal of the intrinsic S atoms to phase a protein structure is advantageous, as ideally only a single well diffracting native crystal is required. However, sulfur is a weak anomalous scatterer at the typical wavelengths used for X-ray diffraction experiments, and therefore sulfur SAD data sets need to be recorded with a high multiplicity. In this study, the structure of a small pilin protein was determined by sulfur SAD despite several obstacles such as a low anomalous signal (a theoretical Bijvoet ratio of 0.9% at a wavelength of 1.8 Å), radiation damage-induced reduction of the cysteines and a multiplicity of only 5.5. The anomalous signal was improved by merging three data sets from different volumes of a single crystal, yielding a multiplicity of 17.5, and a sodium ion was added to the substructure of anomalous scatterers. In general, all data sets were balanced around the threshold values for a successful phasing strategy. In addition, a collection of statistics on structures from the PDB that were solved by sulfur SAD are presented and compared with the data. Looking at the quality indicator R(anom)/R(p.i.m.), an inconsistency in the documentation of the anomalous R factor is noted and reported.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Manfred S Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Uwe Müller
- Macromolecular Crystallography (HZB-MX), Helmholtz Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
McConnell J, Wang Y, McAlpine S. Targeting the C-Terminus of Hsp90 as a Cancer Therapy. TOPICS IN MEDICINAL CHEMISTRY 2015:1-20. [DOI: 10.1007/7355_2015_93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Abstract
Despite a century of control and eradication campaigns, malaria remains one of the world's most devastating diseases. Our once-powerful therapeutic weapons are losing the war against the Plasmodium parasite, whose ability to rapidly develop and spread drug resistance hamper past and present malaria-control efforts. Finding new and effective treatments for malaria is now a top global health priority, fuelling an increase in funding and promoting open-source collaborations between researchers and pharmaceutical consortia around the world. The result of this is rapid advances in drug discovery approaches and technologies, with three major methods for antimalarial drug development emerging: (i) chemistry-based, (ii) target-based, and (iii) cell-based. Common to all three of these approaches is the unique ability of structural biology to inform and accelerate drug development. Where possible, SBDD (structure-based drug discovery) is a foundation for antimalarial drug development programmes, and has been invaluable to the development of a number of current pre-clinical and clinical candidates. However, as we expand our understanding of the malarial life cycle and mechanisms of resistance development, SBDD as a field must continue to evolve in order to develop compounds that adhere to the ideal characteristics for novel antimalarial therapeutics and to avoid high attrition rates pre- and post-clinic. In the present review, we aim to examine the contribution that SBDD has made to current antimalarial drug development efforts, covering hit discovery to lead optimization and prevention of parasite resistance. Finally, the potential for structural biology, particularly high-throughput structural genomics programmes, to identify future targets for drug discovery are discussed.
Collapse
|
14
|
Co-chaperones of Hsp90 in Plasmodium falciparum and their concerted roles in cellular regulation. Parasitology 2014; 141:1177-91. [PMID: 24560171 DOI: 10.1017/s0031182013002084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Co-chaperones are well-known regulators of heat shock protein 90 (Hsp90). Hsp90 is a molecular chaperone that is essential in the eukaryotes for the folding and activation of numerous proteins involved in important cellular processes such as signal transduction, growth and developmental regulation. Co-chaperones assist Hsp90 in the protein folding process by modulating conformational changes to promote client protein interaction and functional maturation. With the recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a potential antimalarial drug target, there is obvious interest in the study of its co-chaperones in their partnership in regulating cellular processes in malaria parasite. Previous studies on PfHsp90 have identified more than 10 co-chaperones in P. falciparum genome. However, many of them remained annotated as putative proteins as their functionality has not been validated experimentally. So far, only five co-chaperones, PfHop, Pfp23, PfAha1, PfPP5 and PfFKBP35 have been characterized and shown to interact with PfHsp90. This review will summarize current knowledge on the co-chaperones in P. falciparum and discuss their regulatory roles on PfHsp90. As certain eukaryotic co-chaperones have also been implicated in altering the affinity of Hsp90 for its inhibitor, this review will also examine plasmodial co-chaperones' potential influence on approaches towards designing antimalarials targeting PfHsp90.
