1
|
Agrata R, Komander D. Ubiquitin-A structural perspective. Mol Cell 2025; 85:323-346. [PMID: 39824171 DOI: 10.1016/j.molcel.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques. Here, we review the current knowledge of ubiquitin signals through a ubiquitin-centric, structural biology lens. We amalgamate the information from 240 structures in the Protein Data Bank (PDB), combined with single-molecule, molecular dynamics, and nuclear magnetic resonance (NMR) studies, to provide a comprehensive picture of ubiquitin and polyubiquitin structures and dynamics. We close with a discussion of the latest frontiers in ubiquitin research, namely the modification of ubiquitin by other post-translational modifications (PTMs) and the notion that ubiquitin is attached to biomolecules beyond proteins.
Collapse
Affiliation(s)
- Rashmi Agrata
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| | - David Komander
- Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Ravichandran A, Das R. The Thermodynamic Properties of Fat10ylated Proteins Are Regulated by the Fat10ylation Site. ACS OMEGA 2024; 9:22265-22276. [PMID: 38799324 PMCID: PMC11112694 DOI: 10.1021/acsomega.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Degradation of proteins by the proteasome is crucial in regulating their levels in the cell. Post-translational modifications, such as ubiquitylation and Fat10ylation, trigger proteasomal degradation of the substrate proteins. While ubiquitylation regulates multiple cellular pathways, Fat10ylation functions explicitly in the inflammatory response pathway. At the proteasome, ubiquitin is recycled after being cleaved from the substrate, while Fat10 is degraded simultaneously with its substrate. Although the thermodynamic properties of the substrate are critical for effective proteasomal degradation, they remain poorly understood for the Fat10-proteasome pathway. We studied the thermodynamic properties of the Fat10∼substrate conjugate to uncover mechanistic details of the pathway. First, the mechanical unfolding of Fat10∼substrate was studied by molecular dynamics simulations, which suggested that the unfolding pathway and unfolding energy of the substrate depend on the site of Fat10 modification. We also investigated different pathways for the entry of the Fat10∼substrate into the proteasome core. Our analysis supports a model where the entry of Fat10, followed by the substrate, is the energetically preferred pathway. Further, we studied Fat10's effect on the thermodynamic properties of distinct substrates, considering their size, flexibility, and surface properties. The results uncovered significant entropic destabilization of substrates due to Fat10ylation, particularly in smaller substrates. For larger substrates, multi-monoFat10ylation is necessary to induce destabilization. Our study further reveals that Fat10 modification at negative patches on substrate surfaces is essential for optimal destabilization and subsequent degradation. These findings provide atomistic insights into the degradation mechanisms in the Fat10 proteasome pathway with potential implications for therapeutic interventions.
Collapse
Affiliation(s)
- Aravind Ravichandran
- National
Center for Biological Sciences, Tata Institute
of Fundamental Research, Bangalore 560065, India
- SASTRA
University, Thirumalaisamudram, Thanjavur 613401, India
| | - Ranabir Das
- National
Center for Biological Sciences, Tata Institute
of Fundamental Research, Bangalore 560065, India
| |
Collapse
|
3
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
4
|
Bychkova VE, Dolgikh DA, Balobanov VA, Finkelstein AV. The Molten Globule State of a Globular Protein in a Cell Is More or Less Frequent Case Rather than an Exception. Molecules 2022; 27:molecules27144361. [PMID: 35889244 PMCID: PMC9319461 DOI: 10.3390/molecules27144361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 02/01/2023] Open
Abstract
Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn’s hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.
Collapse
Affiliation(s)
- Valentina E. Bychkova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117871 Moscow, Russia;
| | - Vitalii A. Balobanov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
- Correspondence:
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; (V.E.B.); (A.V.F.)
