1
|
Lohry DP, Stevens TA, Shen T, Fernandez EJ. Hormone response elements for the thyroid receptor-α include specific distal 5'-flanking DNA. SCIENCE ADVANCES 2024; 10:eadr1033. [PMID: 39602540 PMCID: PMC11601197 DOI: 10.1126/sciadv.adr1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Optimal gene transcription is achieved through precise interactions between transcription factors and their DNA binding sites. We provide evidence that conserved distally located 5'-flanking sequences interact directly with the intrinsically disordered amino-terminal region of the thyroid receptor-α (TRα) to control transcriptional activity. Simulated modeling and dynamics with multiple ChIP-seq-derived sequences consistently reveal specific lysine/arginine-DNA minor groove interactions. The impact of these interactions is to distort DNA structural conformations, and these are also revealed with atomic force microscopy. The importance of the 5'-flanking DNA is further emphasized with reporter gene assays and comparisons with canonical response elements. Overall, the study reveals the inadequacy of current definitions of the DNA hormone response element (HRE) and suggests that future descriptions of the HRE include the conserved distal DNA sequences. The broad impact of this study is further underscored by the common occurrence of Lys/Arg-rich motifs within the intrinsically disordered regions of nuclear receptors.
Collapse
Affiliation(s)
- David P. Lohry
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Taylor A. Stevens
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Elias J. Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
2
|
Qian J, Cartee A, Xu W, Yan Y, Wang B, Artsimovitch I, Dunlap D, Finzi L. Reciprocating RNA Polymerase batters through roadblocks. Nat Commun 2024; 15:3193. [PMID: 38609371 PMCID: PMC11014978 DOI: 10.1038/s41467-024-47531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
RNA polymerases must transit through protein roadblocks to produce full-length transcripts. Here we report real-time measurements of Escherichia coli RNA polymerase passing through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNA polymerase passage through lac repressor protein bound to natural binding sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of the transcript cleavage factor GreA, which rescues backtracked RNA polymerase. In stark contrast, opposing forces promoted passage when the rate of RNA polymerase backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNA polymerase may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNA polymerase to break protein-DNA contacts that hold RNA polymerase back during promoter escape and RNA chain elongation. This may facilitate productive transcription in vivo.
Collapse
Affiliation(s)
- Jin Qian
- Physics Department, Emory University, Atlanta, GA, USA
| | | | - Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA, USA
| | - Yan Yan
- Physics Department, Emory University, Atlanta, GA, USA
| | - Bing Wang
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Irina Artsimovitch
- The Center for RNA Biology and Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Dubrovin EV. Atomic force microscopy-based approaches for single-molecule investigation of nucleic acid- protein complexes. Biophys Rev 2023; 15:1015-1033. [PMID: 37974971 PMCID: PMC10643717 DOI: 10.1007/s12551-023-01111-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023] Open
Abstract
The interaction of nucleic acids with proteins plays an important role in many fundamental biological processes in living cells, including replication, transcription, and translation. Therefore, understanding nucleic acid-protein interaction is of high relevance in many areas of biology, medicine and technology. During almost four decades of its existence atomic force microscopy (AFM) accumulated a significant experience in investigation of biological molecules at a single-molecule level. AFM has become a powerful tool of molecular biology and biophysics providing unique information about properties, structure, and functioning of biomolecules. Despite a great variety of nucleic acid-protein systems under AFM investigations, there are a number of typical approaches for such studies. This review is devoted to the analysis of the typical AFM-based approaches of investigation of DNA (RNA)-protein complexes with a major focus on transcription studies. The basic strategies of AFM analysis of nucleic acid-protein complexes including investigation of the products of DNA-protein reactions and real-time dynamics of DNA-protein interaction are categorized and described by the example of the most relevant research studies. The described approaches and protocols have many universal features and, therefore, are applicable for future AFM studies of various nucleic acid-protein systems.
Collapse
Affiliation(s)
- Evgeniy V. Dubrovin
- Lomonosov Moscow State University, Leninskie Gory 1 Bld. 2, 119991 Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy Per. 9, Dolgoprudny, 141700 Russian Federation
- Sirius University of Science and Technology, Olimpiyskiy Ave 1, Township Sirius, Krasnodar Region, 354349 Russia
| |
Collapse
|
4
|
Hao N, Donnelly AJ, Dodd IB, Shearwin KE. When push comes to shove - RNA polymerase and DNA-bound protein roadblocks. Biophys Rev 2023; 15:355-366. [PMID: 37396453 PMCID: PMC10310618 DOI: 10.1007/s12551-023-01064-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
In recent years, transcriptional roadblocking has emerged as a crucial regulatory mechanism in gene expression, whereby other DNA-bound obstacles can block the progression of transcribing RNA polymerase (RNAP), leading to RNAP pausing and ultimately dissociation from the DNA template. In this review, we discuss the mechanisms by which transcriptional roadblocks can impede RNAP progression, as well as how RNAP can overcome these obstacles to continue transcription. We examine different DNA-binding proteins involved in transcriptional roadblocking and their biophysical properties that determine their effectiveness in blocking RNAP progression. The catalytically dead CRISPR-Cas (dCas) protein is used as an example of an engineered programmable roadblock, and the current literature in understanding the polarity of dCas roadblocking is also discussed. Finally, we delve into a stochastic model of transcriptional roadblocking and highlight the importance of transcription factor binding kinetics and its resistance to dislodgement by an elongating RNAP in determining the strength of a roadblock.
