1
|
Ma Y, Wang G, Chen H, Tsai M. Exploring Abeta42 monomer diffusion dynamics on fibril surfaces through molecular simulations. Protein Sci 2025; 34:e70131. [PMID: 40371804 PMCID: PMC12079388 DOI: 10.1002/pro.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025]
Abstract
This study provides critical insights into the role of surface-mediated processes in Alzheimer's disease, with implications for the aggregation of Abeta42 peptides. Employing coarse-grained molecular dynamics simulations, we focus on elucidating the molecular intricacies of these processes beyond primary nucleation. Central to our investigation is the analysis of a freely diffusing Abeta42 monomer on preformed fibril structures. We conduct detailed calculations of the monomer's diffusion coefficient on fibril surfaces (as a one-dimensional case), along with various monomer orientations. Our findings reveal a strong and consistent correlation between the monomer's diffusion coefficient and its orientation on the surface. Further analysis differentiates the effects of parallel and perpendicular alignments with respect to the fibril axis. Additionally, we explore how different fibril surfaces influence monomer dynamics by comparing the C-terminal and N-terminal surfaces. We find that the monomer exhibits faster diffusion coefficients on the C-terminal surface. Differences in surface roughness (SR), quantified using root-mean-square distances, significantly affect monomer dynamics, thereby influencing its diffusion on the surface. Importantly, this study underscores that fibril twisting acts as a regulatory niche, selectively influencing these orientations and their diffusion properties necessary for facilitating fibril growth within biologically relevant time scales. This discovery opens new avenues for targeted therapeutic strategies aimed at manipulating fibril dynamics to mitigate the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuan‐Wei Ma
- Institute of Bioinformatics and Structural BiologyNational Tsing‐Hua UniversityHsinchuTaiwan
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
| | - Guan‐Fang Wang
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
| | - Hong‐Yi Chen
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
| | - Min‐Yeh Tsai
- Department of Chemistry and BiochemistryNational Chung Cheng UniversityChiayiTaiwan
- Center for Nano Bio‐DetectionNational Chung Cheng UniversityChiayiTaiwan
- Division of Physics, National Center for Theoretical SciencesNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Akbari M, Mobasheri H, Noorizadeh F, Daryabari SH, Dini L. Static magnetic field effects on the secondary structure and elasticity of collagen molecules; a possible biophysical approach to treat keratoconus. Biochem Biophys Res Commun 2024; 733:150726. [PMID: 39317114 DOI: 10.1016/j.bbrc.2024.150726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Type I collagen is among the major extracellular proteins that play a significant role in the maintenance of the cornea's structural integrity and is essential in cell adhesion, differentiation, growth, and integrity. Here, we investigated the effect of 300 mT Static Magnetic Field (300 mT SMF) on the structure and molecular properties of acid-solubilized collagens (ASC) isolated from the rat tail tendon. The SMF effects at molecular and atomic levels were investigated by various biophysical approaches like Circular Dichroism Spectropolarimetery (CD), Fourier Transform Infrared Spectroscopy (FTIR), Zetasizer light Scattering, and Rheological assay. Exposure of isolated type I collagen to 300 mT SMF retained its triple helix. The elasticity of collagen molecules and the keratoconus (KCN) cornea treated with SMF decreased significantly after 5 min and slightly after 10, 15, and 20 min of treatments. The exposure to 300 mT SMF shifted the Amid I bond random coil to antiparallel wave number from 1647 to 1631 cm-1. The pH of the 300 mT SMF treated collagen solution increased by about 25 %. The treatment of the KCN corneas with 300 mT SMF decreased their elasticity significantly. The promising results of the effects of 300 mT SMF on the collagen molecules and KCN cornea propose a novel biophysical approach capable of manipulating the collagen's elasticity, surface charges, electrostatic interactions, cross binding, network formation and fine structure. Therefore, SMF treatment may be considered as a novel non-invasive, direct, non-chemical and fast therapeutic and manipulative means to treat KCN cornea where the deviated physico-chemical status of collagen molecules cause deformation.
Collapse
Affiliation(s)
- Maryam Akbari
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran.
| | - Hamid Mobasheri
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran, Iran; Institute of Biomaterials of University of Tehran and Tehran University of Medical Sciences (IBUTUMS), Tehran, Iran.
| | | | - Seyed-Hashem Daryabari
- Basir Eye Health Research Center and Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Luciana Dini
- Department of Biology and Biotechnology C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Boos J, van der Made CI, Ramakrishnan G, Coughlan E, Asselta R, Löscher BS, Valenti LVC, de Cid R, Bujanda L, Julià A, Pairo-Castineira E, Baillie JK, May S, Zametica B, Heggemann J, Albillos A, Banales JM, Barretina J, Blay N, Bonfanti P, Buti M, Fernandez J, Marsal S, Prati D, Ronzoni L, Sacchi N, Schultze JL, Riess O, Franke A, Rawlik K, Ellinghaus D, Hoischen A, Schmidt A, Ludwig KU. Stratified analyses refine association between TLR7 rare variants and severe COVID-19. HGG ADVANCES 2024; 5:100323. [PMID: 38944683 PMCID: PMC11320601 DOI: 10.1016/j.xhgg.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024] Open
Abstract
Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10-10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10-15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway.
Collapse
Affiliation(s)
- Jannik Boos
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Caspar I van der Made
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gayatri Ramakrishnan
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Eamon Coughlan
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital - via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Luca V C Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rafael de Cid
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonio Julià
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Erola Pairo-Castineira
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Sandra May
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Berina Zametica
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Julia Heggemann
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Agustín Albillos
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jordi Barretina
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Natalia Blay
- Genomes for Life-GCAT Lab, CORE Program. Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; Grup de Recerca en Impacte de les Malalties Cròniques i les seves Trajectòries (GRIMTra) (IGTP), Badalona, Spain
| | - Paolo Bonfanti
- Division of Infectious Diseases, Università degli Studi di Milano Bicocca, Fondazione San Gerardo dei Tintori, Monza, Italy
| | - Maria Buti
- Centre for Biomedical Network Research on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Fernandez
- Hospital Clinic, University of Barcelona, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF CLif), Barcelona, Spain
| | - Sara Marsal
- Vall d'Hebron Hospital Research Institute, Barcelona, Spain
| | - Daniele Prati
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany; Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany; PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany; DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Konrad Rawlik
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center, Kiel, Germany
| | - Alexander Hoischen
- Department of Human Genetics, Department of Internal Medicine, Radboudumc Research Institute for Medical Innovation, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Kerstin U Ludwig
- Institute of Human Genetics, University of Bonn School of Medicine and University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Li C, Wei TY, Cheung MS, Tsai MY. Deciphering the Cofilin Oligomers via Intermolecular Disulfide Bond Formation: A Coarse-Grained Molecular Dynamics Approach to Understanding Cofilin's Regulation on Actin Filaments. J Phys Chem B 2024; 128:4590-4601. [PMID: 38701111 PMCID: PMC11104348 DOI: 10.1021/acs.jpcb.3c07938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Cofilin, a key actin-binding protein, orchestrates the dynamics of the actomyosin network through its actin-severing activity and by promoting the recycling of actin monomers. Recent experiments suggest that cofilin forms functionally distinct oligomers via thiol post-translational modifications (PTMs) that promote actin nucleation and assembly. Despite these advances, the structural conformations of cofilin oligomers that modulate actin activity remain elusive because there are combinatorial ways to oxidize thiols in cysteines to form disulfide bonds rapidly. This study employs molecular dynamics simulations to investigate human cofilin 1 as a case study for exploring cofilin dimers via disulfide bond formation. Utilizing a biasing scheme in simulations, we focus on analyzing dimer conformations conducive to disulfide bond formation. Additionally, we explore potential PTMs arising from the examined conformational ensemble. Using the free energy profiling, our simulations unveil a range of probable cofilin dimer structures not represented in current Protein Data Bank entries. These candidate dimers are characterized by their distinct population distributions and relative free energies. Of particular note is a dimer featuring an interface between cysteines 139 and 147 residues, which demonstrates stable free energy characteristics and intriguingly symmetrical geometry. In contrast, the experimentally proposed dimer structure exhibits a less stable free energy profile. We also evaluate frustration quantification based on the energy landscape theory in the protein-protein interactions at the dimer interfaces. Notably, the 39-39 dimer configuration emerges as a promising candidate for forming cofilin tetramers, as substantiated by frustration analysis. Additionally, docking simulations with actin filaments further evaluate the stability of these cofilin dimer-actin complexes. Our findings thus offer a computational framework for understanding the role of thiol PTM of cofilin proteins in regulating oligomerization, and the subsequent cofilin-mediated actin dynamics in the actomyosin network.
Collapse
Affiliation(s)
- Chengxuan Li
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
- Center
for Theoretical Biological Physics, Rice
University, Houston, Texas 77005, United States
| | - Ting-Yi Wei
- Department
of Chemistry and Biochemistry, National
Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
| | - Margaret S. Cheung
- Department
of Physics, University of Washington, Seattle, Washington 98195, United States
- Center
for Theoretical Biological Physics, Rice
University, Houston, Texas 77005, United States
- Pacific
Northwest National Laboratory, Seattle, Washington 98109, United States
| | - Min-Yeh Tsai
- Department
of Chemistry and Biochemistry, National
Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
- Division
of Physics, National Center for Theoretical Sciences, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
5
|
Cieślak D, Kabelka I, Bartuzi D. Molecular Dynamics Simulations in Protein-Protein Docking. Methods Mol Biol 2024; 2780:91-106. [PMID: 38987465 DOI: 10.1007/978-1-0716-3985-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Concerted interactions between all the cell components form the basis of biological processes. Protein-protein interactions (PPIs) constitute a tremendous part of this interaction network. Deeper insight into PPIs can help us better understand numerous diseases and lead to the development of new diagnostic and therapeutic strategies. PPI interfaces, until recently, were considered undruggable. However, it is now believed that the interfaces contain "hot spots," which could be targeted by small molecules. Such a strategy would require high-quality structural data of PPIs, which are difficult to obtain experimentally. Therefore, in silico modeling can complement or be an alternative to in vitro approaches. There are several computational methods for analyzing the structural data of the binding partners and modeling of the protein-protein dimer/oligomer structure. The major problem with in silico structure prediction of protein assemblies is obtaining sufficient sampling of protein dynamics. One of the methods that can take protein flexibility and the effects of the environment into account is Molecular Dynamics (MD). While sampling of the whole protein-protein association process with plain MD would be computationally expensive, there are several strategies to harness the method to PPI studies while maintaining reasonable use of resources. This chapter reviews known applications of MD in the PPI investigation workflows.
