1
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Krishnarjuna B, Ravula T, Faison EM, Tonelli M, Zhang Q, Ramamoorthy A. Polymer-Nanodiscs as a Novel Alignment Medium for High-Resolution NMR-Based Structural Studies of Nucleic Acids. Biomolecules 2022; 12:1628. [PMID: 36358983 PMCID: PMC9687133 DOI: 10.3390/biom12111628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an anisotropic environment that aligns in an external magnetic field. Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of RDCs from nucleic acids. Polymer-based nanodiscs prepared using negatively charged SMA-EA polymer and zwitterionic DMPC lipids were characterized by size-exclusion chromatography, 1H NMR, dynamic light-scattering, and 2H NMR. The magnetically aligned polymer-nanodiscs were used as an alignment medium to measure RDCs from a 13C/15N-labeled fluoride riboswitch aptamer using 2D ARTSY-HSQC NMR experiments. The results showed that the alignment of nanodiscs is stable for nucleic acids and nanodisc-induced RDCs fit well with the previously determined solution structure of the riboswitch. These results demonstrate that SMA-EA-based lipid-nanodiscs can be used as a stable alignment medium for high-resolution structural and dynamical studies of nucleic acids, and they can also be applicable to study various other biomolecules and small molecules in general.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edgar M. Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
McCalpin SD, Ravula T, Ramamoorthy A. Saponins Form Nonionic Lipid Nanodiscs for Protein Structural Studies by Nuclear Magnetic Resonance Spectroscopy. J Phys Chem Lett 2022; 13:1705-1712. [PMID: 35156801 PMCID: PMC9548298 DOI: 10.1021/acs.jpclett.1c04185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Structural studies of membrane proteins in native-like environments require the development of diverse membrane mimetics. Currently there is a need for nanodiscs formed with nonionic belt molecules to avoid nonphysiological electrostatic interactions between the membrane system and protein of interest. Here, we describe the formation of lipid nanodiscs from the phospholipid DMPC and a class of nonionic glycoside natural products called saponins. The morphology, surface characteristics, and magnetic alignment properties of the saponin nanodiscs were characterized by light scattering and solid-state NMR experiments. We determined that preparing nanodiscs with high saponin/lipid ratios reduced their size, diminished their ability to spontaneously align in a magnetic field, and favored insertion of individual saponin molecules in the lipid bilayer surface. Further, purification of saponin nanodiscs allowed flipping of the orientation of aligned nanodiscs by 90°. Finally, we found that aligned saponin nanodiscs provide a sufficient alignment medium to allow the measurement of residual dipolar couplings (RDCs) in aqueous cytochrome c.
Collapse
Affiliation(s)
- Samuel D. McCalpin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Thirupathi Ravula
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
- Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
- Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA
- Corresponding Author:
| |
Collapse
|
4
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
5
|
Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, Li C, Wang G, Yang Y, Liu M. NMR-Based Methods for Protein Analysis. Anal Chem 2021; 93:1866-1879. [PMID: 33439619 DOI: 10.1021/acs.analchem.0c03830] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a well-established method for analyzing protein structure, interaction, and dynamics at atomic resolution and in various sample states including solution state, solid state, and membranous environment. Thanks to rapid NMR methodology development, the past decade has witnessed a growing number of protein NMR studies in complex systems ranging from membrane mimetics to living cells, which pushes the research frontier further toward physiological environments and offers unique insights in elucidating protein functional mechanisms. In particular, in-cell NMR has become a method of choice for bridging the huge gap between structural biology and cell biology. Herein, we review the recent developments and applications of NMR methods for protein analysis in close-to-physiological environments, with special emphasis on in-cell protein structural determination and the analysis of protein dynamics, both difficult to be accessed by traditional methods.
