1
|
Naffaa MM, Chebib M, Hibbs DE, Hanrahan JR. Comparison of templates for homology model of ρ1 GABA C receptors: More insights to the orthosteric binding site’s structure and functionality. J Mol Graph Model 2015; 62:43-55. [DOI: 10.1016/j.jmgm.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 11/25/2022]
|
2
|
Carland JE, Yamamoto I, Hanrahan JR, Abdel-Halim H, Lewis TM, Absalom N, Chebib M. A hydrophobic area of the GABA ρ₁ receptor containing phenylalanine 124 influences both receptor activation and deactivation. J Mol Neurosci 2014; 55:305-13. [PMID: 24816654 DOI: 10.1007/s12031-014-0322-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Experimental evidence suggests that GABA ρ1 receptors are potential therapeutic targets for the treatment of a range of neurological conditions, including anxiety and sleep disorders. Homology modelling of the GABA ρ1 extracellular N-terminal domain has revealed a novel hydrophobic area that extends beyond, but not including the GABA-binding site. Phenylalanine 124 (F124) is predicted to be involved in maintaining the structural integrity of the orthosteric-binding site. We have assessed the activity of a series of GABA ρ1 receptors that incorporate a mutation at F124. Wild-type and mutant human GABA ρ1 subunits were expressed in Xenopus laevis oocytes and AD293 cells, and the pharmacology and kinetic properties of the receptors were measured using electrophysiological analysis. Mutation of F124 had minimal effect on receptor pharmacology. However, the rate of deactivation was significantly increased compared to wild type. This study provides further information about the role of residues within a novel hydrophobic area of the GABA ρ1 receptor. This knowledge can help future studies into the design of potent and subtype-selective ligands with therapeutic value.
Collapse
Affiliation(s)
- J E Carland
- School of Medical Sciences, UNSW Medicine, The University of New South Wales, Kensington, NSW, 2052, Australia
| | | | | | | | | | | | | |
Collapse
|
3
|
Gavande N, Kim HL, Doddareddy MR, Johnston GAR, Chebib M, Hanrahan JR. Design, Synthesis, and Pharmacological Evaluation of Fluorescent and Biotinylated Antagonists of ρ1 GABAC Receptors. ACS Med Chem Lett 2013; 4:402-7. [PMID: 24900684 DOI: 10.1021/ml300476v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
The ρ1 GABAC receptor is a ligand-gated chloride ion channel that shows promise as a therapeutic target for myopia, sleep disorders, memory and learning facilitation, and anxiety-related disorders. As such, there is a need for molecular probes to understand the role GABAC receptors play in physiological and pathological processes. To date, no labeled (either radioactive or fluorescent) GABAC selective ligand has been developed that can act as a marker for GABAC receptor visualization and localization studies. Herein, we report a series of fluorescent ligands containing different-sized linkers and fluorophores based around (S)-4-ACPBPA [(4-aminocyclopenten-1-yl)-butylphosphinic acid], a selective GABAC antagonist. One of these conjugates, (S)-4-ACPBPA-C5-BODIPY (13), displayed moderate potency (IC50 = 58.61 μM) and selectivity (>100 times) for ρ1 over α1β2γ2L GABAA receptors. These conjugates are novel lead agents for the development of more potent and selective fluorescent probes for studying the localization and function of GABAC receptors in living cells.
Collapse
Affiliation(s)
- Navnath Gavande
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hye-Lim Kim
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Graham A. R. Johnston
- Adrien Albert Laboratory, Department
of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jane R. Hanrahan
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Robust photoregulation of GABA(A) receptors by allosteric modulation with a propofol analogue. Nat Commun 2013; 3:1095. [PMID: 23033071 PMCID: PMC4023869 DOI: 10.1038/ncomms2094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/29/2012] [Indexed: 01/09/2023] Open
Abstract
Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photo-regulation of GABAA receptors (GABAARs) by a derivative of propofol (2,6-diisopropylphenol), a GABAAR allosteric modulator, that we have modified to contain photo-isomerizable azobenzene. Using α1β2γ2 GABAARs expressed in Xenopus laevis oocytes and native GABAARs of isolated retinal ganglion cells, we show that the trans-azobenzene isomer of the new compound (trans-MPC088), generated by visible light (wavelengths ~440 nm), potentiates the GABA-elicited response and at higher concentrations directly activates the receptors. cis-MPC088, generated from trans-MPC088 by UV light (~365 nm), produces little if any receptor potentiation/activation. In cerebellar slices, MPC088 co-applied with GABA affords bidirectional photo-modulation of Purkinje cell membrane current and spike-firing rate. The findings demonstrate photo-control of GABAARs by an allosteric ligand and open new avenues for fundamental and clinically oriented research on GABAARs, a major class of neurotransmitter receptors in the central nervous system.