Collapse
Affiliation(s)
- Dominika Cieślak
- Laboratory of Plant Protein Phosphorylation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ivo Kabelka
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Damian Bartuzi
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
6
|
Kuroda Y, Iwata-Otsubo A, Dias KR, Temple SEL, Nagao K, De Hayr L, Zhu Y, Isobe SY, Nishibuchi G, Fiordaliso SK, Fujita Y, Rippert AL, Baker SW, Leung ML, Koboldt DC, Harman A, Keena BA, Kazama I, Subramanian GM, Manickam K, Schmalz B, Latsko M, Zackai EH, Edwards M, Evans CA, Dulik MC, Buckley MF, Yamashita T, O'Brien WT, Harvey RJ, Obuse C, Roscioli T, Izumi K. Dominant-negative variants in CBX1 cause a neurodevelopmental disorder. Genet Med 2023; 25:100861. [PMID: 37087635 DOI: 10.1016/j.gim.2023.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023] Open
Abstract
PURPOSE This study aimed to establish variants in CBX1, encoding heterochromatin protein 1β (HP1β), as a cause of a novel syndromic neurodevelopmental disorder. METHODS Patients with CBX1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. To investigate the pathogenicity of identified variants, we performed in vitro cellular assays and neurobehavioral and cytological analyses of neuronal cells obtained from newly generated Cbx1 mutant mouse lines. RESULTS In 3 unrelated individuals with developmental delay, hypotonia, and autistic features, we identified heterozygous de novo variants in CBX1. The identified variants were in the chromodomain, the functional domain of HP1β, which mediates interactions with chromatin. Cbx1 chromodomain mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Cytological and chromatin immunoprecipitation experiments confirmed the reduction of mutant HP1β binding to heterochromatin, whereas HP1β interactome analysis demonstrated that the majority of HP1β-interacting proteins remained unchanged between the wild-type and mutant HP1β. CONCLUSION These collective findings confirm the role of CBX1 in developmental disabilities through the disruption of HP1β chromatin binding during neurocognitive development. Because HP1β forms homodimers and heterodimers, mutant HP1β likely sequesters wild-type HP1β and other HP1 proteins, exerting dominant-negative effects.
Collapse
Affiliation(s)
- Yukiko Kuroda
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Aiko Iwata-Otsubo
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kerith-Rae Dias
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Suzanna E L Temple
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Lachlan De Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Ying Zhu
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Shin-Ya Isobe
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Gohei Nishibuchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Sarah K Fiordaliso
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Alyssa L Rippert
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Samuel W Baker
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Marco L Leung
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Department of Pathology, The Ohio State University College of Medicine, Columbus, OH
| | - Daniel C Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Adele Harman
- Transgenic core, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Beth A Keena
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Izumi Kazama
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Kandamurugu Manickam
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH; Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Betsy Schmalz
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Maeson Latsko
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH
| | - Elaine H Zackai
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Matt Edwards
- Hunter Genetics, Newcastle, NSW, Australia; University of Western Sydney School of Medicine, Sydney, NSW, Australia
| | - Carey-Anne Evans
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Matthew C Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Michael F Buckley
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - W Timothy O'Brien
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tony Roscioli
- Randwick Genomics Laboratory, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW, Australia; Neuroscience Research Australia (NeuRA) and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, Australia
| | - Kosuke Izumi
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, PA; Laboratory of Rare Disease Research, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan; Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
7
|
Nde J, Zhang P, Waxham MN, Cheung MS. Experiment and Simulation Reveal Residue Details for How Target Binding Tunes Calmodulin's Calcium-Binding Properties. J Phys Chem B 2023; 127:2900-2908. [PMID: 36977372 DOI: 10.1021/acs.jpcb.2c08734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We aim to elucidate the molecular mechanism of the reciprocal relation of calmodulin's (CaM) target binding and its affinity for calcium ions (Ca2+), which is central to decoding CaM-dependent Ca2+ signaling in a cell. We employed stopped-flow experiments and coarse-grained molecular simulations that learn the coordination chemistry of Ca2+ in CaM from first-principle calculations. The associative memories as part of the coarse-grained force fields built on known protein structures further influence CaM's selection of its polymorphic target peptides in the simulations. We modeled the peptides from the Ca2+/CaM-binding domain of Ca2+/CaM-dependent kinase II (CaMKII), CaMKIIp (293-310) and selected distinctive mutations at the N-terminus. Our stopped-flow experiments have shown that the CaM's affinity for Ca2+ in the bound complex of Ca2+/CaM/CaMKIIp decreased significantly when Ca2+/CaM bound to the mutant peptide (296-AAA-298) compared to that bound to the wild-type peptide (296-RRK-298). The coarse-grained molecular simulations revealed that the 296-AAA-298 mutant peptide destabilized the structures of Ca2+-binding loops at the C-domain of CaM (c-CaM) due to both loss of electrostatic interactions and differences in polymorphic structures. We have leveraged a powerful coarse-grained approach to advance a residue-level understanding of the reciprocal relation in CaM, that could not be possibly achieved by other computational approaches.
Collapse
Affiliation(s)
- Jules Nde
- Department of Physics, University of Washington, Seattle, Washington 98105, United States
| | - Pengzhi Zhang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Margaret S Cheung
- Department of Physics, University of Washington, Seattle, Washington 98105, United States
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Nchourupouo KWT, Nde J, Ngouongo YJW, Zekeng SS, Fongang B. Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers' Interfaces. Molecules 2023; 28:1838. [PMID: 36838825 PMCID: PMC9966702 DOI: 10.3390/molecules28041838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
A growing body of evidence suggests that only a few amino acids ("hot-spots") at the interface contribute most of the binding energy in transient protein-protein interactions. However, experimental protocols to identify these hot-spots are highly labor-intensive and expensive. Computational methods, including evolutionary couplings, have been proposed to predict the hot-spots, but they generally fail to provide details of the interacting amino acids. Here we showed that unbiased evolutionary methods followed by biased molecular dynamic simulations could achieve this goal and reveal critical elements of protein complexes. We applied the methodology to selected G-protein coupled receptors (GPCRs), known for their therapeutic properties. We used the structure-prior-assisted direct coupling analysis (SP-DCA) to predict the binding interfaces of A2aR/D2R, CB1R/D2R, A2aR/CB1R, 5HT2AR/D2R, and 5-HT2AR/mGluR2 receptor heterodimers, which all agreed with published data. In order to highlight details of the interactions, we performed molecular dynamic (MD) simulations using the newly developed AWSEM energy model. We found that these receptors interact primarily through critical residues at the C and N terminal domains and the third intracellular loop (ICL3). The MD simulations showed that these residues are energetically necessary for dimerization and revealed their native conformational state. We subsequently applied the methodology to the 5-HT2AR/5-HTR4R heterodimer, given its implication in drug addiction and neurodegenerative pathologies such as Alzheimer's disease (AD). Further, the SP-DCA analysis showed that 5-HT2AR and 5-HTR4R heterodimerize through the C-terminal domain of 5-HT2AR and ICL3 of 5-HT4R. However, elucidating the details of GPCR interactions would accelerate the discovery of druggable sites and improve our knowledge of the etiology of common diseases, including AD.
Collapse
Affiliation(s)
- Karim Widad Temgbet Nchourupouo
- Laboratory of Mechanics, Materials, and Structures, Department of Physics, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Jules Nde
- Department of Physics, University of Washington Seattle, Seattle, WA 98105, USA
| | - Yannick Joel Wadop Ngouongo
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Serge Sylvain Zekeng
- Laboratory of Mechanics, Materials, and Structures, Department of Physics, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Průša J, Cifra M. Electro-detachment of kinesin motor domain from microtubule in silico. Comput Struct Biotechnol J 2023; 21:1349-1361. [PMID: 36814722 PMCID: PMC9939557 DOI: 10.1016/j.csbj.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 μs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the β-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.
Collapse
|
10
|
Baughman HER, Narang D, Chen W, Villagrán Suárez AC, Lee J, Bachochin MJ, Gunther TR, Wolynes PG, Komives EA. An intrinsically disordered transcription activation domain increases the DNA binding affinity and reduces the specificity of NFκB p50/RelA. J Biol Chem 2022; 298:102349. [PMID: 35934050 PMCID: PMC9440430 DOI: 10.1016/j.jbc.2022.102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Many transcription factors contain intrinsically disordered transcription activation domains (TADs), which mediate interactions with coactivators to activate transcription. Historically, DNA-binding domains and TADs have been considered as modular units, but recent studies have shown that TADs can influence DNA binding. Whether these results can be generalized to more TADs is not clear. Here, we biophysically characterized the NFκB p50/RelA heterodimer including the RelA TAD and investigated the TAD's influence on NFκB-DNA interactions. In solution, we show the RelA TAD is disordered but compact, with helical tendency in two regions that interact with coactivators. We determined that the presence of the TAD increased the stoichiometry of NFκB-DNA complexes containing promoter DNA sequences with tandem κB recognition motifs by promoting the binding of NFκB dimers in excess of the number of κB sites. In addition, we measured the binding affinity of p50/RelA for DNA containing tandem κB sites and single κB sites. While the presence of the TAD enhanced the binding affinity of p50/RelA for all κB sequences tested, it also increased the affinity for nonspecific DNA sequences by over 10-fold, leading to an overall decrease in specificity for κB DNA sequences. In contrast, previous studies have generally reported that TADs decrease DNA-binding affinity and increase sequence specificity. Our results reveal a novel function of the RelA TAD in promoting binding to nonconsensus DNA, which sheds light on previous observations of extensive nonconsensus DNA binding by NFκB in vivo in response to strong inflammatory signals.