| |
Collapse
|
5
|
Freitas FC, Maldonado M, Oliveira Junior AB, Onuchic JN, Oliveira RJD. Biotin-painted proteins have thermodynamic stability switched by kinetic folding routes. J Chem Phys 2022; 156:195101. [PMID: 35597640 DOI: 10.1063/5.0083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biotin-labeled proteins are widely used as tools to study protein-protein interactions and proximity in living cells. Proteomic methods broadly employ proximity-labeling technologies based on protein biotinylation in order to investigate the transient encounters of biomolecules in subcellular compartments. Biotinylation is a post-translation modification in which the biotin molecule is attached to lysine or tyrosine residues. So far, biotin-based technologies proved to be effective instruments as affinity and proximity tags. However, the influence of biotinylation on aspects such as folding, binding, mobility, thermodynamic stability, and kinetics needs to be investigated. Here, we selected two proteins [biotin carboxyl carrier protein (BCCP) and FKBP3] to test the influence of biotinylation on thermodynamic and kinetic properties. Apo (without biotin) and holo (biotinylated) protein structures were used separately to generate all-atom structure-based model simulations in a wide range of temperatures. Holo BCCP contains one biotinylation site, and FKBP3 was modeled with up to 23 biotinylated lysines. The two proteins had their estimated thermodynamic stability changed by altering their energy landscape. In all cases, after comparison between the apo and holo simulations, differences were observed on the free-energy profiles and folding routes. Energetic barriers were altered with the density of states clearly showing changes in the transition state. This study suggests that analysis of large-scale datasets of biotinylation-based proximity experiments might consider possible alterations in thermostability and folding mechanisms imposed by the attached biotins.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Michelli Maldonado
- Departamento de Matemática, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Antonio Bento Oliveira Junior
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, BioScience Research Collaborative, 6566 Main St., Houston, Texas 77030, USA
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
6
|
Hidalgo F, Nocka LM, Shah NH, Gorday K, Latorraca NR, Bandaru P, Templeton S, Lee D, Karandur D, Pelton JG, Marqusee S, Wemmer D, Kuriyan J. A saturation-mutagenesis analysis of the interplay between stability and activation in Ras. eLife 2022; 11:e76595. [PMID: 35272765 PMCID: PMC8916776 DOI: 10.7554/elife.76595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer mutations in Ras occur predominantly at three hotspots: Gly 12, Gly 13, and Gln 61. Previously, we reported that deep mutagenesis of H-Ras using a bacterial assay identified many other activating mutations (Bandaru et al., 2017). We now show that the results of saturation mutagenesis of H-Ras in mammalian Ba/F3 cells correlate well with the results of bacterial experiments in which H-Ras or K-Ras are co-expressed with a GTPase-activating protein (GAP). The prominent cancer hotspots are not dominant in the Ba/F3 data. We used the bacterial system to mutagenize Ras constructs of different stabilities and discovered a feature that distinguishes the cancer hotspots. While mutations at the cancer hotspots activate Ras regardless of construct stability, mutations at lower-frequency sites (e.g. at Val 14 or Asp 119) can be activating or deleterious, depending on the stability of the Ras construct. We characterized the dynamics of three non-hotspot activating Ras mutants by using NMR to monitor hydrogen-deuterium exchange (HDX). These mutations result in global increases in HDX rates, consistent with destabilization of Ras. An explanation for these observations is that mutations that destabilize Ras increase nucleotide dissociation rates, enabling activation by spontaneous nucleotide exchange. A further stability decrease can lead to insufficient levels of folded Ras - and subsequent loss of function. In contrast, the cancer hotspot mutations are mechanism-based activators of Ras that interfere directly with the action of GAPs. Our results demonstrate the importance of GAP surveillance and protein stability in determining the sensitivity of Ras to mutational activation.
Collapse
Affiliation(s)
- Frank Hidalgo
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Laura M Nocka
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Neel H Shah
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Kent Gorday
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Naomi R Latorraca
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Pradeep Bandaru
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Sage Templeton
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - David Lee
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Deepti Karandur
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jeffrey G Pelton
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Susan Marqusee
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David Wemmer
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - John Kuriyan
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
7
|
Dos Santos Passos C, Choi YS, Snow CD, Yao T, Cohen RE. Design of genetically encoded sensors to detect nucleosome ubiquitination in live cells. J Cell Biol 2021; 220:211785. [PMID: 33570569 PMCID: PMC7883740 DOI: 10.1083/jcb.201911130] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) are dynamic, context-dependent signals that modulate chromatin structure and function. Ubiquitin (Ub) conjugation to different lysines of histones H2A and H2B is used to regulate diverse processes such as gene silencing, transcriptional elongation, and DNA repair. Despite considerable progress made to elucidate the players and mechanisms involved in histone ubiquitination, there remains a lack of tools to monitor these PTMs, especially in live cells. To address this, we combined an avidity-based strategy with in silico approaches to design sensors for specifically ubiquitinated nucleosomes. By linking Ub-binding domains to nucleosome-binding peptides, we engineered proteins that target H2AK13/15Ub and H2BK120Ub with Kd values from 10−8 to 10−6 M; when fused to fluorescent proteins, they work as PTM sensors in cells. The H2AK13/15Ub-specific sensor, employed to monitor signaling from endogenous DNA damage through the cell cycle, identified and differentiated roles for 53BP1 and BARD1 as mediators of this histone PTM.