Collapse
|
5
|
Yamamoto I, Absalom N, Carland JE, Doddareddy M, Gavande N, Johnston GAR, Hanrahan JR, Chebib M. Differentiating enantioselective actions of GABOB: a possible role for threonine 244 in the binding site of GABA(C) ρ(1) receptors. ACS Chem Neurosci 2012; 3:665-73. [PMID: 23019493 PMCID: PMC3447397 DOI: 10.1021/cn3000229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/26/2012] [Indexed: 01/20/2023] Open
Abstract
Designing potent and subtype-selective ligands with therapeutic value requires knowledge about how endogenous ligands interact with their binding site. 4-Amino-3-hydroxybutanoic acid (GABOB) is an endogenous ligand found in the central nervous system in mammals. It is a metabolic product of GABA, the major inhibitory neurotransmitter. Homology modeling of the GABA(C) ρ(1) receptor revealed a potential H-bond interaction between the hydroxyl group of GABOB and threonine 244 (T244) located on loop C of the ligand binding site of the ρ(1) subunit. Using site-directed mutagenesis, we examined the effect of mutating T244 on the efficacy and pharmacology of GABOB and various ligands. It was found that mutating T244 to amino acids that lacked a hydroxyl group in their side chains produced GABA insensitive receptors. Only by mutating ρ(1)T244 to serine (ρ(1)T244S) produced a GABA responsive receptor, albeit 39-fold less sensitive to GABA than ρ(1)wild-type. We also observed changes in the activities of the GABA(C) receptor partial agonists, muscimol and imidazole-4-acetic acid (I4AA). At the concentrations we tested, the partial agonists antagonized GABA-induced currents at ρ(1)T244S mutant receptors (Muscimol: ρ(1)wild-type, EC(50) = 1.4 μM; ρ(1)T244S, IC(50) = 32.8 μM. I4AA: ρ(1)wild-type, EC(50) = 8.6 μM; ρ(1)T244S, IC(50) = 21.4 μM). This indicates that T244 is predominantly involved in channel gating. R-(-)-GABOB and S-(+)-GABOB are full agonists at ρ(1)wild-type receptors. In contrast, R-(-)-GABOB was a weak partial agonist at ρ(1)T244S (1 mM activates 26% of the current produced by GABA EC(50) versus ρ(1)wild-type, EC(50) = 19 μM; I(max) 100%), and S-(+)-GABOB was a competitive antagonist at ρ(1)T244S receptors (ρ(1)wild-type, EC(50) = 45 μM versus ρ(1)T244S, IC(50) = 417.4 μM, K(B) = 204 μM). This highlights that the interaction of GABOB with T244 is enantioselective. In contrast, the potencies of a range of antagonists tested, 3-aminopropyl(methyl)phosphinic acid (3-APMPA), 3-aminopropylphosphonic acid (3-APA), S- and R-(3-amino-2-hydroxypropyl)methylphosphinic acid (S-(-)-CGP44532 and R-(+)-CGP44533), were not altered. This suggests that T244 is not critical for antagonist binding. Receptor gating is dynamic, and this study highlights the role of loop C in agonist-evoked receptor activation, coupling agonist binding to channel gating.