Collapse
Affiliation(s)
- Hannah E R Baughman
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Dominic Narang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Wei Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Amalia C Villagrán Suárez
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Joan Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Maxwell J Bachochin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Tristan R Gunther
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
11
|
Srinivasan S, Regmi R, Lin X, Dreyer CA, Chen X, Quinn SD, He W, Coleman MA, Carraway KL, Zhang B, Schlau-Cohen GS. Ligand-induced transmembrane conformational coupling in monomeric EGFR. Nat Commun 2022; 13:3709. [PMID: 35794108 PMCID: PMC9259572 DOI: 10.1038/s41467-022-31299-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/13/2022] [Indexed: 01/26/2023] Open
Abstract
Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.
Collapse
Affiliation(s)
- Shwetha Srinivasan
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Raju Regmi
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.4444.00000 0001 2112 9282Present Address: Institut Curie, CNRS, Laboratoire Physico Chimie Curie, Paris, France
| | - Xingcheng Lin
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Courtney A. Dreyer
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xuyan Chen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Steven D. Quinn
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.5685.e0000 0004 1936 9668Present Address: Department of Physics, University of York, York, UK
| | - Wei He
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Matthew A. Coleman
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.27860.3b0000 0004 1936 9684Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kermit L. Carraway
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bin Zhang
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Gabriela S. Schlau-Cohen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
12
|
Ahn SH, Huber GA, McCammon JA. Investigating Intrinsically Disordered Proteins With Brownian Dynamics. Front Mol Biosci 2022; 9:898838. [PMID: 35755809 PMCID: PMC9213797 DOI: 10.3389/fmolb.2022.898838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have recently become systems of great interest due to their involvement in modulating many biological processes and their aggregation being implicated in many diseases. Since IDPs do not have a stable, folded structure, however, they cannot be easily studied with experimental techniques. Hence, conducting a computational study of these systems can be helpful and be complementary with experimental work to elucidate their mechanisms. Thus, we have implemented the coarse-grained force field for proteins (COFFDROP) in Browndye 2.0 to study IDPs using Brownian dynamics (BD) simulations, which are often used to study large-scale motions with longer time scales and diffusion-limited molecular associations. Specifically, we have checked our COFFDROP implementation with eight naturally occurring IDPs and have investigated five (Glu-Lys)25 IDP sequence variants. From measuring the hydrodynamic radii of eight naturally occurring IDPs, we found the ideal scaling factor of 0.786 for non-bonded interactions. We have also measured the entanglement indices (average C α distances to the other chain) between two (Glu-Lys)25 IDP sequence variants, a property related to molecular association. We found that entanglement indices decrease for all possible pairs at excess salt concentration, which is consistent with long-range interactions of these IDP sequence variants getting weaker at increasing salt concentration.
Collapse
Affiliation(s)
- Surl-Hee Ahn
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Karaca E, Prévost C, Sacquin-Mora S. Modeling the Dynamics of Protein-Protein Interfaces, How and Why? Molecules 2022; 27:1841. [PMID: 35335203 PMCID: PMC8950966 DOI: 10.3390/molecules27061841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/07/2022] Open
Abstract
Protein-protein assemblies act as a key component in numerous cellular processes. Their accurate modeling at the atomic level remains a challenge for structural biology. To address this challenge, several docking and a handful of deep learning methodologies focus on modeling protein-protein interfaces. Although the outcome of these methods has been assessed using static reference structures, more and more data point to the fact that the interaction stability and specificity is encoded in the dynamics of these interfaces. Therefore, this dynamics information must be taken into account when modeling and assessing protein interactions at the atomistic scale. Expanding on this, our review initially focuses on the recent computational strategies aiming at investigating protein-protein interfaces in a dynamic fashion using enhanced sampling, multi-scale modeling, and experimental data integration. Then, we discuss how interface dynamics report on the function of protein assemblies in globular complexes, in fuzzy complexes containing intrinsically disordered proteins, as well as in active complexes, where chemical reactions take place across the protein-protein interface.
Collapse
Affiliation(s)
- Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir 35340, Turkey;
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Turkey
| | - Chantal Prévost
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| | - Sophie Sacquin-Mora
- CNRS, Laboratoire de Biochimie Théorique, UPR9080, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 75006 Paris, France
| |
Collapse
|
14
|
Chu X, Suo Z, Wang J. Investigating the Conformational Dynamics of a Y-Family DNA Polymerase during Its Folding and Binding to DNA and a Nucleotide. JACS AU 2022; 2:341-356. [PMID: 35252985 PMCID: PMC8889613 DOI: 10.1021/jacsau.1c00368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Indexed: 06/14/2023]
Abstract
During DNA polymerization, the Y-family DNA polymerases are capable of bypassing various DNA damage, which can stall the replication fork progression. It has been well acknowledged that the structures of the Y-family DNA polymerases have been naturally evolved to undertake this vital task. However, the mechanisms of how these proteins utilize their unique structural and conformational dynamical features to perform the translesion DNA synthesis are less understood. Here, we developed structure-based models to study the precatalytic DNA polymerization process, including DNA and nucleotide binding to DPO4, a paradigmatic Y-family polymerase from Sulfolobus solfataricus. We studied the interplay between the folding and the conformational dynamics of DPO4 and found that DPO4 undergoes first unraveling (unfolding) and then folding for accomplishing the functional "open-to-closed" conformational transition. DNA binding dynamically modulates the conformational equilibrium in DPO4 during the stepwise binding through different types of interactions, leading to different conformational distributions of DPO4 at different DNA binding stages. We observed that nucleotide binding induces modulation of a few contacts surrounding the active site of the DPO4-DNA complex associated with a high free energy barrier. Our simulation results resonate with the experimental evidence that the conformational change at the active site led by nucleotide is the rate-limiting step of nucleotide incorporation. In combination with localized frustration analyses, we underlined the importance of DPO4 conformational dynamics and fluctuations in facilitating DNA and nucleotide binding. Our findings offer mechanistic insights into the processes of DPO4 conformational dynamics associated with the substrate binding and contribute to the understanding of the "structure-dynamics-function" relationship in the Y-family DNA polymerases.
Collapse
Affiliation(s)
- Xiakun Chu
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
| | - Zucai Suo
- Department
of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, United States
| | - Jin Wang
- Department
of Chemistry, State University of New York
at Stony Brook, Stony
Brook, New York 11794, United States
- Department
of Physics and Astronomy, State University
of New York at Stony Brook, Stony Brook, New York 11794, United States
| |
Collapse
|
15
|
Golla H, Kannan A, Gopi S, Murugan S, Perumalsamy LR, Naganathan AN. Structural-Energetic Basis for Coupling between Equilibrium Fluctuations and Phosphorylation in a Protein Native Ensemble. ACS CENTRAL SCIENCE 2022; 8:282-293. [PMID: 35233459 PMCID: PMC8880421 DOI: 10.1021/acscentsci.1c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.
Collapse
Affiliation(s)
- Hemashree Golla
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Adithi Kannan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmiya Murugan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi R Perumalsamy
- Department
of Biomedical Sciences, Sri Ramachandra
Institute of Higher Education and Research, Chennai 600116, India
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
16
|
Gao Q, Ming D. Protein-protein interactions enhance the thermal resilience of SpyRing-cyclized enzymes: A molecular dynamic simulation study. PLoS One 2022; 17:e0263792. [PMID: 35176056 PMCID: PMC8853484 DOI: 10.1371/journal.pone.0263792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
Recently a technique based on the interaction between adhesion proteins extracted from Streptococcus pyogenes, known as SpyRing, has been widely used to improve the thermal resilience of enzymes, the assembly of biostructures, cancer cell recognition and other fields. It was believed that the covalent cyclization of protein skeleton caused by SpyRing reduces the conformational entropy of biological structure and improves its rigidity, thus improving the thermal resilience of the target enzyme. However, the effects of SpyTag/ SpyCatcher interaction with this enzyme are poorly understood, and their regulation of enzyme properties remains unclear. Here, for simplicity, we took the single domain enzyme lichenase from Bacillus subtilis 168 as an example, studied the interface interactions in the SpyRing by molecular dynamics simulations, and examined the effects of the changes of electrostatic interaction and van der Waals interaction on the thermal resilience of target enzyme. The simulations showed that the interface between SpyTag/SpyCatcher and the target enzyme is different from that found by geometric matching method and highlighted key mutations at the interface that might have effect on the thermal resilience of the enzyme. Our calculations highlighted interfacial interactions between enzyme and SpyTag/SpyCatcher, which might be useful in rational designs of the SpyRing.
Collapse
Affiliation(s)
- Qi Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing City, Jiangsu, PR China
| | - Dangling Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing City, Jiangsu, PR China
| |
Collapse
|
17
|
Nde J, Zhang P, Ezerski JC, Lu W, Knapp K, Wolynes PG, Cheung MS. Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca 2+-Calmodulin. Front Mol Biosci 2021; 8:661322. [PMID: 34504868 PMCID: PMC8421859 DOI: 10.3389/fmolb.2021.661322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) is a calcium-binding protein that transduces signals to downstream proteins through target binding upon calcium binding in a time-dependent manner. Understanding the target binding process that tunes CaM’s affinity for the calcium ions (Ca2+), or vice versa, may provide insight into how Ca2+-CaM selects its target binding proteins. However, modeling of Ca2+-CaM in molecular simulations is challenging because of the gross structural changes in its central linker regions while the two lobes are relatively rigid due to tight binding of the Ca2+ to the calcium-binding loops where the loop forms a pentagonal bipyramidal coordination geometry with Ca2+. This feature that underlies the reciprocal relation between Ca2+ binding and target binding of CaM, however, has yet to be considered in the structural modeling. Here, we presented a coarse-grained model based on the Associative memory, Water mediated, Structure, and Energy Model (AWSEM) protein force field, to investigate the salient features of CaM. Particularly, we optimized the force field of CaM and that of Ca2+ ions by using its coordination chemistry in the calcium-binding loops to match with experimental observations. We presented a “community model” of CaM that is capable of sampling various conformations of CaM, incorporating various calcium-binding states, and carrying the memory of binding with various targets, which sets the foundation of the reciprocal relation of target binding and Ca2+ binding in future studies.