Collapse
Affiliation(s)
- Yunfei Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
6
|
Yeh V, Goode A, Bonev BB. Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR. BIOLOGY 2020; 9:E396. [PMID: 33198410 PMCID: PMC7697852 DOI: 10.3390/biology9110396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics. NMR is uniquely suited to resolving atomic environments within complex molecular assemblies and reporting on membrane organisation, protein structure, lipid and polysaccharide composition, conformational variations and molecular interactions. The main challenge in membrane protein studies at the atomic level remains the need for a membrane environment to support their fold. NMR studies in membrane mimetics and membranes of increasing complexity offer close to native environments for structural and molecular studies of membrane proteins. Solution NMR inherits high resolution from small molecule analysis, providing insights from detergent solubilised proteins and small molecular assemblies. Solid-state NMR achieves high resolution in membrane samples through fast sample spinning or sample alignment. Recent developments in dynamic nuclear polarisation NMR allow signal enhancement by orders of magnitude opening new opportunities for expanding the applications of NMR to studies of native membranes and whole cells.
Collapse
Affiliation(s)
| | | | - Boyan B. Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (V.Y.); (A.G.)
| |
Collapse
|
7
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
8
|
Bibow S, Böhm R, Modaresi SM, Hiller S. Detergent Titration as an Efficient Method for NMR Resonance Assignments of Membrane Proteins in Lipid–Bilayer Nanodiscs. Anal Chem 2020; 92:7786-7793. [DOI: 10.1021/acs.analchem.0c00917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Stefan Bibow
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Raphael Böhm
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Bibow S. Exploring Lipid and Membrane Protein Dynamics Using Lipid-Bilayer Nanodiscs and Solution-State NMR Spectroscopy. Methods Mol Biol 2020; 2127:397-419. [PMID: 32112335 DOI: 10.1007/978-1-0716-0373-4_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The relationship of membrane protein function and the surrounding lipid bilayer goes far beyond simple hydrophobic interactions. At least from the 1980s, it is speculated that a certain fluid lipid state may be important not only for the lateral diffusion of membrane proteins (MPs) but also for modulating the catalytic activity of MPs (Lenaz. Bioscience Rep 7 (11):823-837, 1987). Indeed, acyl chain length, hydrophobic mismatch, and lipid headgroups are determinants for enzymatic and transport activities of MPs (Dumas et al. Biochemistry 39(16):4846-4854, 2000; Johannsson et al. Biochim Biophys Acta 641(2):416-421, 1981; Montecucco et al. FEBS Lett 144(1):145-148, 1982; Martens et al. Nat Struct Mol Biol 23(8):744-751, 2016). Moreover, it is speculated that changes in membrane lipid dynamics are important in the field of thermosensation (Vriens J, Nilius B, Voets T, Nat Rev Neurosci 15:573-589, 2014). Atomic insights into lipid-mediated modulation of membrane protein dynamics would therefore provide new insights with the potential to fundamentally extend our understanding on dynamic lipid-protein interdependencies.This chapter describes the expression and purification of nanodiscs assembled from membrane scaffold protein (MSP) as well as the expression and purification of the outer membrane protein X (OmpX). Subsequently, the incorporation of OmpX into MSP-derived nanodiscs is explained in detail. The chapter concludes with the setup of nuclear magnetic resonance (NMR) relaxation experiments and the extraction of relaxation rates for OmpX and the surrounding lipids.