Collapse
Affiliation(s)
- Izumi Yamamoto
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Nathan Absalom
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Jane E. Carland
- Department
of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Navnath Gavande
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | | | - Jane R. Hanrahan
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| | - Mary Chebib
- Faculty of
Pharmacy, The University of Sydney, Sydney,
NSW 2006, Australia
| |
Collapse
|
6
|
Classification of protein functional surfaces using structural characteristics. Proc Natl Acad Sci U S A 2012; 109:1170-5. [PMID: 22238424 DOI: 10.1073/pnas.1119684109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein structure and function are closely related, especially in functional surfaces, which are local spatial regions that perform the biological functions. Also, protein structures tend to evolve more slowly than amino acid sequences. We have therefore developed a method to classify proteins using the structures of functional surfaces; we call it protein surface classification (PSC). PSC may reflect functional relationships among proteins and may detect evolutionary relationships among highly divergent sequences. We focused on the surfaces of ligand-bound regions because they represent well-defined structures. Specifically, we used structural attributes to measure similarities between binding surfaces and constructed a PSC library of ~2,000 binding surface types from the bound forms. Using flavin mononucleotide-binding proteins and glycosidases as examples, we show how the evolutionary position of an uncharacterized protein can be defined and its function inferred from the characterized members of the same surface subtype. We found that proteins with the same enzyme nomenclature may be divided into subtypes and that two proteins in the same CATH (Class, Architecture, Topology, Homologous superfamily) fold may belong to two different surface types. In conclusion, our approach complements the sequence-based and fold-domain classifications and has the advantage of associating the shape of a protein with its biological function. As an expandable library, PSC provides a resource of spatial patterns for studying the evolution of protein structure and function.
Collapse
|
7
|
Fernández-Ballester G, Fernández-Carvajal A, González-Ros JM, Ferrer-Montiel A. Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics 2011; 3:932-53. [PMID: 24309315 PMCID: PMC3857065 DOI: 10.3390/pharmaceutics3040932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/26/2011] [Accepted: 11/30/2011] [Indexed: 01/21/2023] Open
Abstract
Ion channels are involved in a broad range of physiological and pathological processes. The implications of ion channels in a variety of diseases, including diabetes, epilepsy, hypertension, cancer and even chronic pain, have signaled them as pivotal drug targets. Thus far, drugs targeting ion channels were developed without detailed knowledge of the molecular interactions between the lead compounds and the target channels. In recent years, however, the emergence of high-resolution structures for a plethora of ion channels paves the way for computer-assisted drug design. Currently, available functional and structural data provide an attractive platform to generate models that combine substrate-based and protein-based approaches. In silico approaches include homology modeling, quantitative structure-activity relationships, virtual ligand screening, similarity and pharmacophore searching, data mining, and data analysis tools. These strategies have been frequently used in the discovery and optimization of novel molecules with enhanced affinity and specificity for the selected therapeutic targets. In this review we summarize recent applications of in silico methods that are being used for the development of ion channel drugs.
Collapse
|
8
|
Gussin HA, Khasawneh FT, Xie A, Feng F, Memic A, Qian H, Le Breton GC, Pepperberg DR. Subunit-specific polyclonal antibody targeting human ρ1 GABA(C) receptor. Exp Eye Res 2011; 93:59-64. [PMID: 21536029 PMCID: PMC3138833 DOI: 10.1016/j.exer.2011.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 04/05/2011] [Accepted: 04/12/2011] [Indexed: 11/26/2022]
Abstract
The GABA(C) receptor, a postsynaptic membrane receptor expressed prominently in the retina, is a ligand-gated ion channel that consists of a combination of ρ subunits. We report characterization of a novel guinea pig polyclonal antibody, termed GABA(C) Ab N-14, directed against a 14-mer peptide (N-14) of the extracellular domain of the human ρ1 subunit. The antibody exhibits high sensitivity for N-14 by ELISA. In Western blots, GABA(C) Ab N-14 shows reactivity with the ρ1 subunit of preparations obtained from ρ1 GABA(C)-expressing neuroblastoma cells, Xenopus oocytes, and mammalian retina and brain. Flow cytometry reveals a rightward shift in mean fluorescence intensity of GABA(C)-expressing neuroblastoma cells probed with GABA(C) Ab N-14. Immunostaining of neuroblastoma cells and oocytes with GABA(C) Ab N-14 yields fluorescence only with GABA(C)-expressing cells. Antibody binding has no effect on GABA-elicited membrane current responses. Immunostaining of human retinal sections shows preferential staining within the inner plexiform layer. GABA(C) Ab N-14 appears well suited for investigative studies of GABA(C) ρ1 subunit in retina and other neural tissues.