Collapse
Affiliation(s)
| | - Yun-Seok Choi
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Christopher D Snow
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| | - Robert E Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO
| |
Collapse
|
8
|
Mechanistic basis for ubiquitin modulation of a protein energy landscape. Proc Natl Acad Sci U S A 2021; 118:2025126118. [PMID: 33723075 DOI: 10.1073/pnas.2025126118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin is a common posttranslational modification canonically associated with targeting proteins to the 26S proteasome for degradation and also plays a role in numerous other nondegradative cellular processes. Ubiquitination at certain sites destabilizes the substrate protein, with consequences for proteasomal processing, while ubiquitination at other sites has little energetic effect. How this site specificity-and, by extension, the myriad effects of ubiquitination on substrate proteins-arises remains unknown. Here, we systematically characterize the atomic-level effects of ubiquitination at various sites on a model protein, barstar, using a combination of NMR, hydrogen-deuterium exchange mass spectrometry, and molecular dynamics simulation. We find that, regardless of the site of modification, ubiquitination does not induce large structural rearrangements in the substrate. Destabilizing modifications, however, increase fluctuations from the native state resulting in exposure of the substrate's C terminus. Both of the sites occur in regions of barstar with relatively high conformational flexibility. Nevertheless, destabilization appears to occur through different thermodynamic mechanisms, involving a reduction in entropy in one case and a loss in enthalpy in another. By contrast, ubiquitination at a nondestabilizing site protects the substrate C terminus through intermittent formation of a structural motif with the last three residues of ubiquitin. Thus, the biophysical effects of ubiquitination at a given site depend greatly on local context. Taken together, our results reveal how a single posttranslational modification can generate a broad array of distinct effects, providing a framework to guide the design of proteins and therapeutics with desired degradation and quality control properties.
Collapse
|
9
|
Releasing the Lockdown: An Emerging Role for the Ubiquitin-Proteasome System in the Breakdown of Transient Protein Inclusions. Biomolecules 2020; 10:biom10081168. [PMID: 32784966 PMCID: PMC7463783 DOI: 10.3390/biom10081168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 12/20/2022] Open
Abstract
Intracellular protein inclusions are diverse cellular entities with distinct biological properties. They vary in their protein content, sequestration sites, physiological function, conditions for their generation, and turnover rates. Major distinctions have been recognized between stationary amyloids and dynamic, misfolded protein deposits. The former being a dead end for irreversibly misfolded proteins, hence, cleared predominantly by autophagy, while the latter consists of a protein-quality control mechanism, important for cell endurance, where proteins are sequestered during proteotoxic stress and resolved upon its relief. Accordingly, the disaggregation of transient inclusions is a regulated process consisting of protein solubilization, followed by a triage step to either refolding or to ubiquitin-mediated degradation. Recent studies have demonstrated an indispensable role in disaggregation for components of the chaperone and the ubiquitin-proteasome systems. These include heat-shock chaperones of the 40/70/100 kDa families, the proteasome, proteasome substrate shuttling factors, and deubiquitylating enzymes. Thus, a functional link has been established between the chaperone machinery that extracts proteins from transient deposits and 26S proteasome-dependent disaggregation, indicative of a coordinated process. In this review, we discuss data emanating from these important studies and subsequently consolidate the information in the form of a working model for the disaggregation mechanism.
Collapse
|
10
|
Site-specific ubiquitination affects protein energetics and proteasomal degradation. Nat Chem Biol 2020; 16:866-875. [PMID: 32483380 DOI: 10.1038/s41589-020-0556-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/05/2020] [Accepted: 04/26/2020] [Indexed: 11/09/2022]
Abstract
Changes in the cellular environment modulate protein energy landscapes to drive important biology, with consequences for signaling, allostery and other vital processes. The effects of ubiquitination are particularly important because of their potential influence on degradation by the 26S proteasome. Moreover, proteasomal engagement requires unstructured initiation regions that many known proteasome substrates lack. To assess the energetic effects of ubiquitination and how these manifest at the proteasome, we developed a generalizable strategy to produce isopeptide-linked ubiquitin within structured regions of a protein. The effects on the energy landscape vary from negligible to dramatic, depending on the protein and site of ubiquitination. Ubiquitination at sensitive sites destabilizes the native structure and increases the rate of proteasomal degradation. In well-folded proteins, ubiquitination can even induce the requisite unstructured regions needed for proteasomal engagement. Our results indicate a biophysical role of site-specific ubiquitination as a potential regulatory mechanism for energy-dependent substrate degradation.