Collapse
Affiliation(s)
- Stefan Bibow
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Bibow S. Opportunities and Challenges of Backbone, Sidechain, and RDC Experiments to Study Membrane Protein Dynamics in a Detergent-Free Lipid Environment Using Solution State NMR. Front Mol Biosci 2019; 6:103. [PMID: 31709261 PMCID: PMC6823230 DOI: 10.3389/fmolb.2019.00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022] Open
Abstract
Whereas solution state NMR provided a wealth of information on the dynamics landscape of soluble proteins, only few studies have investigated membrane protein dynamics in a detergent-free lipid environment. Recent developments of smaller nanodiscs and other lipid-scaffolding polymers, such as styrene maleic acid (SMA), however, open new and promising avenues to explore the function-dynamics relationship of membrane proteins as well as between membrane proteins and their surrounding lipid environment. Favorably sized lipid-bilayer nanodiscs, established membrane protein reconstitution protocols and sophisticated solution NMR relaxation methods probing dynamics over a wide range of timescales will eventually reveal unprecedented lipid-membrane protein interdependencies that allow us to explain things we have not been able to explain so far. In particular, methyl group dynamics resulting from CEST, CPMG, ZZ exchange, and RDC experiments are expected to provide new and surprising insights due to their proximity to lipids, their applicability in large 100+ kDa assemblies and their simple labeling due to the availability of commercial precursors. This review summarizes the recent developments of membrane protein dynamics with a special focus on membrane protein dynamics in lipid-bilayer nanodiscs. Opportunities and challenges of backbone, side chain and RDC dynamics applied to membrane proteins are discussed. Solution-state NMR and lipid nanodiscs bear great potential to change our molecular understanding of lipid-membrane protein interactions.
Collapse
Affiliation(s)
- Stefan Bibow
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Puthenveetil R, Vinogradova O. Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments. J Biol Chem 2019; 294:15914-15931. [PMID: 31551353 DOI: 10.1074/jbc.rev119.009178] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A third of the genes in prokaryotic and eukaryotic genomes encode membrane proteins that are either essential for signal transduction and solute transport or function as scaffold structures. Unlike many of their soluble counterparts, the overall structural and functional organization of membrane proteins is sparingly understood. Recent advances in X-ray crystallography, cryo-EM, and nuclear magnetic resonance (NMR) are closing this gap by enabling an in-depth view of these ever-elusive proteins at atomic resolution. Despite substantial technological advancements, however, the overall proportion of membrane protein entries in the Protein Data Bank (PDB) remains <4%. This paucity is mainly attributed to difficulties associated with their expression and purification, propensity to form large multisubunit complexes, and challenges pertinent to identification of an ideal detergent, lipid, or detergent/lipid mixture that closely mimic their native environment. NMR is a powerful technique to obtain atomic-resolution and dynamic details of a protein in solution. This is accomplished through an assortment of isotopic labeling schemes designed to acquire multiple spectra that facilitate deduction of the final protein structure. In this review, we discuss current approaches and technological developments in the determination of membrane protein structures by solution NMR and highlight recent structural and mechanistic insights gained with this technique. We also discuss strategies for overcoming size limitations in NMR applications, and we explore a plethora of membrane mimetics available for the structural and mechanistic understanding of these essential cellular proteins.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Department of Molecular and Cell Biology, college of liberal arts and sciences, University of Connecticut at Storrs, Storrs, Connecticut 06269
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, Connecticut 06269
| |
Collapse
|
12
|
Henrich E, Löhr F, Mezhyrova J, Laguerre A, Bernhard F, Dötsch V. Synthetic Biology-Based Solution NMR Studies on Membrane Proteins in Lipid Environments. Methods Enzymol 2018; 614:143-185. [PMID: 30611423 DOI: 10.1016/bs.mie.2018.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although membrane proteins are in the focus of biochemical research for many decades the general knowledge of this important class is far behind soluble proteins. Despite several recent technical developments, the most challenging feature still is the generation of high-quality samples in environments suitable for the selected application. Reconstitution of membrane proteins into lipid bilayers will generate the most native-like environment and is therefore commonly desired. However, it poses tremendous problems to solution-state NMR analysis due to the dramatic increase in particle size resulting in high rotational correlation times. Nevertheless, a few promising strategies for the solution NMR analysis of membrane inserted proteins are emerging and will be discussed in this chapter. We focus on the generation of membrane protein samples in nanodisc membranes by cell-free systems and will describe the characteristic advantages of that platform in providing tailored protein expression and folding environments. We indicate frequent problems that have to be overcome in cell-free synthesis, nanodisc preparation, and customization for samples dedicated for solution-state NMR. Detailed instructions for sample preparation are given, and solution NMR approaches suitable for membrane proteins in bilayers are compiled. We further discuss the current strategies applied for signal detection from such difficult samples and describe the type of information that can be extracted from the various experiments. In summary, a comprehensive guideline for the analysis of membrane proteins in native-like membrane environments by solution-state NMR techniques will be provided.