Collapse
Affiliation(s)
- Hélène A. Gussin
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Fadi T. Khasawneh
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - An Xie
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Feng Feng
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Adnan Memic
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Haohua Qian
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| | - Guy C. Le Breton
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - David R. Pepperberg
- Lions of Illinois Eye Research Institute, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
9
|
Sander T, Frølund B, Bruun AT, Ivanov I, McCammon JA, Balle T. New insights into the GABA(A) receptor structure and orthosteric ligand binding: receptor modeling guided by experimental data. Proteins 2011; 79:1458-77. [PMID: 21365676 PMCID: PMC3076690 DOI: 10.1002/prot.22975] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 01/15/2023]
Abstract
GABA(A) receptors (GABA(A)Rs) are ligand gated chloride ion channels that mediate overall inhibitory signaling in the CNS. A detailed understanding of their structure is important to gain insights in, e.g., ligand binding and functional properties of this pharmaceutically important target. Homology modeling is a necessary tool in this regard because experimentally determined structures are lacking. Here we present an exhaustive approach for creating a high quality model of the α(1)β(2)γ(2) subtype of the GABA(A)R ligand binding domain, and we demonstrate its usefulness in understanding details of orthosteric ligand binding. The model was constructed by using multiple templates and by incorporation of knowledge from biochemical/pharmacological experiments. It was validated on the basis of objective energy functions, its ability to account for available residue specific information, and its stability in molecular dynamics (MD) compared with that of the two homologous crystal structures. We then combined the model with extensive structure-activity relationships available from two homologous series of orthosteric GABA(A)R antagonists to create a detailed hypothesis for their binding modes. Excellent agreement with key experimental data was found, including the ability of the model to accommodate and explain a previously developed pharmacophore model. A coupling to agonist binding was thereby established and discussed in relation to activation mechanisms. Our results highlight the importance of critical evaluation and optimization of each step in the homology modeling process. The approach taken here can greatly aid in increasing the understanding of GABA(A)Rs and related receptors where structural insight is limited and reliable models are difficult to obtain.
Collapse
Affiliation(s)
- Tommy Sander
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bente Frølund
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - Ivaylo Ivanov
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, GA 30302-4098, USA
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0365, USA
| | - Thomas Balle
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Adamian L, Naveed H, Liang J. Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:1092-102. [PMID: 21167813 PMCID: PMC3381425 DOI: 10.1016/j.bbamem.2010.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/25/2010] [Accepted: 12/09/2010] [Indexed: 12/20/2022]
Abstract
Membrane proteins function in the diverse environment of the lipid bilayer. Experimental evidence suggests that some lipid molecules bind tightly to specific sites on the membrane protein surface. These lipid molecules often act as co-factors and play important functional roles. In this study, we have assessed the evolutionary selection pressure experienced at lipid-binding sites in a set of α-helical and β-barrel membrane proteins using posterior probability analysis of the ratio of synonymous vs. nonsynonymous substitutions (ω-ratio). We have also carried out a geometric analysis of the membrane protein structures to identify residues in close contact with co-crystallized lipids. We found that residues forming cholesterol-binding sites in both β(2)-adrenergic receptor and Na(+)-K(+)-ATPase exhibit strong conservation, which can be characterized by an expanded cholesterol consensus motif for GPCRs. Our results suggest the functional importance of aromatic stacking interactions and interhelical hydrogen bonds in facilitating protein-cholesterol interactions, which is now reflected in the expanded motif. We also find that residues forming the cardiolipin-binding site in formate dehydrogenase-N γ-subunit and the phosphatidylglycerol binding site in KcsA are under strong purifying selection pressure. Although the lipopolysaccharide (LPS)-binding site in ferric hydroxamate uptake receptor (FhuA) is only weakly conserved, we show using a statistical mechanical model that LPS binds to the least stable FhuA β-strand and protects it from the bulk lipid. Our results suggest that specific lipid binding may be a general mechanism employed by β-barrel membrane proteins to stabilize weakly stable regions. Overall, we find that the residues forming specific lipid binding sites on the surfaces of membrane proteins often experience strong purifying selection pressure.