Collapse
|
15
|
Rajan S, Austin D, Harikishore A, Nguyen QT, Baek K, Yoon HS. Crystal structure of Plasmodium vivax
FK506-binding protein 25 reveals conformational changes responsible for its noncanonical activity. Proteins 2013; 82:1235-44. [DOI: 10.1002/prot.24487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/30/2013] [Accepted: 11/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sreekanth Rajan
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - David Austin
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Amaravadhi Harikishore
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Quoc Toan Nguyen
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
| | - Kwanghee Baek
- Department of Genetic Engineering; College of Life Sciences, Kyung Hee University; Gyeonggi-do 446-701 Republic of Korea
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry; School of Biological Science; Nanyang Technological University, Singapore; 637665 Singapore
- Department of Genetic Engineering; College of Life Sciences, Kyung Hee University; Gyeonggi-do 446-701 Republic of Korea
| |
Collapse
|
16
|
Urosev D, Ferrer-Navarro M, Pastorello I, Cartocci E, Costenaro L, Zhulenkovs D, Maréchal JD, Leonchiks A, Reverter D, Serino L, Soriani M, Daura X. Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold. BMC STRUCTURAL BIOLOGY 2013; 13:19. [PMID: 24099525 PMCID: PMC3851747 DOI: 10.1186/1472-6807-13-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/03/2013] [Indexed: 01/06/2023]
Abstract
Background Increasing rates of antimicrobial resistance among uropathogens led, among other efforts, to the application of subtractive reverse vaccinology for the identification of antigens present in extraintestinal pathogenic E. coli (ExPEC) strains but absent or variable in non-pathogenic strains, in a quest for a broadly protective Escherichia coli vaccine. The protein coded by locus c5321 from CFT073 E. coli was identified as one of nine potential vaccine candidates against ExPEC and was able to confer protection with an efficacy of 33% in a mouse model of sepsis. c5321 (known also as EsiB) lacks functional annotation and structurally belongs to the Sel1-like repeat (SLR) family. Herein, as part of the general characterization of this potential antigen, we have focused on its structural properties. Results We report the 1.74 Å-resolution crystal structure of c5321 from CFT073 E. coli determined by Se-Met SAD phasing. The structure is composed of 11 SLR units in a topological organisation that highly resembles that found in HcpC from Helicobacter pylori, with the main difference residing in how the super-helical fold is stabilised. The stabilising effect of disulfide bridges in HcpC is replaced in c5321 by a strengthening of the inter-repeat hydrophobic core. A metal-ion binding site, uncharacteristic of SLR proteins, is detected between SLR units 3 and 4 in the region of the inter-repeat hydrophobic core. Crystal contacts are observed between the C-terminal tail of one molecule and the C-terminal amphipathic groove of a neighbouring one, resembling interactions between ligand and proteins containing tetratricopeptide-like repeats. Conclusions The structure of antigen c5321 presents a mode of stabilization of the SLR fold different from that observed in close homologs of known structure. The location of the metal-ion binding site and the observed crystal contacts suggest a potential role in regulation of conformational flexibility and interaction with yet unidentified target proteins, respectively. These findings open new perspectives in both antigen design and for the identification of a functional role for this protective antigen.