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Julija Mezhyrova
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Frey L, Hiller S, Riek R, Bibow S. Lipid- and Cholesterol-Mediated Time-Scale-Specific Modulation of the Outer Membrane Protein X Dynamics in Lipid Bilayers. J Am Chem Soc 2018; 140:15402-15411. [PMID: 30289706 DOI: 10.1021/jacs.8b09188] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Membrane protein function fundamentally depends on lipid-bilayer fluidity and the composition of the biological membrane. Although dynamic interdependencies between membrane proteins and the surrounding lipids are suspected, a detailed description is still missing. To uncover lipid-modulated membrane protein backbone dynamics, time-scale-specific NMR relaxation experiments with residue-resolution were recorded. The data revealed that lipid order, modified either biochemically or biophysically, changes the dynamics of the immersed membrane protein in a specific and time-scale-dependent manner. A temperature-dependent dynamics analysis furthermore suggests a direct coupling between lipid and protein dynamics in the picosecond-nanosecond, microsecond, and millisecond time scales, caused by the lipid's trans-gauche isomerization, the segmental and rotational motion of lipids, and the fluidity of the lipid phase, respectively. These observations provide evidence of a direct modulatory capability of the membrane to regulate protein function through lipid dynamics ranging from picoseconds to milliseconds.
Collapse
Affiliation(s)
- Lukas Frey
- Laboratory for Physical Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| | | | - Roland Riek
- Laboratory for Physical Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| | - Stefan Bibow
- Biozentrum , University of Basel , 4056 Basel , Switzerland
| |
Collapse
|
14
|
Bibow S, Hiller S. A guide to quantifying membrane protein dynamics in lipids and other native-like environments by solution-state NMR spectroscopy. FEBS J 2018; 286:1610-1623. [PMID: 30133960 DOI: 10.1111/febs.14639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Recent biochemical and technical developments permit residue-specific solution NMR measurements of membrane protein (MP) dynamics in lipidic and chaperone-bound environments. This is possible by combinations of improved sample preparations with suitable NMR relaxation experiments to correlate protein function to backbone dynamics on timescales from picoseconds to seconds, even for large MP-lipid assemblies above 100 kDa in molecular mass. Here, we introduce the basic concepts of different NMR relaxation experiments, individually sensitive to specific timescales. We discuss the general limitations of detergent environments and highlight the importance for native-like environments when studying MPs. We then review three practical studies of fast- and slow-timescale MP dynamics in lipid environments, as well as in a natively unfolded, chaperone-bound state. These examples illustrate the new avenues solution NMR spectroscopy is taking to investigate MP dynamics in native-like environments with atomic resolution.
Collapse
|
15
|
Prade E, Mahajan M, Im S, Zhang M, Gentry KA, Anantharamaiah GM, Waskell L, Ramamoorthy A. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elke Prade
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Mukesh Mahajan
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Sang‐Choul Im
- Department of Anesthesiology University of Michigan and VA Medical Center Ann Arbor MI 48105-1055 USA
| | - Meng Zhang
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | - Katherine A. Gentry
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| | | | - Lucy Waskell
- Department of Anesthesiology University of Michigan and VA Medical Center Ann Arbor MI 48105-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry University of Michigan Ann Arbor MI 48109-1055 USA
| |
Collapse
|
16
|
Prade E, Mahajan M, Im SC, Zhang M, Gentry KA, Anantharamaiah GM, Waskell L, Ramamoorthy A. A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs. Angew Chem Int Ed Engl 2018; 57:8458-8462. [PMID: 29722926 DOI: 10.1002/anie.201802210] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Structural interactions that enable electron transfer to cytochrome-P450 (CYP450) from its redox partner CYP450-reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membrane-bound functional complex to reveal interactions between the full-length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochrome-b5 (cyt-b5 ), Arg 125 on the C-helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study protein-protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.