Collapse
Affiliation(s)
- Nan Hao
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Alana J. Donnelly
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Ian B. Dodd
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Keith E. Shearwin
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
5
|
Lu Y, Voros Z, Borjas G, Hendrickson C, Shearwin K, Dunlap D, Finzi L. RNA polymerase efficiently transcribes DNA-scaffolded, cooperative bacteriophage repressor complexes. FEBS Lett 2022; 596:1994-2006. [PMID: 35819073 PMCID: PMC9491066 DOI: 10.1002/1873-3468.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/07/2022]
Abstract
DNA can act as a scaffold for the cooperative binding of protein oligomers. For example, the phage 186 CI repressor forms a wheel of seven dimers wrapped in DNA with specific binding sites, while phage λ CI repressor dimers bind to two well-separated sets of operators, forming a DNA loop. Atomic force microscopy was used to measure transcription elongation by E. coli RNA polymerase through these protein complexes. 186 CI, or λ CI, bound along unlooped DNA negligibly interfered with transcription by RNAP. Wrapped and looped topologies induced by these scaffolded, cooperatively bound repressor oligomers did not form significantly better roadblocks to transcription. Thus, despite binding with high affinity, these repressors are not effective roadblocks to transcription.
Collapse
Affiliation(s)
- Yue Lu
- Physics Department, Emory University, Atlanta, GA, USA
| | | | | | | | - Keith Shearwin
- Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
6
|
Xu W, Yan Y, Artsimovitch I, Dunlap D, Finzi L. Positive supercoiling favors transcription elongation through lac repressor-mediated DNA loops. Nucleic Acids Res 2022; 50:2826-2835. [PMID: 35188572 PMCID: PMC8934669 DOI: 10.1093/nar/gkac093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Some proteins, like the lac repressor (LacI), mediate long-range loops that alter DNA topology and create torsional barriers. During transcription, RNA polymerase generates supercoiling that may facilitate passage through such barriers. We monitored E. coli RNA polymerase progress along templates in conditions that prevented, or favored, 400 bp LacI-mediated DNA looping. Tethered particle motion measurements revealed that RNA polymerase paused longer at unlooped LacI obstacles or those barring entry to a loop than those barring exit from the loop. Enhanced dissociation of a LacI roadblock by the positive supercoiling generated ahead of a transcribing RNA polymerase within a torsion-constrained DNA loop may be responsible for this reduction in pause time. In support of this idea, RNA polymerase transcribed 6-fold more slowly through looped DNA and paused at LacI obstacles for 66% less time on positively supercoiled compared to relaxed templates, especially under increased tension (torque). Positive supercoiling propagating ahead of polymerase facilitated elongation along topologically complex, protein-coated templates.
Collapse
Affiliation(s)
- Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA, USA
| | - Yan Yan
- Physics Department, Emory University, Atlanta, GA, USA
| | | | - David Dunlap
- Physics Department, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA, USA
| |
Collapse
|
7
|
Yan Y, Xu W, Kumar S, Zhang A, Leng F, Dunlap D, Finzi L. Negative DNA supercoiling makes protein-mediated looping deterministic and ergodic within the bacterial doubling time. Nucleic Acids Res 2021; 49:11550-11559. [PMID: 34723343 PMCID: PMC8599721 DOI: 10.1093/nar/gkab946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/14/2022] Open
Abstract
Protein-mediated DNA looping is fundamental to gene regulation and such loops occur stochastically in purified systems. Additional proteins increase the probability of looping, but these probabilities maintain a broad distribution. For example, the probability of lac repressor-mediated looping in individual molecules ranged 0–100%, and individual molecules exhibited representative behavior only in observations lasting an hour or more. Titrating with HU protein progressively compacted the DNA without narrowing the 0–100% distribution. Increased negative supercoiling produced an ensemble of molecules in which all individual molecules more closely resembled the average. Furthermore, in only 12 min of observation, well within the doubling time of the bacterium, most molecules exhibited the looping probability of the ensemble. DNA supercoiling, an inherent feature of all genomes, appears to impose time-constrained, emergent behavior on otherwise random molecular activity.