Collapse
|
11
|
|
12
|
Bigman LS, Levy Y. Stability Effects of Protein Mutations: The Role of Long-Range Contacts. J Phys Chem B 2018; 122:11450-11459. [DOI: 10.1021/acs.jpcb.8b07379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lavi S. Bigman
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
13
|
Levy Y. Protein Assembly and Building Blocks: Beyond the Limits of the LEGO Brick Metaphor. Biochemistry 2017; 56:5040-5048. [PMID: 28809494 DOI: 10.1021/acs.biochem.7b00666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteins, like other biomolecules, have a modular and hierarchical structure. Various building blocks are used to construct proteins of high structural complexity and diverse functionality. In multidomain proteins, for example, domains are fused to each other in different combinations to achieve different functions. Although the LEGO brick metaphor is justified as a means of simplifying the complexity of three-dimensional protein structures, several fundamental properties (such as allostery or the induced-fit mechanism) make deviation from it necessary to respect the plasticity, softness, and cross-talk that are essential to protein function. In this work, we illustrate recently reported protein behavior in multidomain proteins that deviates from the LEGO brick analogy. While earlier studies showed that a protein domain is often unaffected by being fused to another domain or becomes more stable following the formation of a new interface between the tethered domains, destabilization due to tethering has been reported for several systems. We illustrate that tethering may sometimes result in a multidomain protein behaving as "less than the sum of its parts". We survey these cases for which structure additivity does not guarantee thermodynamic additivity. Protein destabilization due to fusion to other domains may be linked in some cases to biological function and should be taken into account when designing large assemblies.
Collapse
Affiliation(s)
- Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
14
|
Ubiquitylation Directly Induces Fold Destabilization of Proteins. Sci Rep 2016; 6:39453. [PMID: 27991582 PMCID: PMC5172356 DOI: 10.1038/srep39453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/23/2016] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin is a common post-translational modifier and its conjugation is a key signal for proteolysis by the proteasome. Because the molecular mass of ubiquitin is larger than that of other modifiers such as phosphate, acetyl, or methyl groups, ubiquitylation not only influences biochemical signaling, but also may exert physical effects on its substrate proteins by increasing molecular volume and altering shape anisotropy. Here we show that ubiquitylation destabilizes the fold of two proteins, FKBP12 and FABP4, and that elongation of the conjugated ubiquitin chains further enhances this destabilization effect. Moreover, NMR relaxation analysis shows that ubiquitylation induces characteristic structural fluctuations in the backbone of both proteins. These results suggest that the ubiquitylation-driven structural fluctuations lead to fold destabilization of its substrate proteins. Thus, physical destabilization by ubiquitylation may facilitate protein degradation by the proteasome.
Collapse
|
15
|
Zhang C, Lu J, Zhang QW, Zhao W, Guo JH, Liu SL, Wu YL, Jiang B, Gao FH. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int J Biochem Cell Biol 2016; 79:209-221. [PMID: 27590858 DOI: 10.1016/j.biocel.2016.08.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 08/07/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
Abstract
The Ki-67 antigen (Ki-67) is the most reliable immunohistochemical marker for evaluation of cell proliferation in non-small cell lung cancer. However, the mechanisms underlying the regulation of protein levels of Ki-67 in non-small cell lung cancer have remained elusive. In this study, we found that Ki-67 and ubiquitin-specific processing protease 7 (USP7) protein were highly expressed in the nucleus of non-small cell lung cancer cells. Furthermore, statistical analysis uncovered the existence of a strong correlation between Ki-67 and USP7 levels. We could also show that the protein levels of Ki-67 in non-small cell lung cancer cells significantly decreased after treatment with P22077, a selective chemical inhibitor of USP7, while the Ki-67 mRNA levels were unperturbed. Similar results were obtained by knocking down USP7 using short hairpin RNA (shRNA) in lung cancer cells. Interestingly, we noticed that ubiquitination levels of Ki-67 increased dramatically in USP7-silenced cells. The tests in vitro and vivo showed a significant delay in tumor cell growth upon knockdown of USP7. Additionally, drug sensitivity tests indicated that USP7-silenced A549 cells had enhanced sensitivity to paclitaxel and docetaxel, while there was no significant change in sensitivity toward carboplatin and cisplatin. Taken together, these data strongly suggest that the overexpression of USP7 might promote cell proliferation by deubiquitinating Ki-67 protein, thereby maintaining its high levels in the non-small cell lung cancer. Our study also hints potential for the development of deubiquitinase-based therapies, especially those targeting USP7 to improve the condition of patients diagnosed with non-small cell lung cancer.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Jing Lu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Quan-Wu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Wei Zhao
- Department of Pathology, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou 213003, China
| | - Jia-Hui Guo
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Shan-Ling Liu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China
| | - Ying-Li Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Jiang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China.