Collapse
Affiliation(s)
- Larisa Adamian
- Department of Bioengineering/Bioinformatics University of Illinois at Chicago Chicago, Illinois 60612
| | - Hammad Naveed
- Department of Bioengineering/Bioinformatics University of Illinois at Chicago Chicago, Illinois 60612
| | - Jie Liang
- Department of Bioengineering/Bioinformatics University of Illinois at Chicago Chicago, Illinois 60612
| |
Collapse
|
11
|
Tseng YY, Li WH. Evolutionary approach to predicting the binding site residues of a protein from its primary sequence. Proc Natl Acad Sci U S A 2011; 108:5313-8. [PMID: 21402946 PMCID: PMC3069214 DOI: 10.1073/pnas.1102210108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein binding site residues, especially catalytic residues, play a central role in protein function. Because more than 99% of the ∼ 12 million protein sequences in the nonredundant protein database have no structural information, it is desirable to develop methods to predict the binding site residues of a protein from its primary sequence. This task is highly challenging, because the binding site residues constitute only a small portion of a protein. However, the binding site residues of a protein are clustered in its functional pocket(s), and their spatial patterns tend to be conserved in evolution. To take advantage of these evolutionary and structural principles, we constructed a database of ∼ 50,000 templates (called the pocket-containing segment database), each of which includes not only a sequence segment that contains a functional pocket but also the structural attributes of the pocket. To use this database, we designed a template-matching technique, termed residue-matching profiling, and established a criterion for selecting templates for a query sequence. Finally, we developed a probabilistic model for assigning spatial scores to matched residues between the template and query sequence in local alignments using a set of selected scoring matrices and for computing the binding likelihood of each matched residue in the query sequence. From the likelihoods, one can predict the binding site residues in the query sequence. An automated computational pipeline was developed for our method. A performance evaluation shows that our method achieves a 70% precision in predicting binding site residues at 60% sensitivity.
Collapse
Affiliation(s)
- Yan Yuan Tseng
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637; and
| | - Wen-Hsiung Li
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637; and
- Biodiversity Research Center, Academia Sinica, Tapei 115, Taiwan
| |
Collapse
|
12
|
Gavande N, Yamamoto I, Salam NK, Ai TH, Burden PM, Johnston GAR, Hanrahan JR, Chebib M. Novel Cyclic Phosphinic Acids as GABAC ρ Receptor Antagonists: Design, Synthesis, and Pharmacology. ACS Med Chem Lett 2011; 2:11-6. [PMID: 24900248 DOI: 10.1021/ml1001344] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 10/13/2010] [Indexed: 11/28/2022] Open
Abstract
Understanding the role of GABAC receptors in the central nervous system is limited due to a lack of specific ligands. Novel γ-aminobutyric acid (GABA) analogues based on 3-(aminomethyl)-1-oxo-1-hydroxy-phospholane 17 and 3-(guanido)-1-oxo-1-hydroxy-phospholane 19 were investigated to obtain selective GABAC receptor antagonists. A compound of high potency (19, K B = 10 μM) and selectivity (greater than 100 times at ρ1 GABAC receptors as compared to α1β2γ2L GABAA and GABAB(1b,2) receptors) was obtained. The cyclic phosphinic acids (17 and 19) are novel lead agents for developing into more potent and selective GABAC receptor antagonists with increased lipophilicity for future in vivo studies.