Collapse
Affiliation(s)
- Jules Nde
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Pengzhi Zhang
- Department of Physics, University of Houston, Houston, TX, United States
| | - Jacob C Ezerski
- Department of Physics, University of Houston, Houston, TX, United States
| | - Wei Lu
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Kaitlin Knapp
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, TX, United States.,Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| |
Collapse
|
18
|
Galaz-Davison P, Román EA, Ramírez-Sarmiento CA. The N-terminal domain of RfaH plays an active role in protein fold-switching. PLoS Comput Biol 2021; 17:e1008882. [PMID: 34478435 PMCID: PMC8454952 DOI: 10.1371/journal.pcbi.1008882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/21/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
The bacterial elongation factor RfaH promotes the expression of virulence factors by specifically binding to RNA polymerases (RNAP) paused at a DNA signal. This behavior is unlike that of its paralog NusG, the major representative of the protein family to which RfaH belongs. Both proteins have an N-terminal domain (NTD) bearing an RNAP binding site, yet NusG C-terminal domain (CTD) is folded as a β-barrel while RfaH CTD is forming an α-hairpin blocking such site. Upon recognition of the specific DNA exposed by RNAP, RfaH is activated via interdomain dissociation and complete CTD structural rearrangement into a β-barrel structurally identical to NusG CTD. Although RfaH transformation has been extensively characterized computationally, little attention has been given to the role of the NTD in the fold-switching process, as its structure remains unchanged. Here, we used Associative Water-mediated Structure and Energy Model (AWSEM) molecular dynamics to characterize the transformation of RfaH, spotlighting the sequence-dependent effects of NTD on CTD fold stabilization. Umbrella sampling simulations guided by native contacts recapitulate the thermodynamic equilibrium experimentally observed for RfaH and its isolated CTD. Temperature refolding simulations of full-length RfaH show a high success towards α-folded CTD, whereas the NTD interferes with βCTD folding, becoming trapped in a β-barrel intermediate. Meanwhile, NusG CTD refolding is unaffected by the presence of RfaH NTD, showing that these NTD-CTD interactions are encoded in RfaH sequence. Altogether, these results suggest that the NTD of RfaH favors the α-folded RfaH by specifically orienting the αCTD upon interdomain binding and by favoring β-barrel rupture into an intermediate from which fold-switching proceeds. Proteins commonly adopt a single three-dimensional structure that is required for biological function. Nevertheless, proteins are not isolated in the cell, and the presence of binding partners can give rise to alternate structural configurations. Metamorphic proteins represent an extreme case of the latter, by folding into at least two well-defined configurations that are both structurally and functionally different. For RfaH, a virulence factor in enterobacteria, two distinct folds are found: an autoinhibited state in which its two protein domains strongly interact, and an active state in which these domains dissociate due to a specific DNA signal on RNA polymerases. This activation is accompanied by the refolding of the C-terminal domain (CTD) from an α-helical structure to a β-barrel. Our work employs computational simulations to explore the role of the N-terminal domain (NTD) in regulating the metamorphic behavior of RfaH, determining that this domain has a major part in orienting and binding to the CTD in its α-helical fold, and in stabilizing an intermediate state instead of the fully folded β-barrel. These results suggest that the NTD not only participates in stabilizing the autoinhibited state, but also aids in fold-switching back to it after active RfaH is released from RNA polymerase.
Collapse
Affiliation(s)
- Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Ernesto A. Román
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- * E-mail:
| |
Collapse
|
19
|
Ma YW, Lin TY, Tsai MY. Fibril Surface-Dependent Amyloid Precursors Revealed by Coarse-Grained Molecular Dynamics Simulation. Front Mol Biosci 2021; 8:719320. [PMID: 34422910 PMCID: PMC8378332 DOI: 10.3389/fmolb.2021.719320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Amyloid peptides are known to self-assemble into larger aggregates that are linked to the pathogenesis of many neurodegenerative disorders. In contrast to primary nucleation, recent experimental and theoretical studies have shown that many toxic oligomeric species are generated through secondary processes on a pre-existing fibrillar surface. Nucleation, for example, can also occur along the surface of a pre-existing fibril—secondary nucleation—as opposed to the primary one. However, explicit pathways are still not clear. In this study, we use molecular dynamics simulation to explore the free energy landscape of a free Abeta monomer binding to an existing fibrillar surface. We specifically look into several potential Abeta structural precursors that might precede some secondary events, including elongation and secondary nucleation. We find that the overall process of surface-dependent events can be described at least by the following three stages: 1. Free diffusion 2. Downhill guiding 3. Dock and lock. And we show that the outcome of adding a new monomer onto a pre-existing fibril is pathway-dependent, which leads to different secondary processes. To understand structural details, we have identified several monomeric amyloid precursors over the fibrillar surfaces and characterize their heterogeneity using a probability contact map analysis. Using the frustration analysis (a bioinformatics tool), we show that surface heterogeneity correlates with the energy frustration of specific local residues that form binding sites on the fibrillar structure. We further investigate the helical twisting of protofilaments of different sizes and observe a length dependence on the filament twisting. This work presents a comprehensive survey over the properties of fibril growth using a combination of several openMM-based platforms, including the GPU-enabled openAWSEM package for coarse-grained modeling, MDTraj for trajectory analysis, and pyEMMA for free energy calculation. This combined approach makes long-timescale simulation for aggregation systems as well as all-in-one analysis feasible. We show that this protocol allows us to explore fibril stability, surface binding affinity/heterogeneity, as well as fibrillar twisting. All these properties are important for understanding the molecular mechanism of surface-catalyzed secondary processes of fibril growth.
Collapse
Affiliation(s)
- Yuan-Wei Ma
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Tong-You Lin
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Min-Yeh Tsai
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| |
Collapse
|
20
|
Baumer KM, Cook CD, Zahler CT, Beard AA, Chen Z, Koone JC, Dashnaw CM, Villacob RA, Solouki T, Wood JL, Borchelt DR, Shaw BF. Supercharging Prions via Amyloid‐Selective Lysine Acetylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katelyn M. Baumer
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Collin T. Zahler
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Zhijuan Chen
- Department of Neuroscience University of Florida Gainesville FL USA
| | - Jordan C. Koone
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Chad M. Dashnaw
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Raul A. Villacob
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | - John L. Wood
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| | | | - Bryan F. Shaw
- Department of Chemistry and Biochemistry Baylor University Waco TX USA
| |
Collapse
|
21
|
Baumer KM, Cook CD, Zahler CT, Beard AA, Chen Z, Koone JC, Dashnaw CM, Villacob RA, Solouki T, Wood JL, Borchelt DR, Shaw BF. Supercharging Prions via Amyloid-Selective Lysine Acetylation. Angew Chem Int Ed Engl 2021; 60:15069-15079. [PMID: 33876528 DOI: 10.1002/anie.202103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/10/2022]
Abstract
Repulsive electrostatic forces between prion-like proteins are a barrier against aggregation. In neuropharmacology, however, a prion's net charge (Z) is not a targeted parameter. Compounds that selectively boost prion Z remain unreported. Here, we synthesized compounds that amplified the negative charge of misfolded superoxide dismutase-1 (SOD1) by acetylating lysine-NH3 + in amyloid-SOD1, without acetylating native-SOD1. Compounds resembled a "ball and chain" mace: a rigid amyloid-binding "handle" (benzothiazole, stilbene, or styrylpyridine); an aryl ester "ball"; and a triethylene glycol chain connecting ball to handle. At stoichiometric excess, compounds acetylated up to 9 of 11 lysine per misfolded subunit (ΔZfibril =-8100 per 103 subunits). Acetylated amyloid-SOD1 seeded aggregation more slowly than unacetylated amyloid-SOD1 in vitro and organotypic spinal cord (these effects were partially due to compound binding). Compounds exhibited reactivity with other amyloid and non-amyloid proteins (e.g., fibrillar α-synuclein was peracetylated; serum albumin was partially acetylated; carbonic anhydrase was largely unacetylated).
Collapse
Affiliation(s)
- Katelyn M Baumer
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Christopher D Cook
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Collin T Zahler
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Alexandra A Beard
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Zhijuan Chen
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Jordan C Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Chad M Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - David R Borchelt
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| |
Collapse
|
22
|
Tahir Ul Qamar M, Ahmad S, Fatima I, Ahmad F, Shahid F, Naz A, Abbasi SW, Khan A, Mirza MU, Ashfaq UA, Chen LL. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Comput Biol Med 2021; 132:104389. [PMID: 33866250 DOI: 10.1016/j.compbiomed.2021.104389] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Accepted: 04/07/2021] [Indexed: 01/28/2023]
Abstract
Staphylococcus aureus is a deadly human bacterial pathogen that causes a wide variety of clinical manifestations. Invasive S. aureus infections in hospitals and the community are one of the main causes of mortality and morbidity, as virulent and multi-drug-resistant strains have evolved. There is an unmet and urgent clinical need for immune-based non-antibiotic approaches to treat these infections as the growing antibiotic resistance poses a significant public health danger. Subtractive proteomics assisted reverse vaccinology-based immunoinformatics pipeline was used in this study to target the suitable antigenic proteins for the development of multi-epitope vaccine (MEV). Three essential virulent and antigenic proteins were identified including Glycosyltransferase, Elastin Binding Protein, and Staphylococcal secretory antigen. A variety of immunoinformatics tools have been used to forecast T-cell and B-cell epitopes from target proteins. Seven CTL, five HTL, and eight LBL epitopes, connected through suitable linkers and adjuvant, were employed to design 444 amino acids long MEV construct. The vaccine was paired with the TLR4 agonist 50S ribosomal protein L7/L12 adjuvant to enhance the immune response towards the vaccine. The predicted MEV structure was assessed to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. Molecular docking simulation of the MEV with the human TLR4 (toll-like receptor 4) and major histocompatibility complex molecules (MHCI and MHCII) was performed to validate the interactions with the receptors. Molecular dynamics (MD) simulation and MMGBSA binding free energy analyses were carried out for the stability evaluation and binding of the MEV docked complexes with TLR4, MHCI and MHCII. To achieve maximal vaccine protein expression with optimal post-translational modifications, MEV was reverse translated, its mRNA structure was analyzed, and finally in silico cloning was performed into E. coli expression host. These rigorous computational analyses supported the effectivity of proposed MEV in protection against infections associated with S. aureus. However, further experimental validations are required to fully evaluate the potential of proposed vaccine candidate.