Collapse
Affiliation(s)
- Elke Prade
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mukesh Mahajan
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - Meng Zhang
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Katherine A Gentry
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | | | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
17
|
Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc 2017; 13:79-98. [PMID: 29215632 DOI: 10.1038/nprot.2017.094] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Suitable membrane mimetics are crucial to the performance of structural and functional studies of membrane proteins. Phospholipid nanodiscs (formed when a membrane scaffold protein encircles a small portion of a lipid bilayer) have native-like membrane properties. These have been used for a variety of functional studies, but structural studies by high-resolution solution-state NMR spectroscopy of membrane proteins in commonly used nanodiscs of 10-nm diameter were limited by the high molecular weight of these particles, which caused unfavorably large NMR line widths. We have recently constructed truncated versions of the membrane scaffold protein, allowing the preparation of a range of stepwise-smaller nanodiscs (6- to 8-nm diameter) to overcome this limitation. Here, we present a protocol on the assembly of phospholipid nanodiscs of various sizes for structural studies of membrane proteins with solution-state NMR spectroscopy. We describe specific isotope-labeling schemes required for working with large membrane protein systems in nanodiscs, and provide guidelines on the setup of NMR non-uniform sampling (NUS) data acquisition and high-resolution NMR spectra reconstruction. We discuss critical points and pitfalls relating to optimization of nanodiscs for NMR spectroscopy and outline a strategy for the high-resolution structure determination and positioning of isotope-labeled membrane proteins in nanodiscs using nuclear Overhauser enhancement spectroscopy (NOESY) spectroscopy, residual dipolar couplings (RDCs) and paramagnetic relaxation enhancements (PREs). Depending on the target protein of interest, nanodisc assembly and purification can be achieved within 12-24 h. Although the focus of this protocol is on protein NMR, these nanodiscs can also be used for (cryo-) electron microscopy (EM) and small-angle X-ray and neutron-scattering studies.
Collapse
|
18
|
Martinez D, Decossas M, Kowal J, Frey L, Stahlberg H, Dufourc EJ, Riek R, Habenstein B, Bibow S, Loquet A. Lipid Internal Dynamics Probed in Nanodiscs. Chemphyschem 2017; 18:2651-2657. [PMID: 28573816 PMCID: PMC5697661 DOI: 10.1002/cphc.201700450] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 11/29/2022]
Abstract
Nanodiscs offer a very promising tool to incorporate membrane proteins into native-like lipid bilayers and an alternative to liposomes to maintain protein functions and protein-lipid interactions in a soluble nanoscale object. The activity of the incorporated membrane protein appears to be correlated to its dynamics in the lipid bilayer and by protein-lipid interactions. These two parameters depend on the lipid internal dynamics surrounded by the lipid-encircling discoidal scaffold protein that might differ from more unrestricted lipid bilayers observed in vesicles or cellular extracts. A solid-state NMR spectroscopy investigation of lipid internal dynamics and thermotropism in nanodiscs is reported. The gel-to-fluid phase transition is almost abolished for nanodiscs, which maintain lipid fluid properties for a large temperature range. The addition of cholesterol allows fine-tuning of the internal bilayer dynamics by increasing chain ordering. Increased site-specific order parameters along the acyl chain reflect a higher internal ordering in nanodiscs compared with liposomes at room temperature; this is induced by the scaffold protein, which restricts lipid diffusion in the nanodisc area.