Collapse
Affiliation(s)
- Navnath Gavande
- Faculty of Pharmacy, The University of Sydney, NSW, Australia
| | - Izumi Yamamoto
- Faculty of Pharmacy, The University of Sydney, NSW, Australia
| | - Noeris K. Salam
- Schrodinger, Inc., 8910 University Center Lane, Suite 270, San Diego, California, United States
| | - Tu-Hoa Ai
- Adrien Albert Laboratory, Department of Pharmacology, The University of Sydney, NSW, Australia
| | - Peter M. Burden
- Adrien Albert Laboratory, Department of Pharmacology, The University of Sydney, NSW, Australia
| | - Graham A. R. Johnston
- Adrien Albert Laboratory, Department of Pharmacology, The University of Sydney, NSW, Australia
| | | | - Mary Chebib
- Faculty of Pharmacy, The University of Sydney, NSW, Australia
| |
Collapse
|
13
|
Johnston GAR, Chebib M, Hanrahan JR, Mewett KN. Neurochemicals for the investigation of GABA(C) receptors. Neurochem Res 2010; 35:1970-7. [PMID: 20963487 DOI: 10.1007/s11064-010-0271-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2010] [Indexed: 01/23/2023]
Abstract
GABA(C) receptors are being investigated for their role in many aspects of nervous system function including memory, myopia, pain and sleep. There is evidence for functional GABA(C) receptors in many tissues such as retina, hippocampus, spinal cord, superior colliculus, pituitary and the gut. This review describes a variety of neurochemicals that have been shown to be useful in distinguishing GABA(C) receptors from other receptors for the major inhibitory neurotransmitter GABA. Some selective agonists (including (+)-CAMP and 5-methyl-IAA), competitive antagonists (such as TPMPA, (±)-cis-3-ACPBPA and aza-THIP), positive (allopregnanolone) and negative modulators (epipregnanolone, loreclezole) are described. Neurochemicals that may assist in distinguishing between homomeric ρ1 and ρ2 GABA(C) receptors (2-methyl-TACA and cyclothiazide) are also covered. Given their less widespread distribution, lower abundance and relative structural simplicity compared to GABA(A) and GABA(B) receptors, GABA(C) receptors are attractive drug targets.
Collapse
Affiliation(s)
- Graham A R Johnston
- Adrien Albert Laboratory of Medicinal Chemistry, Department of Pharmacology D06, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
14
|
Estrada-Mondragón A, Reyes-Ruiz JM, Martínez-Torres A, Miledi R. Structure-function study of the fourth transmembrane segment of the GABAρ1 receptor. Proc Natl Acad Sci U S A 2010; 107:17780-4. [PMID: 20876117 PMCID: PMC2955090 DOI: 10.1073/pnas.1012540107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Cys-loop family of receptors mediates synaptic neurotransmission in the central nervous system of vertebrates. These receptors share several structural characteristics and assemble in the plasma membrane as multimers with fivefold symmetry. Of these, the ionotropic GABA receptors are key players in the pathogenesis of diseases like epilepsy, anxiety, and schizophrenia. Different experimental approaches have shed some light on the mechanisms behind the function of these receptors; but little is known about their structure at high resolution. Sequence homology with the nicotinic acetylcholine receptor predicts that ionotropic GABA receptors possess four transmembrane segments (TM1-4) and that TM2 forms the wall of the ion channel. However, the role of the other three segments is unclear. The GABAρ1 receptor plays a fundamental role in the regulation of neurotransmission along the visual pathway, is highly sensitive to GABA, and exhibits little desensitization. In our recent investigations of the role of TM4 in receptor function, a key residue in this domain (W475) was found to be involved in activation of the receptor. Here we have generated a structural model of the GABAρ1 receptor in silico and assessed its validity by electrophysiologically testing nine amino acid substitutions of W475 and deletions of the neighboring residues (Y474 and S476). The results identify a critical linkage between the ligand-binding domain and the TM4 domain and provide a framework for more detailed structure-function analyses of ionotropic GABA receptors.