Collapse
Affiliation(s)
- Dunja Urosev
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Structural insights into substrate binding by PvFKBP35, a peptidylprolyl cis-trans isomerase from the human malarial parasite Plasmodium vivax. EUKARYOTIC CELL 2013; 12:627-34. [PMID: 23435727 DOI: 10.1128/ec.00016-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunosuppressive drug FK506 binding proteins (FKBPs), an immunophilin family with the immunosuppressive drug FK506 binding property, exhibit peptidylprolyl cis-trans isomerase (PPIase) activity. While the cyclophilin-catalyzed peptidylprolyl isomerization of X-Pro peptide bonds has been extensively studied, the mechanism of the FKBP-mediated peptidylprolyl isomerization remains uncharacterized. Thus, to investigate the binding of FKBP with its substrate and the underlying catalytic mechanism of the FKBP-mediated proline isomerization, here we employed the FK506 binding domain (FKBD) of the human malarial parasite Plasmodium vivax FK506 binding protein 35 (PvFKBP35) and examined the details of the molecular interaction between the isomerase and a peptide substrate. The crystallographic structures of apo PvFKBD35 and its complex with the tetrapeptide substrate succinyl-Ala-Leu-Pro-Phe-p-nitroanilide (sALPFp) determined at 1.4 Å and 1.65 Å resolutions, respectively, showed that the substrate binds to PvFKBD35 in a cis conformation. Nuclear magnetic resonance (NMR) studies demonstrated the chemical shift perturbations of D55, H67, V73, and I74 residues upon the substrate binding. In addition, the X-ray crystal structure, along with the mutational studies, shows that Y100 is a key residue for the catalytic activity. Taken together, our results provide insights into the catalytic mechanism of PvFKBP35-mediated cis-trans isomerization of substrate and ultimately might aid designing substrate mimetic inhibitors targeting the malarial parasite FKBPs.
Collapse
|
18
|
Rosenzweig R, Bronner V, Zhang D, Fushman D, Glickman MH. Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J Biol Chem 2012; 287:14659-71. [PMID: 22318722 DOI: 10.1074/jbc.m111.316323] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates tagged with (poly)ubiquitin for degradation can be targeted directly to the 26 S proteasome where they are proteolyzed. Independently, ubiquitin conjugates may also be delivered by bivalent shuttles. The majority of shuttles attach to the proteasome through a ubiquitin-like domain (UBL) while anchoring cargo at a C-terminal polyubiquitin-binding domain(s). We found that two shuttles of this class, Rad23 and Dsk2, dock at two different receptor sites embedded within a single subunit of the 19 S proteasome regulatory particle, Rpn1. Their association/dissociation constants and affinities for Rpn1 are similar. In contrast, another UBL-containing protein, the deubiquitinase Ubp6, is also anchored by Rpn1, yet it dissociates slower, thus behaving as an occasional proteasome subunit that is distinct from the transiently associated shuttles. Two neighboring subunits, Rpn10 and Rpn13, show a marked preference for polyubiquitin over UBLs. Rpn10 attaches to the central solenoid portion of Rpn1, although this association is stabilized by the presence of a third subunit, Rpn2. Rpn13 binds directly to Rpn2. These intrinsic polyubiquitin receptors may compete with substrate shuttles for their polyubiquitin-conjugate cargos, thereby aiding release of the emptied shuttles. By binding multiple ubiquitin-processing factors simultaneously, Rpn1 is uniquely suited to coordinate substrate recruitment, deubiquitination, and movement toward the catalytic core. The broad range of affinities for ubiquitin, ubiquitin-like, and non-ubiquitin signals by adjacent yet nonoverlapping sites all within the base represents a hub of activity that coordinates the intricate relay of substrates within the proteasome, and consequently it influences substrate residency time and commitment to degradation.