Collapse
Affiliation(s)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Israr Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Faisal Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sumra Wajid Abbasi
- NUMS Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ling-Ling Chen
- College of Life Science and Technology, Guangxi University, Nanning, PR China.
| |
Collapse
|
23
|
Oliveira Junior AB, Lin X, Kulkarni P, Onuchic JN, Roy S, Leite VBP. Exploring Energy Landscapes of Intrinsically Disordered Proteins: Insights into Functional Mechanisms. J Chem Theory Comput 2021; 17:3178-3187. [PMID: 33871257 DOI: 10.1021/acs.jctc.1c00027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack a rigid three-dimensional structure and populate a polymorphic ensemble of conformations. Because of the lack of a reference conformation, their energy landscape representation in terms of reaction coordinates presents a daunting challenge. Here, our newly developed energy landscape visualization method (ELViM), a reaction coordinate-free approach, shows its prime application to explore frustrated energy landscapes of an intrinsically disordered protein, prostate-associated gene 4 (PAGE4). PAGE4 is a transcriptional coactivator that potentiates the oncogene c-Jun. Two kinases, namely, HIPK1 and CLK2, phosphorylate PAGE4, generating variants phosphorylated at different serine/threonine residues (HIPK1-PAGE4 and CLK2-PAGE4, respectively) with opposing functions. While HIPK1-PAGE4 predominantly phosphorylates Thr51 and potentiates c-Jun, CLK2-PAGE4 hyperphosphorylates PAGE4 and attenuates transactivation. To understand the underlying mechanisms of conformational diversity among different phosphoforms, we have analyzed their atomistic trajectories simulated using AWSEM forcefield, and the energy landscapes were elucidated using ELViM. This method allows us to identify and compare the population distributions of different conformational ensembles of PAGE4 phosphoforms using the same effective phase space. The results reveal a predominant conformational ensemble with an extended C-terminal segment of WT PAGE4, which exposes a functional residue Thr51, implying its potential of undertaking a fly-casting mechanism while binding to its cognate partner. In contrast, for HIPK1-PAGE4, a compact conformational ensemble enhances its population sequestering phosphorylated-Thr51. This clearly explains the experimentally observed weaker affinity of HIPK1-PAGE4 for c-Jun. ELViM appears as a powerful tool, especially to analyze the highly frustrated energy landscape representation of IDPs where appropriate reaction coordinates are hard to apprehend.
Collapse
Affiliation(s)
- Antonio B Oliveira Junior
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, United States
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, United States
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Vitor B P Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
24
|
From folding to function: complex macromolecular reactions unraveled one-by-one with optical tweezers. Essays Biochem 2021; 65:129-142. [PMID: 33438724 DOI: 10.1042/ebc20200024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Single-molecule manipulation with optical tweezers has uncovered macromolecular behaviour hidden to other experimental techniques. Recent instrumental improvements have made it possible to expand the range of systems accessible to optical tweezers. Beyond focusing on the folding and structural changes of isolated single molecules, optical tweezers studies have evolved into unraveling the basic principles of complex molecular processes such as co-translational folding on the ribosome, kinase activation dynamics, ligand-receptor binding, chaperone-assisted protein folding, and even dynamics of intrinsically disordered proteins (IDPs). In this mini-review, we illustrate the methodological principles of optical tweezers before highlighting recent advances in studying complex protein conformational dynamics - from protein synthesis to physiological function - as well as emerging future issues that are beginning to be addressed with novel approaches.
Collapse
|
25
|
Procyk J, Poppleton E, Šulc P. Coarse-grained nucleic acid-protein model for hybrid nanotechnology. SOFT MATTER 2021; 17:3586-3593. [PMID: 33398312 DOI: 10.1039/d0sm01639j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emerging field of hybrid DNA-protein nanotechnology brings with it the potential for many novel materials which combine the addressability of DNA nanotechnology with the versatility of protein interactions. However, the design and computational study of these hybrid structures is difficult due to the system sizes involved. To aid in the design and in silico analysis process, we introduce here a coarse-grained DNA/RNA-protein model that extends the oxDNA/oxRNA models of DNA/RNA with a coarse-grained model of proteins based on an anisotropic network model representation. Fully equipped with analysis scripts and visualization, our model aims to facilitate hybrid nanomaterial design towards eventual experimental realization, as well as enabling study of biological complexes. We further demonstrate its usage by simulating DNA-protein nanocage, DNA wrapped around histones, and a nascent RNA in polymerase.
Collapse
Affiliation(s)
- Jonah Procyk
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, USA.
| | | | | |
Collapse
|
26
|
Baluška F, Miller WB, Reber AS. Biomolecular Basis of Cellular Consciousness via Subcellular Nanobrains. Int J Mol Sci 2021; 22:ijms22052545. [PMID: 33802617 PMCID: PMC7961929 DOI: 10.3390/ijms22052545] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cells emerged at the very beginning of life on Earth and, in fact, are coterminous with life. They are enclosed within an excitable plasma membrane, which defines the outside and inside domains via their specific biophysical properties. Unicellular organisms, such as diverse protists and algae, still live a cellular life. However, fungi, plants, and animals evolved a multicellular existence. Recently, we have developed the cellular basis of consciousness (CBC) model, which proposes that all biological awareness, sentience and consciousness are grounded in general cell biology. Here we discuss the biomolecular structures and processes that allow for and maintain this cellular consciousness from an evolutionary perspective.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, 53115 Bonn, Germany
- Correspondence:
| | | | - Arthur S. Reber
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
27
|
Chen M, Chen X, Jin S, Lu W, Lin X, Wolynes PG. Protein Structure Refinement Guided by Atomic Packing Frustration Analysis. J Phys Chem B 2020; 124:10889-10898. [PMID: 32931278 DOI: 10.1021/acs.jpcb.0c06719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advances in machine learning, bioinformatics, and the understanding of the folding problem have enabled efficient predictions of protein structures with moderate accuracy, even for targets where there is little information from templates. All-atom molecular dynamics simulations provide a route to refine such predicted structures, but unguided atomistic simulations, even when lengthy in time, often fail to eliminate incorrect structural features that would prevent the structure from becoming more energetically favorable owing to the necessity of making large scale motions and to overcoming energy barriers for side chain repacking. In this study, we show that localizing packing frustration at atomic resolution by examining the statistics of the energetic changes that occur when the local environment of a site is changed allows one to identify the most likely locations of incorrect contacts. The global statistics of atomic resolution frustration in structures that have been predicted using various algorithms provide strong indicators of structural quality when tested over a database of 20 targets from previous CASP experiments. Residues that are more correctly located turn out to be more minimally frustrated than more poorly positioned sites. These observations provide a diagnosis of both global and local quality of predicted structures and thus can be used as guidance in all-atom refinement simulations of the 20 targets. Refinement simulations guided by atomic packing frustration turn out to be quite efficient and significantly improve the quality of the structures.
Collapse
Affiliation(s)
- Mingchen Chen
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Xun Chen
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Shikai Jin
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Biosciences, Rice University, Houston, Texas 77005, United States
| | - Wei Lu
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Physics and Astronomy, Rice University, Houston, Texas 77030, United States
| | - Xingcheng Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Biosciences, Rice University, Houston, Texas 77005, United States.,Department of Physics and Astronomy, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
28
|
Jin S, Contessoto VG, Chen M, Schafer NP, Lu W, Chen X, Bueno C, Hajitaheri A, Sirovetz BJ, Davtyan A, Papoian GA, Tsai MY, Wolynes PG. AWSEM-Suite: a protein structure prediction server based on template-guided, coevolutionary-enhanced optimized folding landscapes. Nucleic Acids Res 2020; 48:W25-W30. [PMID: 32383764 PMCID: PMC7319565 DOI: 10.1093/nar/gkaa356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
The accurate and reliable prediction of the 3D structures of proteins and their assemblies remains difficult even though the number of solved structures soars and prediction techniques improve. In this study, a free and open access web server, AWSEM-Suite, whose goal is to predict monomeric protein tertiary structures from sequence is described. The model underlying the server’s predictions is a coarse-grained protein force field which has its roots in neural network ideas that has been optimized using energy landscape theory. Employing physically motivated potentials and knowledge-based local structure biasing terms, the addition of homologous template and co-evolutionary restraints to AWSEM-Suite greatly improves the predictive power of pure AWSEM structure prediction. From the independent evaluation metrics released in the CASP13 experiment, AWSEM-Suite proves to be a reasonably accurate algorithm for free modeling, standing at the eighth position in the free modeling category of CASP13. The AWSEM-Suite server also features a front end with a user-friendly interface. The AWSEM-Suite server is a powerful tool for predicting monomeric protein tertiary structures that is most useful when a suitable structure template is not available. The AWSEM-Suite server is freely available at: https://awsem.rice.edu.