Collapse
Affiliation(s)
- Argel Estrada-Mondragón
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, CP 76230 Queretaro, Mexico; and
| | | | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, CP 76230 Queretaro, Mexico; and
| | - Ricardo Miledi
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, CP 76230 Queretaro, Mexico; and
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550
| |
Collapse
|
15
|
Gussin HA, Tomlinson ID, Muni NJ, Little DM, Qian H, Rosenthal SJ, Pepperberg DR. GABAC receptor binding of quantum-dot conjugates of variable ligand valency. Bioconjug Chem 2010; 21:1455-64. [PMID: 20715850 PMCID: PMC2929923 DOI: 10.1021/bc100050s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Highly fluorescent CdSe quantum dots (qdots) can serve as a platform for tethering multiple copies of a receptor-targeted ligand, affording study of how the level of multivalency affects receptor binding. We previously showed that qdots conjugated with long PEG chains terminated by muscimol, a known GABA(C) agonist, exhibit specific binding to the surface membrane of GABA(C) receptor-expressing Xenopus oocytes. The present report addresses the effect of varying the number, i.e., valency, of muscimol- (M-) terminated PEG chains attached to the qdot on binding of the resulting conjugate to GABA(C) receptors. M-PEG-qdots of differing muscimol valency were prepared by conjugating AMP-CdSe/ZnS qdots with muscimol-terminated and methylamine-terminated PEG chains in proportions designed to yield varying percentages of muscimol-terminated chains among the total approximately 150-200 chains bound to the qdot. The investigated valencies represented 0%, approximately 25%, approximately 50%, and 100% loading with muscimol (preparations termed M-PEG-qdot0, M-PEG-qdot25, M-PEG-qdot50, and M-PEG-qdot100, respectively. Binding of a given conjugate to surface membranes of GABA(C) receptor-expressing oocytes was analyzed by quantitative fluorescence microscopy following defined incubation with approximately 30 nM of the conjugate. With 5-20 min incubation, the fluorescence signal resulting from incubation with M-PEG-qdot25 exceeded, by approximately 6-fold, the fluorescence level obtained with M-PEG-qdot preparations that lacked muscimol-terminated chains (M-PEG-qdot0). M-PEG-qdot50 yielded a net signal roughly similar to that of M-PEG-qdot25, and that produced by M-PEG-qdot100 exceeded, by approximately 30-50%, those for M-PEG-qdot25 and M-PEG-qdot50. The time course of changes in oocyte surface membrane fluorescence resulting from the introduction of and removal of M-PEG-qdots in the medium bathing the oocyte indicated only a modest dependence of both binding and wash-out kinetics on muscimol valency. The results demonstrate a dependence of the binding activity of the M-PEG-qdot conjugates on muscimol valency, presumably reflecting higher GABA(C) avidity and/or affinity of the muscimol at high valency, and provide insight on the interactions of membrane receptor proteins with qdot conjugates containing multiple copies of a receptor-targeting ligand.
Collapse
Affiliation(s)
- Hélène A. Gussin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | | | - Niraj J. Muni
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Deborah M. Little
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL
| | - Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - David R. Pepperberg
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
16
|
Tipps ME, Lawshe JE, Ellington AD, Mihic SJ. Identification of novel specific allosteric modulators of the glycine receptor using phage display. J Biol Chem 2010; 285:22840-5. [PMID: 20501662 DOI: 10.1074/jbc.m110.130815] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The glycine receptor (GlyR) is a member of the Cys-loop superfamily of ligand-gated ion channels and the major mediator of inhibitory neurotransmission in the spinal cord and brainstem. Many allosteric modulators affect the functioning of members of this superfamily, with some such as benzodiazepines showing great specificity and others such as zinc, alcohols, and volatile anesthetics acting on multiple members. To date, no potent and efficacious allosteric modulator acting specifically at the GlyR has been identified, hindering both experimental characterization of the receptor and development of GlyR-related therapeutics. We used phage display to identify novel peptides that specifically modulate GlyR function. Peptide D12-116 markedly enhanced GlyR currents at low micromolar concentrations but had no effects on the closely related gamma-aminobutyric acid type A receptors. This approach can readily be adapted for use with other channels that currently lack specific allosteric modulators.
Collapse
Affiliation(s)
- Megan E Tipps
- Section of Neurobiology, University of Texas, A4800, 2500 Speedway, MBB 1.148, Austin, TX 78712, USA
| | | | | | | |
Collapse
|