Collapse
Affiliation(s)
- Denis Martinez
- CBMNCNRS.University of BordeauxIECBAll. Geoffroy Saint-Hilaire34600PessacFrance
| | - Marion Decossas
- CBMNCNRS.University of BordeauxIECBAll. Geoffroy Saint-Hilaire34600PessacFrance
| | - Julia Kowal
- D C-CINAUniversity of Basel4058BaselSwitzerland
| | - Lukas Frey
- Laboratory for Physical ChemistryETH Zürich8093ZürichSwitzerland
| | | | - Erick J. Dufourc
- CBMNCNRS.University of BordeauxIECBAll. Geoffroy Saint-Hilaire34600PessacFrance
| | - Roland Riek
- Laboratory for Physical ChemistryETH Zürich8093ZürichSwitzerland
| | - Birgit Habenstein
- CBMNCNRS.University of BordeauxIECBAll. Geoffroy Saint-Hilaire34600PessacFrance
| | - Stefan Bibow
- BiozentrumUniversity of Basel4058BaselSwitzerland
| | - Antoine Loquet
- CBMNCNRS.University of BordeauxIECBAll. Geoffroy Saint-Hilaire34600PessacFrance
| |
Collapse
|
19
|
Sim DW, Lu Z, Won HS, Lee SN, Seo MD, Lee BJ, Kim JH. Application of Solution NMR to Structural Studies on α-Helical Integral Membrane Proteins. Molecules 2017; 22:molecules22081347. [PMID: 28809779 PMCID: PMC6152068 DOI: 10.3390/molecules22081347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 02/05/2023] Open
Abstract
A large portion of proteins in living organisms are membrane proteins which play critical roles in the biology of the cell, from maintenance of the biological membrane integrity to communication of cells with their surroundings. To understand their mechanism of action, structural information is essential. Nevertheless, structure determination of transmembrane proteins is still a challenging area, even though recently the number of deposited structures of membrane proteins in the PDB has rapidly increased thanks to the efforts using X-ray crystallography, electron microscopy, and solid and solution nuclear magnetic resonance (NMR) technology. Among these technologies, solution NMR is a powerful tool for studying protein-protein, protein-ligand interactions and protein dynamics at a wide range of time scales as well as structure determination of membrane proteins. This review provides general and useful guideline for membrane protein sample preparation and the choice of membrane-mimetic media, which are the key step for successful structural analysis. Furthermore, this review provides an opportunity to look at recent applications of solution NMR to structural studies on α-helical membrane proteins through some success stories.
Collapse
Affiliation(s)
- Dae-Won Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Zhenwei Lu
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37204, USA.
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Seu-Na Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungbuk 27478, Korea.
| | - Min-Duk Seo
- Department of Molecular Science and Technology & College of Pharmacy, Ajou University, Suwon 16499, Korea.
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Korea.
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Chungbuk, Korea.
| |
Collapse
|
20
|
Rouck J, Krapf J, Roy J, Huff H, Das A. Recent advances in nanodisc technology for membrane protein studies (2012-2017). FEBS Lett 2017; 591:2057-2088. [PMID: 28581067 PMCID: PMC5751705 DOI: 10.1002/1873-3468.12706] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 01/01/2023]
Abstract
Historically, the main barrier to membrane protein investigations has been the tendency of membrane proteins to aggregate (due to their hydrophobic nature), in aqueous solution as well as on surfaces. The introduction of biomembrane mimetics has since stimulated momentum in the field. One such mimetic, the nanodisc (ND) system, has proved to be an exceptional system for solubilizing membrane proteins. Herein, we critically evaluate the advantages and imperfections of employing nanodiscs in biophysical and biochemical studies. Specifically, we examine the techniques that have been modified to study membrane proteins in nanodiscs. Techniques discussed here include fluorescence microscopy, solution-state/solid-state nuclear magnetic resonance, electron microscopy, small-angle X-ray scattering, and several mass spectroscopy methods. Newer techniques such as SPR, charge-sensitive optical detection, and scintillation proximity assays are also reviewed. Lastly, we cover how nanodiscs are advancing nanotechnology through nanoplasmonic biosensing, lipoprotein-nanoplatelets, and sortase-mediated labeling of nanodiscs.