Collapse
Affiliation(s)
- Rina Rosenzweig
- Department of Biology, Technion Institute of Technology, 32000 Haifa, Israel
| | | | | | | | | |
Collapse
|
19
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
20
|
FKBP38-Bcl-2 interaction: a novel link to chemoresistance. Curr Opin Pharmacol 2011; 11:354-9. [PMID: 21571591 DOI: 10.1016/j.coph.2011.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/02/2011] [Accepted: 04/27/2011] [Indexed: 12/31/2022]
Abstract
FKBP38, a noncanonical member of the immunosuppressive drug FK506 binding protein (FKBP) family members, possesses an inducible rotamase. FKBP38 interacts with several proteins and regulates multiple signaling pathways such as cell survival, apoptosis, proliferation, and metastasis. Deregulation of apoptosis is associated with chemoresistance and tumor relapse. The antiapoptotic protein Bcl-2 is a key player for increasing the apoptotic threshold in response to various cytotoxic drugs. The molecular interaction of Bcl-2 with FKBP38 potentiates the biological function of Bcl-2 and contributes to tumorigenesis and chemoresistance. Here, we discuss recent advances in the role of FKBP38 in connection with Bcl-2 and its possible link to chemotherapeutic resistance.
Collapse
|
21
|
Alag R, Qureshi IA, Bharatham N, Shin J, Lescar J, Yoon HS. NMR and crystallographic structures of the FK506 binding domain of human malarial parasite Plasmodium vivax FKBP35. Protein Sci 2010; 19:1577-86. [PMID: 20572013 DOI: 10.1002/pro.438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The emergence of drug-resistant malaria parasites is the major threat to effective malaria control, prompting a search for novel compounds with mechanisms of action that are different from the traditionally used drugs. The immunosuppressive drug FK506 shows an antimalarial activity. The mechanism of the drug action involves the molecular interaction with the parasite target proteins PfFKBP35 and PvFKBP35, which are novel FK506 binding protein family (FKBP) members from Plasmodium falciparum and Plasmodium vivax, respectively. Currently, molecular mechanisms of the FKBP family proteins in the parasites still remain elusive. To understand their functions, here we have determined the structures of the FK506 binding domain of Plasmodium vivax (PvFKBD) in unliganded form by NMR spectroscopy and in complex with FK506 by X-ray crystallography. We found out that PvFKBP35 exhibits a canonical FKBD fold and shares kinetic profiles similar to those of PfFKBP35, the homologous protein in P. falciparum, indicating that the parasite FKBP family members play similar biological roles in their life cycles. Despite the similarity, differences were observed in the ligand binding modes between PvFKBD and HsFKBP12, a human FKBP homolog, which could provide insightful information into designing selective antimalarial drug against the parasites.
Collapse
Affiliation(s)
- Reema Alag
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | | | | |
Collapse
|
22
|
Characterization of unique regions of Borrelia burgdorferi surface-located membrane protein 1. Infect Immun 2010; 78:4477-87. [PMID: 20696833 DOI: 10.1128/iai.00501-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathogen of Lyme disease, Borrelia burgdorferi, produces a putative surface protein termed "surface-located membrane protein 1" (Lmp1). Lmp1 has been shown previously to assist the microbe in evasion of host-acquired immune defenses and in the establishment of persistent infection of mammals. Here, we show that Lmp1 is an integral membrane protein with surface-exposed N-terminal, middle, and C-terminal regions. During murine infection, antibodies recognizing these three protein regions were produced. Separate immunization of mice with each of the discrete regions exerted differential effects on spirochete survival during infection. Notably, antibodies against the C-terminal region primarily interfered with B. burgdorferi persistence in the joints, while antibodies specific to the N-terminal region predominantly affected pathogen levels in the heart, including the development of carditis. Genetic reconstitution of lmp1 deletion mutants with the lmp1 N-terminal region significantly enhanced its ability to resist the bactericidal effects of immune sera and also was observed to increase pathogen survival in vivo. Taken together, the combined data suggest that the N-terminal region of Lmp1 plays a distinct role in spirochete survival and other parts of the protein are related to specific functions corresponding to pathogen persistence and tropism during infection that is displayed in an organ-specific manner. The findings reported here underscore the fact that surface-exposed regions of Lmp1 could potentially serve as vaccine targets or antigenic regions that could alter the course of natural Lyme disease.
Collapse
|