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai 200011, China.
| |
Collapse
|
16
|
Reichard EL, Chirico GG, Dewey WJ, Nassif ND, Bard KE, Millas NE, Kraut DA. Substrate Ubiquitination Controls the Unfolding Ability of the Proteasome. J Biol Chem 2016; 291:18547-61. [PMID: 27405762 DOI: 10.1074/jbc.m116.720151] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, proteins are targeted to the proteasome for degradation by polyubiquitination. These proteins bind to ubiquitin receptors, are engaged and unfolded by proteasomal ATPases, and are processively degraded. The factors determining to what extent the proteasome can successfully unfold and degrade a substrate are still poorly understood. We find that the architecture of polyubiquitin chains attached to a substrate affects the ability of the proteasome to unfold and degrade the substrate, with K48- or mixed-linkage chains leading to greater processivity than K63-linked chains. Ubiquitin-independent targeting of substrates to the proteasome gave substantially lower processivity of degradation than ubiquitin-dependent targeting. Thus, even though ubiquitin chains are removed early in degradation, during substrate engagement, remarkably they dramatically affect the later unfolding of a protein domain. Our work supports a model in which a polyubiquitin chain associated with a substrate switches the proteasome into an activated state that persists throughout the degradation process.
Collapse
Affiliation(s)
- Eden L Reichard
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Giavanna G Chirico
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - William J Dewey
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Nicholas D Nassif
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Katelyn E Bard
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Nickolas E Millas
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| | - Daniel A Kraut
- From the Department of Chemistry, Villanova University, Villanova, Pennsylvania 19085
| |
Collapse
|
17
|
Ball KA, Johnson JR, Lewinski MK, Guatelli J, Verschueren E, Krogan NJ, Jacobson MP. Non-degradative Ubiquitination of Protein Kinases. PLoS Comput Biol 2016; 12:e1004898. [PMID: 27253329 PMCID: PMC4890936 DOI: 10.1371/journal.pcbi.1004898] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/02/2016] [Indexed: 12/22/2022] Open
Abstract
Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. Attachment of ubiquitin to another protein is typically used to mark the protein for degradation by the proteasome. However, recent studies show that many proteins are tagged with ubiquitin and not degraded. We hypothesized that ubiquitin can regulate the protein it is attached to by changing its structure and dynamics. We performed proteomics experiments to identify all of the kinase proteins tagged by ubiquitin in a human cell line as well as the site of ubiquitination. We found that kinases are often ubiquitinated in structured regions important for regulation and activity. We then performed molecular dynamics simulations of one kinase, ZAP-70, to see if a ubiquitin tag could affect the kinase structure. We found that ubiquitin does affect the structure of ZAP-70, and the effect depends on where the ubiquitin is attached. At K377, ubiquitin changes the ZAP-70 structure to resemble the inactive state, while ubiquitin attached at K476, on the other side of the protein, has the opposite effect. These simulations indicate that ubiquitin, like other post-translational modifications, may alter the structure and dynamics of proteins in ways that impact activity and function.
Collapse
Affiliation(s)
- K. Aurelia Ball
- Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, United States of America
| | - Jeffrey R. Johnson
- Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Mary K. Lewinski
- Division of Infectious Diseases, University of California at San Diego School of Medicine, La Jolla, California, United States of America
| | - John Guatelli
- Division of Infectious Diseases, University of California at San Diego School of Medicine, La Jolla, California, United States of America
| | - Erik Verschueren
- Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail: (NJK); (MPJ)
| | - Matthew P. Jacobson
- Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California, United States of America
- * E-mail: (NJK); (MPJ)
| |
Collapse
|
18
|
Morimoto D, Shirakawa M. The evolving world of ubiquitin: transformed polyubiquitin chains. Biomol Concepts 2016; 7:157-67. [PMID: 27226101 DOI: 10.1515/bmc-2016-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
The regulation of diverse cellular events by proteins that have undergone post-translational modification with ubiquitin is well documented. Ubiquitin can be polymerized and eight types of polyubiquitin chain contribute to the complexity and specificity of the ubiquitin signal. Unexpectedly, recent studies have shown that ubiquitin itself undergoes post-translational modification by acetylation and phosphorylation; moreover, amyloid-like fibrils comprised of polyubiquitin chains have been discovered. Thus, ubiquitin is not only conjugated to substrate proteins, but also modified and transformed itself. Here, we review these novel forms of ubiquitin signal, with a focus on fibril formation of polyubiquitin chains and its underlying biological relevance.
Collapse
|