Collapse
Affiliation(s)
- John Rouck
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - John Krapf
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Jahnabi Roy
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Hannah Huff
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
- Beckman Institute for Advanced Science, Division of Nutritional Sciences, Neuroscience Program and Department of Bioengineering, University of Illinois Urbana–Champaign, Urbana IL 61802, USA
| |
Collapse
|
21
|
Puthenveetil R, Nguyen K, Vinogradova O. Nanodiscs and Solution NMR: preparation, application and challenges. NANOTECHNOLOGY REVIEWS 2017; 6:111-126. [PMID: 28373928 PMCID: PMC5375033 DOI: 10.1515/ntrev-2016-0076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanodiscs provide an excellent system for the structure-function investigation of membrane proteins. Its direct advantage lies in presenting a water soluble form of an otherwise hydrophobic molecule, making it amenable to a plethora of solution techniques. Nuclear Magnetic Resonance is one such high resolution approach that looks at the structure and dynamics of a protein with atomic level precision. Recently, there has been a breakthrough in making nanodiscs more susceptible for structure determination by solution NMR, yet it still remains to become the preferred choice for a membrane mimetic. In this practical review, we provide a general discourse on nanodisc and its application to solution NMR. We also offer potential solutions to remediate the technical challenges associated with nanodisc preparation and the choice of proper experimental set-ups. Along with discussing several structural applications, we demonstrate an alternative use of nanodiscs for functional studies, where we investigated the phosphorylation of a cell surface receptor, Integrin. This is the first successful manifestation of observing activated receptor phosphorylation in nanodiscs through NMR. We additionally present an on-column method for nanodisc preparation with multiple strategies and discuss the potential use of alternative nanoscale phospholipid bilayer systems like SMA lipid discs and Saposin-A lipoprotein discs.
Collapse
Affiliation(s)
- Robbins Puthenveetil
- Department of Molecular and Cell Biology, CLAS, University of Connecticut at Storrs, Storrs, CT 06269
| | - Khiem Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, CT 06269
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, CT 06269
| |
Collapse
|
22
|
Bibow S, Polyhach Y, Eichmann C, Chi CN, Kowal J, Albiez S, McLeod RA, Stahlberg H, Jeschke G, Güntert P, Riek R. Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nat Struct Mol Biol 2016; 24:187-193. [DOI: 10.1038/nsmb.3345] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/29/2016] [Indexed: 01/08/2023]
|
23
|
The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem 2016; 397:1335-1354. [DOI: 10.1515/hsz-2016-0224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Abstract
The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.
Collapse
|
24
|
Frey L, Lakomek NA, Riek R, Bibow S. Micelles, Bicelles, and Nanodiscs: Comparing the Impact of Membrane Mimetics on Membrane Protein Backbone Dynamics. Angew Chem Int Ed Engl 2016; 56:380-383. [PMID: 27882643 PMCID: PMC6680326 DOI: 10.1002/anie.201608246] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Indexed: 11/10/2022]
Abstract
Detergents are often used to investigate the structure and dynamics of membrane proteins. Whereas the structural integrity seems to be preserved in detergents for many membrane proteins, their functional activity is frequently compromised, but can be restored in a lipid environment. Herein we show with per‐residue resolution that while OmpX forms a stable β‐barrel in DPC detergent micelles, DHPC/DMPC bicelles, and DMPC nanodiscs, the pico‐ to nanosecond and micro‐ to millisecond motions differ substantially between the detergent and lipid environment. In particular for the β‐strands, there is pronounced dynamic variability in the lipid environment, which appears to be suppressed in micelles. This unexpected complex and membrane‐mimetic‐dependent dynamic behavior indicates that the frequent loss of membrane protein activity in detergents might be related to reduced internal dynamics and that membrane protein activity correlates with lipid flexibility.