Collapse
Affiliation(s)
- Shikai Jin
- Department of Biosciences, Rice University, 6100 Main St, Houston, TX 77005, USA.,Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Vinicius G Contessoto
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Mingchen Chen
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Wei Lu
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA.,Department of Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Xun Chen
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA.,Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Carlos Bueno
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Arya Hajitaheri
- Department of Computer Science, University of Houston, 4800 Calhoun Rd, Houston, TX 77004, USA
| | - Brian J Sirovetz
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Aram Davtyan
- Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Garegin A Papoian
- Department of Chemistry, University of Maryland, College Park, MD 20742, USA
| | - Min-Yeh Tsai
- Department of Chemistry, Tamkang University, 151 Yingzhuan Road, New Taipei City 25137, Taiwan
| | - Peter G Wolynes
- Department of Biosciences, Rice University, 6100 Main St, Houston, TX 77005, USA.,Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005, USA.,Department of Physics, Rice University, 6100 Main St, Houston, TX 77005, USA.,Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
29
|
Energetics and kinetics of substrate analog-coupled staphylococcal nuclease folding revealed by a statistical mechanical approach. Proc Natl Acad Sci U S A 2020; 117:19953-19962. [PMID: 32737158 DOI: 10.1073/pnas.1914349117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein conformational changes associated with ligand binding, especially those involving intrinsically disordered proteins, are mediated by tightly coupled intra- and intermolecular events. Such reactions are often discussed in terms of two limiting kinetic mechanisms, conformational selection (CS), where folding precedes binding, and induced fit (IF), where binding precedes folding. It has been shown that coupled folding/binding reactions can proceed along both CS and IF pathways with the flux ratio depending on conditions such as ligand concentration. However, the structural and energetic basis of such complex reactions remains poorly understood. Therefore, we used experimental, theoretical, and computational approaches to explore structural and energetic aspects of the coupled-folding/binding reaction of staphylococcal nuclease in the presence of the substrate analog adenosine-3',5'-diphosphate. Optically monitored equilibrium and kinetic data, combined with a statistical mechanical model, gave deeper insight into the relative importance of specific and Coulombic protein-ligand interactions in governing the reaction mechanism. We also investigated structural aspects of the reaction at the residue level using NMR and all-atom replica-permutation molecular dynamics simulations. Both approaches yielded clear evidence for accumulation of a transient protein-ligand encounter complex early in the reaction under IF-dominant conditions. Quantitative analysis of the equilibrium/kinetic folding revealed that the ligand-dependent CS-to-IF shift resulted from stabilization of the compact transition state primarily by weakly ligand-dependent Coulombic interactions with smaller contributions from specific binding energies. At a more macroscopic level, the CS-to-IF shift was represented as a displacement of the reaction "route" on the free energy surface, which was consistent with a flux analysis.
Collapse
|
30
|
Vascon F, Gasparotto M, Giacomello M, Cendron L, Bergantino E, Filippini F, Righetto I. Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design. Comput Struct Biotechnol J 2020; 18:1774-1789. [PMID: 32695270 PMCID: PMC7355722 DOI: 10.1016/j.csbj.2020.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022] Open
Abstract
Computationally driven engineering of proteins aims to allow them to withstand an extended range of conditions and to mediate modified or novel functions. Therefore, it is crucial to the biotechnological industry, to biomedicine and to afford new challenges in environmental sciences, such as biocatalysis for green chemistry and bioremediation. In order to achieve these goals, it is important to clarify molecular mechanisms underlying proteins stability and modulating their interactions. So far, much attention has been given to hydrophobic and polar packing interactions and stability of the protein core. In contrast, the role of electrostatics and, in particular, of surface interactions has received less attention. However, electrostatics plays a pivotal role along the whole life cycle of a protein, since early folding steps to maturation, and it is involved in the regulation of protein localization and interactions with other cellular or artificial molecules. Short- and long-range electrostatic interactions, together with other forces, provide essential guidance cues in molecular and macromolecular assembly. We report here on methods for computing protein electrostatics and for individual or comparative analysis able to sort proteins by electrostatic similarity. Then, we provide examples of electrostatic analysis and fingerprints in natural protein evolution and in biotechnological design, in fields as diverse as biocatalysis, antibody and nanobody engineering, drug design and delivery, molecular virology, nanotechnology and regenerative medicine.
Collapse
Affiliation(s)
- Filippo Vascon
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Matteo Gasparotto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Marta Giacomello
- Bioenergetic Organelles Unit, Department of Biology, University of Padua, Italy
- Department of Biomedical Sciences, University of Padua, Italy
| | - Laura Cendron
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Elisabetta Bergantino
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Francesco Filippini
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| | - Irene Righetto
- Synthetic Biology and Biotechnology Unit, Department of Biology, University of Padua, Italy
| |
Collapse
|
31
|
Casier R, Duhamel J. Effect of Like Charges on the Conformation and Internal Dynamics of Polypeptides Probed by Pyrene Excimer Fluorescence. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Remi Casier
- Institute for Polymer Research, Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo N2L3G1, Ontario, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Department of Chemistry, Waterloo Institute for Nanotechnology, Waterloo N2L3G1, Ontario, Canada
| |
Collapse
|
32
|
Girodat D, Blanchard SC, Wieden HJ, Sanbonmatsu KY. Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. J Mol Biol 2020; 432:3064-3077. [PMID: 32061931 DOI: 10.1016/j.jmb.2020.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a β-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; New Mexico Consortium, Los Alamos, NM, 87544.
| |
Collapse
|
33
|
Insights into the energy landscapes of chromosome organization proteins from coevolutionary sequence variation and structural modeling. Proc Natl Acad Sci U S A 2020; 117:2241-2242. [PMID: 31924744 DOI: 10.1073/pnas.1921727117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Choi SI. A Simple Principle for Understanding the Combined Cellular Protein Folding and Aggregation. Curr Protein Pept Sci 2020; 21:3-21. [DOI: 10.2174/1389203720666190725114550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
Proteins can undergo kinetic/thermodynamic partitioning between folding and aggregation. Proper protein folding and thermodynamic stability are crucial for aggregation inhibition. Thus, proteinfolding principles have been widely believed to consistently underlie aggregation as a consequence of conformational change. However, this prevailing view appears to be challenged by the ubiquitous phenomena that the intrinsic and extrinsic factors including cellular macromolecules can prevent aggregation, independently of (even with sacrificing) protein folding rate and stability. This conundrum can be definitely resolved by ‘a simple principle’ based on a rigorous distinction between protein folding and aggregation: aggregation can be controlled by affecting the intermolecular interactions for aggregation, independently of the intramolecular interactions for protein folding. Aggregation is beyond protein folding. A unifying model that can conceptually reconcile and underlie the seemingly contradictory observations is described here. This simple principle highlights, in particular, the importance of intermolecular repulsive forces against aggregation, the magnitude of which can be correlated with the size and surface properties of molecules. The intermolecular repulsive forces generated by the common intrinsic properties of cellular macromolecules including chaperones, such as their large excluded volume and surface charges, can play a key role in preventing the aggregation of their physically connected polypeptides, thus underlying the generic intrinsic chaperone activity of soluble cellular macromolecules. Such intermolecular repulsive forces of bulky cellular macromolecules, distinct from protein conformational change and attractive interactions, could be the puzzle pieces for properly understanding the combined cellular protein folding and aggregation including how proteins can overcome their metastability to amyloid fibrils in vivo.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Krepel D, Davtyan A, Schafer NP, Wolynes PG, Onuchic JN. Braiding topology and the energy landscape of chromosome organization proteins. Proc Natl Acad Sci U S A 2020; 117:1468-1477. [PMID: 31888987 PMCID: PMC6983425 DOI: 10.1073/pnas.1917750117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Assemblies of structural maintenance of chromosomes (SMC) proteins and kleisin subunits are essential to chromosome organization and segregation across all kingdoms of life. While structural data exist for parts of the SMC-kleisin complexes, complete structures of the entire complexes have yet to be determined, making mechanistic studies difficult. Using an integrative approach that combines crystallographic structural information about the globular subdomains, along with coevolutionary information and an energy landscape optimized force field (AWSEM), we predict atomic-scale structures for several tripartite SMC-kleisin complexes, including prokaryotic condensin, eukaryotic cohesin, and eukaryotic condensin. The molecular dynamics simulations of the SMC-kleisin protein complexes suggest that these complexes exist as a broad conformational ensemble that is made up of different topological isomers. The simulations suggest a critical role for the SMC coiled-coil regions, where the coils intertwine with various linking numbers. The twist and writhe of these braided coils are coupled with the motion of the SMC head domains, suggesting that the complexes may function as topological motors. Opening, closing, and translation along the DNA of the SMC-kleisin protein complexes would allow these motors to couple to the topology of DNA when DNA is entwined with the braided coils.
Collapse
Affiliation(s)
- Dana Krepel
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
| | - Aram Davtyan
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
- Department of Chemistry, Rice University, Houston, TX 77005
- Department of Physics and Astronomy, Rice University, Houston, TX 77005
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
36
|
Ferreira PHB, Freitas FC, McCully ME, Slade GG, de Oliveira RJ. The Role of Electrostatics and Folding Kinetics on the Thermostability of Homologous Cold Shock Proteins. J Chem Inf Model 2020; 60:546-561. [PMID: 31910002 DOI: 10.1021/acs.jcim.9b00797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding which aspects contribute to the thermostability of proteins is a challenge that has persisted for decades, and it is of great relevance for protein engineering. Several types of interactions can influence the thermostability of a protein. Among them, the electrostatic interactions have been a target of particular attention. Aiming to explore how this type of interaction can affect protein thermostability, this paper investigated four homologous cold shock proteins from psychrophilic, mesophilic, thermophilic, and hyperthermophilic organisms using a set of theoretical methodologies. It is well-known that electrostatics as well as hydrophobicity are key-elements for the stabilization of these proteins. Therefore, both interactions were initially analyzed in the native structure of each protein. Electrostatic interactions present in the native structures were calculated with the Tanford-Kirkwood model with solvent accessibility, and the amount of hydrophobic surface area buried upon folding was estimated by measuring both folded and extended structures. On the basis of Energy Landscape Theory, the local frustration and the simplified alpha-carbon structure-based model were modeled with a Debye-Hückel potential to take into account the electrostatics and the effects of an implicit solvent. Thermodynamic data for the structure-based model simulations were collected and analyzed using the Weighted Histogram Analysis and Stochastic Diffusion methods. Kinetic quantities including folding times, transition path times, folding routes, and Φ values were also obtained. As a result, we found that the methods are able to qualitatively infer that electrostatic interactions play an important role on the stabilization of the most stable thermophilic cold shock proteins, showing agreement with the experimental data.
Collapse
Affiliation(s)
- Paulo Henrique Borges Ferreira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| | - Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| | - Michelle E McCully
- Department of Biology , Santa Clara University , Santa Clara , California 95050 , United States
| | - Gabriel Gouvêa Slade
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , Minas Gerais 38064200 , Brazil
| |
Collapse
|
37
|
Yang J, Zeng Y, Liu Y, Gao M, Liu S, Su Z, Huang Y. Electrostatic interactions in molecular recognition of intrinsically disordered proteins. J Biomol Struct Dyn 2019; 38:4883-4894. [DOI: 10.1080/07391102.2019.1692073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yunfei Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
38
|
Yang J, Gao M, Xiong J, Su Z, Huang Y. Features of molecular recognition of intrinsically disordered proteins via coupled folding and binding. Protein Sci 2019; 28:1952-1965. [PMID: 31441158 PMCID: PMC6798136 DOI: 10.1002/pro.3718] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
The sequence-structure-function paradigm of proteins has been revolutionized by the discovery of intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs). In contrast to traditional ordered proteins, IDPs/IDRs are unstructured under physiological conditions. The absence of well-defined three-dimensional structures in the free state of IDPs/IDRs is fundamental to their function. Folding upon binding is an important mode of molecular recognition for IDPs/IDRs. While great efforts have been devoted to investigating the complex structures and binding kinetics and affinities, our knowledge on the binding mechanisms of IDPs/IDRs remains very limited. Here, we review recent advances on the binding mechanisms of IDPs/IDRs. The structures and kinetic parameters of IDPs/IDRs can vary greatly, and the binding mechanisms can be highly dependent on the structural properties of IDPs/IDRs. IDPs/IDRs can employ various combinations of conformational selection and induced fit in a binding process, which can be templated by the target and/or encoded by the IDP/IDR. Further studies should provide deeper insights into the molecular recognition of IDPs/IDRs and enable the rational design of IDP/IDR binding mechanisms in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Meng Gao
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Junwen Xiong
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Zhengding Su
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| | - Yongqi Huang
- Department of Biological Engineering and Key Laboratory of Industrial Fermentation (Ministry of Education)Hubei University of TechnologyWuhanHubeiChina
- Institute of Biomedical and Pharmaceutical SciencesHubei University of TechnologyWuhanHubeiChina
| |
Collapse
|
39
|
Roche J, Potoyan DA. Disorder Mediated Oligomerization of DISC1 Proteins Revealed by Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2019; 123:9567-9575. [PMID: 31614085 DOI: 10.1021/acs.jpcb.9b07467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Disrupted-in-schizophrenia-1 (DISC1) is a scaffold protein of significant importance for neuro-development and a prominent candidate protein in the etiology of mental disorders. In this work, we investigate the role of conformational heterogeneity and local structural disorder in the oligomerization pathway of the full-length DISC1 and of two truncation variants. Through extensive coarse-grained molecular dynamics simulations with a predictive energy landscape-based model, we shed light on the interplay of local and global disorder which lead to different oligomerization pathways. We found that both global conformational heterogeneity and local structural disorder play an important role in shaping distinct oligomerization trends of DISC1. This study also sheds light on the differences in oligomerization pathways of the full-length protein compared to the truncated variants produced by a chromosomal translocation associated with schizophrenia. We report that oligomerization of full-length DISC1 sequence works in a nonadditive manner with respect to truncated fragments that do not mirror the conformational landscape or binding affinities of the full-length unit.
Collapse
Affiliation(s)
- Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States
| | - Davit A Potoyan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology , Iowa State University , Ames , Iowa 50011 , United States.,Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States.,Bioinformatics and Computational Biology Program , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
40
|
Shashikala HBM, Chakravorty A, Alexov E. Modeling Electrostatic Force in Protein-Protein Recognition. Front Mol Biosci 2019; 6:94. [PMID: 31608289 PMCID: PMC6774301 DOI: 10.3389/fmolb.2019.00094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022] Open
Abstract
Electrostatic interactions are important for understanding molecular interactions, since they are long-range interactions and can guide binding partners to their correct binding positions. To investigate the role of electrostatic forces in molecular recognition, we calculated electrostatic forces between binding partners separated at various distances. The investigation was done on a large set of 275 protein complexes using recently developed DelPhiForce tool and in parallel, evaluating the total electrostatic force via electrostatic association energy. To accomplish the goal, we developed a method to find an appropriate direction to move one chain of protein complex away from its bound position and then calculate the corresponding electrostatic force as a function of separation distance. It is demonstrated that at large distances between the partners, the electrostatic force (magnitude and direction) is consistent among the protocols used and the main factors contributing to it are the net charge of the partners and their interfaces. However, at short distances, where partners form specific pair-wise interactions or de-solvation penalty becomes significant, the outcome depends on the precise balance of these factors. Based on the electrostatic force profile (force as a function of distance), we group the cases into four distinctive categories, among which the most intriguing is the case termed "soft landing." In this case, the electrostatic force at large distances is favorable assisting the partners to come together, while at short distance it opposes binding, and thus slows down the approach of the partners toward their physical binding.
Collapse
|
41
|
Coglitore D, Janot JM, Balme S. Protein at liquid solid interfaces: Toward a new paradigm to change the approach to design hybrid protein/solid-state materials. Adv Colloid Interface Sci 2019; 270:278-292. [PMID: 31306853 DOI: 10.1016/j.cis.2019.07.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
This review gives an overview of protein adsorption at solid/liquid interface. Compared to the other ones, we have focus on three main questions with the point of view of the protein. The first question is related to the kinetic and especially the using of Langmuir model to describe the protein adsorption. The second question is about the concept of hard and soft protein. In this part, we report the protein structural modification induced by adsorption regarding their intrinsic structure. This allows formulating of a new concept to classify the protein to predict their behavior at solid/liquid interface. The last question is related to the protein corona. We give an overview about the soft/hard corona and attempt to make correlation with the concept of hard/soft protein.
Collapse
|
42
|
Li ZL, Buck M. Modified Potential Functions Result in Enhanced Predictions of a Protein Complex by All-Atom Molecular Dynamics Simulations, Confirming a Stepwise Association Process for Native Protein-Protein Interactions. J Chem Theory Comput 2019; 15:4318-4331. [PMID: 31241940 DOI: 10.1021/acs.jctc.9b00195] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The relative prevalence of native protein-protein interactions (PPIs) are the cornerstone for understanding the structure, dynamics and mechanisms of function of protein complexes. In this study, we develop a scheme for scaling the protein-water interaction in the CHARMM36 force field, in order to better fit the solvation free energy of amino acids side-chain analogues. We find that the molecular dynamics simulation with the scaled force field, CHARMM36s, as well as a recently released version, CHARMM36m, effectively improve on the overly sticky association of proteins, such as ubiquitin. We investigate the formation of a heterodimer protein complex between the SAM domains of the EphA2 receptor and the SHIP2 enzyme by performing a combined total of 48 μs simulations with the different potential functions. While the native SAM heterodimer is only predicted at a low rate of 6.7% with the original CHARMM36 force field, the yield is increased to 16.7% with CHARMM36s, and to 18.3% with CHARMM36m. By analyzing the 25 native SAM complexes formed in the simulations, we find that their formation involves a preorientation guided by Coulomb interactions, consistent with an electrostatic steering mechanism. In 12 cases, the complex could directly transform to the native protein interaction surfaces with only small adjustments in domain orientation. In the other 13 cases, orientational and/or translational adjustments are needed to reach the native complex. Although the tendency for non-native complexes to dissociate has nearly doubled with the modified potential functions, a dissociation followed by a reassociation to the correct complex structure is still rare. Instead, the remaining non-native complexes undergo configurational changes/surface searching, which, however, rarely leads to native structures on a time scale of 250 ns. These observations provide a rich picture of the mechanisms of protein-protein complex formation and suggest that computational predictions of native complex PPIs could be improved further.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Matthias Buck
- Department of Physiology and Biophysics , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States.,Departments of Pharmacology and Neurosciences, and Case Comprehensive Cancer Center , Case Western Reserve University, School of Medicine , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
43
|
Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 2019; 9:10477. [PMID: 31324834 PMCID: PMC6642143 DOI: 10.1038/s41598-019-46636-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bβ-tubulin’s C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.
Collapse
|
44
|
Bapat S, Vyas R, Karthikeyan M. Exploring Energy Profiles of Protein-Protein Interactions (PPIs) Using DFT Method. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180815151141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Large-scale energy landscape characterization of protein-protein interactions
(PPIs) is important to understand the interaction mechanism and protein-protein docking methods. The
experimental methods for detecting energy landscapes are tedious and the existing computational methods
require longer simulation time.
Objective:
The objective of the present work is to ascertain the energy profiles at the interface regions in
a rapid manner to analyze the energy landscape of protein-protein interactions.
Methods:
The atomic coordinates obtained from the X-ray and NMR spectroscopy data are considered
as inputs to compute cumulative energy profiles for experimentally validated protein-protein complexes.
The energies computed by the program were comparable to the standard molecular dynamics simulations.
Results:
The PPI Profiler not only enables rapid generation of energy profiles but also facilitates the
detection of hot spot residue atoms involved therein.
Conclusion:
The hotspot residues and their computed energies matched with the experimentally determined
hot spot residues and their energies which correlated well by employing the MM/GBSA method.
The proposed method can be employed to scan entire proteomes across species at an atomic level to
study the key PPI interactions.