Collapse
Affiliation(s)
- Lukas Frey
- Laboratory for Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Roland Riek
- Laboratory for Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefan Bibow
- Laboratory for Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
25
|
Frey L, Lakomek N, Riek R, Bibow S. Mizellen, Bizellen und Nanoscheiben: Einfluss von membranimitierenden Umgebungen auf die Membranproteindynamik. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lukas Frey
- Laboratorium für Physikalische Chemie ETH Zürich 8093 Zürich Schweiz
| | | | - Roland Riek
- Laboratorium für Physikalische Chemie ETH Zürich 8093 Zürich Schweiz
| | - Stefan Bibow
- Laboratorium für Physikalische Chemie ETH Zürich 8093 Zürich Schweiz
| |
Collapse
|
26
|
Ding Y, Fujimoto LM, Yao Y, Marassi FM. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. JOURNAL OF BIOMOLECULAR NMR 2015; 61:275-86. [PMID: 25578899 PMCID: PMC4398618 DOI: 10.1007/s10858-014-9893-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/20/2014] [Indexed: 05/22/2023]
Abstract
Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396-10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure-activity correlation experiments across a wide range of timescales.
Collapse
Affiliation(s)
- Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - L. Miya Fujimoto
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
| | - Francesca M. Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla CA 92037, USA. [Tel: 858-795-5282; Mail: ]
| |
Collapse
|
27
|
Hagn F, Wagner G. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs. JOURNAL OF BIOMOLECULAR NMR 2015; 61:249-60. [PMID: 25430058 PMCID: PMC4398597 DOI: 10.1007/s10858-014-9883-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/20/2014] [Indexed: 05/22/2023]
Abstract
NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR structure determination. However, side-chain assignments of a membrane protein in nanodiscs still remain elusive. Here, we utilized a NOE-based approach to assign (stereo-) specifically labeled Ile, Leu, Val and Ala methyl labeled and uniformly (15)N-Phe and (15)N-Tyr labeled OmpX and calculated a refined high-resolution structure. In addition, we were able to obtain residual dipolar couplings (RDCs) of OmpX in nanodiscs using Pf1 phage medium for the induction of weak alignment. Back-calculated NOESY spectra of the obtained NMR structures were compared to experimental NOESYs in order to validate the quality of these structures. We further used NOE information between protonated lipid head groups and side-chain methyls to determine the position of OmpX in the phospholipid bilayer. These data were verified by paramagnetic relaxation enhancement (PRE) experiments obtained with Gd(3+)-modified lipids. Taken together, this study emphasizes the need for the (stereo-) specific labeling of membrane proteins in a highly deuterated background for high-resolution structure determination, particularly in large membrane mimicking systems like phospholipid nanodiscs. Structure validation by NOESY back-calculation will be helpful for the structure determination and validation of membrane proteins where NOE assignment is often difficult. The use of protein to lipid NOEs will be beneficial for the positioning of a membrane protein in the lipid bilayer without the need for preparing multiple protein samples.
Collapse
Affiliation(s)
- Franz Hagn
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA,
| | | |
Collapse
|
28
|
Eichmann C, Orts J, Tzitzilonis C, Vögeli B, Smrt S, Lorieau J, Riek R. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes. J Phys Chem B 2014; 118:14288-301. [PMID: 25419869 DOI: 10.1021/jp509137q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.
Collapse
Affiliation(s)
- Cédric Eichmann
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg , CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:712-20. [PMID: 25433311 DOI: 10.1016/j.bbamem.2014.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/24/2014] [Accepted: 11/19/2014] [Indexed: 11/20/2022]
Abstract
The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.
Collapse
|