Collapse
Affiliation(s)
- Sanket Bapat
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Tathawade, Pune, Maharashtra-411008, India
| | - Renu Vyas
- MIT School of Bioengineering Science and Research, Loni, Kalbhor, Pune-412201, India
| | | |
Collapse
|
45
|
Zahler CT, Shaw BF. What Are We Missing by Not Measuring the Net Charge of Proteins? Chemistry 2019; 25:7581-7590. [PMID: 30779227 DOI: 10.1002/chem.201900178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Indexed: 12/21/2022]
Abstract
The net electrostatic charge (Z) of a folded protein in solution represents a bird's eye view of its surface potentials-including contributions from tightly bound metal, solvent, buffer, and cosolvent ions-and remains one of its most enigmatic properties. Few tools are available to the average biochemist to rapidly and accurately measure Z at pH≠pI. Tools that have been developed more recently seem to go unnoticed. Most scientists are content with this void and estimate the net charge of a protein from its amino acid sequence, using textbook values of pKa . Thus, Z remains unmeasured for nearly all folded proteins at pH≠pI. When marveling at all that has been learned from accurately measuring the other fundamental property of a protein-its mass-one wonders: what are we missing by not measuring the net charge of folded, solvated proteins? A few big questions immediately emerge in bioinorganic chemistry. When a single electron is transferred to a metalloprotein, does the net charge of the protein change by approximately one elementary unit of charge or does charge regulation dominate, that is, do the pKa values of most ionizable residues (or just a few residues) adjust in response to (or in concert with) electron transfer? Would the free energy of charge regulation (ΔΔGz ) account for most of the outer sphere reorganization energy associated with electron transfer? Or would ΔΔGz contribute more to the redox potential? And what about metal binding itself? When an apo-metalloprotein, bearing minimal net negative charge (e.g., Z=-2.0) binds one or more metal cations, is the net charge abolished or inverted to positive? Or do metalloproteins regulate net charge when coordinating metal ions? The author's group has recently dusted off a relatively obscure tool-the "protein charge ladder"-and used it to begin to answer these basic questions.
Collapse
Affiliation(s)
- Collin T Zahler
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| |
Collapse
|
46
|
Structural and Dynamical Order of a Disordered Protein: Molecular Insights into Conformational Switching of PAGE4 at the Systems Level. Biomolecules 2019; 9:biom9020077. [PMID: 30813315 PMCID: PMC6406393 DOI: 10.3390/biom9020077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 01/10/2023] Open
Abstract
Folded proteins show a high degree of structural order and undergo (fairly constrained) collective motions related to their functions. On the other hand, intrinsically disordered proteins (IDPs), while lacking a well-defined three-dimensional structure, do exhibit some structural and dynamical ordering, but are less constrained in their motions than folded proteins. The larger structural plasticity of IDPs emphasizes the importance of entropically driven motions. Many IDPs undergo function-related disorder-to-order transitions driven by their interaction with specific binding partners. As experimental techniques become more sensitive and become better integrated with computational simulations, we are beginning to see how the modest structural ordering and large amplitude collective motions of IDPs endow them with an ability to mediate multiple interactions with different partners in the cell. To illustrate these points, here, we use Prostate-associated gene 4 (PAGE4), an IDP implicated in prostate cancer (PCa) as an example. We first review our previous efforts using molecular dynamics simulations based on atomistic AWSEM to study the conformational dynamics of PAGE4 and how its motions change in its different physiologically relevant phosphorylated forms. Our simulations quantitatively reproduced experimental observations and revealed how structural and dynamical ordering are encoded in the sequence of PAGE4 and can be modulated by different extents of phosphorylation by the kinases HIPK1 and CLK2. This ordering is reflected in changing populations of certain secondary structural elements as well as in the regularity of its collective motions. These ordered features are directly correlated with the functional interactions of WT-PAGE4, HIPK1-PAGE4 and CLK2-PAGE4 with the AP-1 signaling axis. These interactions give rise to repeated transitions between (high HIPK1-PAGE4, low CLK2-PAGE4) and (low HIPK1-PAGE4, high CLK2-PAGE4) cell phenotypes, which possess differing sensitivities to the standard PCa therapies, such as androgen deprivation therapy (ADT). We argue that, although the structural plasticity of an IDP is important in promoting promiscuous interactions, the modulation of the structural ordering is important for sculpting its interactions so as to rewire with agility biomolecular interaction networks with significant functional consequences.
Collapse
|
47
|
Lin X, Roy S, Jolly MK, Bocci F, Schafer NP, Tsai MY, Chen Y, He Y, Grishaev A, Weninger K, Orban J, Kulkarni P, Rangarajan G, Levine H, Onuchic JN. PAGE4 and Conformational Switching: Insights from Molecular Dynamics Simulations and Implications for Prostate Cancer. J Mol Biol 2018; 430:2422-2438. [PMID: 29758263 DOI: 10.1016/j.jmb.2018.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
Prostate-associated gene 4 (PAGE4) is an intrinsically disordered protein implicated in prostate cancer. Thestress-response kinase homeodomain-interacting protein kinase 1 (HIPK1) phosphorylates two residues in PAGE4, serine 9 and threonine 51. Phosphorylation of these two residues facilitates the interaction of PAGE4 with activator protein-1 (AP-1) transcription factor complex to potentiate AP-1's activity. In contrast, hyperphosphorylation of PAGE4 by CDC-like kinase 2 (CLK2) attenuates this interaction with AP-1. Small-angleX-ray scattering and single-molecule fluorescence resonance energy transfer measurements have shown that PAGE4 expands upon hyperphosphorylation and that this expansion is localized to its N-terminal half. To understand the interactions underlying this structural transition, we performed molecular dynamics simulations using Atomistic AWSEM, a multi-scale molecular model that combines atomistic and coarse-grained simulation approaches. Our simulations show that electrostatic interactions drive transient formation of an N-terminal loop, the destabilization of which accounts for the dramatic change in size upon hyperphosphorylation. Phosphorylation also changes the preference of secondary structure formation of the PAGE4 ensemble, which leads to a transition between states that display different degrees of disorder. Finally, we construct a mechanism-based mathematical model that allows us to capture the interactions ofdifferent phosphoforms of PAGE4 with AP-1 and its downstream target, the androgen receptor (AR)-a key therapeutic target in prostate cancer. Our model predicts intracellular oscillatory dynamics of HIPK1-PAGE4, CLK2-PAGE4, and AR activity, indicating phenotypic heterogeneity in an isogenic cell population. Thus, conformational switching of PAGE4 may potentially affect the efficiency of therapeutically targeting AR activity.
Collapse
Affiliation(s)
- Xingcheng Lin
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States
| | - Susmita Roy
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States
| | - Federico Bocci
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States
| | - Nicholas P Schafer
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States
| | - Min-Yeh Tsai
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States
| | - Yihong Chen
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States
| | - Yanan He
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States
| | - Alexander Grishaev
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States; National Institute of Standards and Technology, Gaithersburg, MD 20899, United States
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, United States; Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, United States
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India; Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States; Department of Chemistry, Rice University, Houston, TX 77005, United States; Department of BioSciences, Rice University, Houston, TX 77005, United States.
| |
Collapse
|
48
|
Persson RAX. On the dielectric decrement of electrolyte solutions: a dressed-ion theory analysis. Phys Chem Chem Phys 2018; 19:1982-1987. [PMID: 28009858 DOI: 10.1039/c6cp07515k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the dressed-ion theory and a simple physical argument regarding the conductivity of the solution, we derive a relation between the ionic strength and dielectric constant of an electrolyte solution. At its simplest, this model gives the dielectric constant at low ionic strength I as εr(I) = εr(0)(1 + αI)-1, where α (the excess polarization) is directly related to the dressed-ion charge. One contribution to the origin of the dielectric decrement is thus seen to stem from the electrostatic screening of the ions in solution, with no solvent contributions necessary.
Collapse
Affiliation(s)
- Rasmus A X Persson
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
49
|
Dahal L, Shammas SL, Clarke J. Phosphorylation of the IDP KID Modulates Affinity for KIX by Increasing the Lifetime of the Complex. Biophys J 2018; 113:2706-2712. [PMID: 29262363 PMCID: PMC5770967 DOI: 10.1016/j.bpj.2017.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are known to undergo a range of posttranslational modifications, but by what mechanism do such modifications affect the binding of an IDP to its partner protein? We investigate this question using one such IDP, the kinase inducible domain (KID) of the transcription factor CREB, which interacts with the KIX domain of CREB-binding protein upon phosphorylation. As with many other IDPs, KID undergoes coupled folding and binding to form α-helical structure upon interacting with KIX. This single site phosphorylation plays an important role in the control of transcriptional activation in vivo. Here we show that, contrary to expectation, phosphorylation has no effect on association rates—unphosphorylated KID binds just as rapidly as pKID, the phosphorylated form—but rather, acts by increasing the lifetime of the complex. We propose that by controlling the lifetime of the bound complex of pKID:KIX via altering the dissociation rate, phosphorylation can facilitate effective control of transcription regulation.
Collapse
Affiliation(s)
- Liza Dahal
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah L Shammas
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
50
|
Huang Y, Gao M, Yang F, Zhang L, Su Z. Deciphering the promiscuous interactions between intrinsically disordered transactivation domains and the KIX domain. Proteins 2017; 85:2088-2095. [PMID: 28786199 DOI: 10.1002/prot.25364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
The kinase-inducible domain interacting (KIX) domain of the transcriptional coactivator CBP protein carries 2 isolated binding sites (designated as the c-Myb site and the MLL site) and is capable of binding numerous intrinsically disordered transactivation domains (TADs), including c-Myb and pKID via the c-Myb site, and MLL, E2A and c-Jun via the MLL site. In this study we compared the kinetics for binding of various disordered TADs to the KIX domain via computational biophysical analyses. We found that the binding rates are heavily affected by long-range electrostatic interactions. The basal rate constants for forming the encounter complexes are similar for different KIX binding peptides, favorable electrostatic interactions between the MLL site and the peptides result in greater association rates when peptides bind to the MLL site. FOXO3a and p53 TAD each contains 2 copies of KIX binding motif and each motif interacts with both the MLL site and the c-Myb site. Our kinetics studies suggest that binding of FOXO3a or p53 TAD to the KIX domain is via a sequential mechanism, where one KIX binding motif binds to the MLL site first and then the other KIX binding motif binds to the c-Myb site. Considering the promiscuous interactions between FOXO3a and KIX, and p53 TAD and KIX, electrostatic steering simplifies the binding mechanism. This study highlights the importance of long-range electrostatic interactions in molecular recognition process involving multi-motif intrinsically disordered proteins and promiscuous interactions.
Collapse
Affiliation(s)
- Yongqi Huang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Fei Yang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Lei Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Institute of Biomedical and Pharmaceutical Sciences, Hubei University of Technology, Wuhan, China.,Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.,Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.,Hubei Collaborative Innovation Center for Industrial Fermentation, Hubei University of Technology, Wuhan, China
| |
Collapse
|