Collapse
Affiliation(s)
- Yan Yan
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Wenxuan Xu
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Sandip Kumar
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Alexander Zhang
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - David Dunlap
- Physics Department, Emory University, Atlanta, GA 30322, USA
| | - Laura Finzi
- Physics Department, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Piccolo JG, Méndez Harper J, McCalla D, Xu W, Miller S, Doan J, Kovari D, Dunlap D, Finzi L. Force spectroscopy with electromagnetic tweezers. JOURNAL OF APPLIED PHYSICS 2021; 130:134702. [PMID: 38681504 PMCID: PMC11055633 DOI: 10.1063/5.0060276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/07/2021] [Indexed: 05/01/2024]
Abstract
Force spectroscopy using magnetic tweezers (MTs) is a powerful method to probe the physical characteristics of single polymers. Typically, molecules are functionalized for specific attachment to a glass surface at one end and a micrometer-scale paramagnetic bead at the other end. By applying an external magnetic field, multiple molecules can be stretched and twisted simultaneously without exposure to potentially damaging radiation. The majority of MTs utilize mobile, permanent magnets to produce forces on the beads (and the molecule under test). However, translating and rotating the permanent magnets may require expensive precision actuators, limit the rate at which force can be changed, and may induce vibrations that disturb tether dynamics and bead tracking. Alternatively, the magnetic field can be produced with an electromagnet, which allows fast force modulation and eliminates motor-associated vibration. Here, we describe a low-cost quadrapolar electromagnetic tweezer design capable of manipulating DNA-tethered MyOne paramagnetic beads with forces as high as 15 pN. The solid-state nature of the generated B-field modulated along two axes is convenient for accessing the range of forces and torques relevant for studying the activity of DNA motor enzymes like polymerases and helicases. Our design specifically leverages technology available at an increasing number of university maker spaces and student-run machine shops. Thus, it is an accessible tool for undergraduate education that is applicable to a wide range of biophysical research questions.
Collapse
Affiliation(s)
- Joseph G. Piccolo
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Joshua Méndez Harper
- Department of Earth Science, University of Oregon, 1272 University of Oregon, Eugene, Oregon 97403, USA
| | - Derrica McCalla
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Wenxuan Xu
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Sam Miller
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Jessie Doan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Dan Kovari
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, Georgia 30322, USA
| |
Collapse
|
9
|
Qian J, Xu W, Dunlap D, Finzi L. Single-molecule insights into torsion and roadblocks in bacterial transcript elongation. Transcription 2021; 12:219-231. [PMID: 34719335 PMCID: PMC8632135 DOI: 10.1080/21541264.2021.1997315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
During transcription, RNA polymerase (RNAP) translocates along the helical template DNA while maintaining high transcriptional fidelity. However, all genomes are dynamically twisted, writhed, and decorated by bound proteins and motor enzymes. In prokaryotes, proteins bound to DNA, specifically or not, frequently compact DNA into conformations that may silence genes by obstructing RNAP. Collision of RNAPs with these architectural proteins, may result in RNAP stalling and/or displacement of the protein roadblock. It is important to understand how rapidly transcribing RNAPs operate under different levels of supercoiling or in the presence of roadblocks. Given the broad range of asynchronous dynamics exhibited by transcriptional complexes, single-molecule assays, such as atomic force microscopy, fluorescence detection, optical and magnetic tweezers, etc. are well suited for detecting and quantifying activity with adequate spatial and temporal resolution. Here, we summarize current understanding of the effects of torsion and roadblocks on prokaryotic transcription, with a focus on single-molecule assays that provide real-time detection and readout.
Collapse
Affiliation(s)
- Jin Qian
- Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
10
|
Vigouroux A, Meyer T, Naretto A, Legrand P, Aumont-Nicaise M, Di Cicco A, Renoud S, Doré J, Lévy D, Vial L, Lavire C, Moréra S. Characterization of the first tetrameric transcription factor of the GntR superfamily with allosteric regulation from the bacterial pathogen Agrobacterium fabrum. Nucleic Acids Res 2021; 49:529-546. [PMID: 33313837 PMCID: PMC7797058 DOI: 10.1093/nar/gkaa1181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
A species-specific region, denoted SpG8-1b allowing hydroxycinnamic acids (HCAs) degradation is important for the transition between the two lifestyles (rhizospheric versus pathogenic) of the plant pathogen Agrobacterium fabrum. Indeed, HCAs can be either used as trophic resources and/or as induced-virulence molecules. The SpG8-1b region is regulated by two transcriptional regulators, namely, HcaR (Atu1422) and Atu1419. In contrast to HcaR, Atu1419 remains so far uncharacterized. The high-resolution crystal structures of two fortuitous citrate complexes, two DNA complexes and the apoform revealed that the tetrameric Atu1419 transcriptional regulator belongs to the VanR group of Pfam PF07729 subfamily of the large GntR superfamily. Until now, GntR regulators were described as dimers. Here, we showed that Atu1419 represses three genes of the HCAs catabolic pathway. We characterized both the effector and DNA binding sites and identified key nucleotides in the target palindrome. From promoter activity measurement using defective gene mutants, structural analysis and gel-shift assays, we propose N5,N10-methylenetetrahydrofolate as the effector molecule, which is not a direct product/substrate of the HCA degradation pathway. The Zn2+ ion present in the effector domain has both a structural and regulatory role. Overall, our work shed light on the allosteric mechanism of transcription employed by this GntR repressor.
Collapse
Affiliation(s)
- Armelle Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Thibault Meyer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Anaïs Naretto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Aurélie Di Cicco
- Sorbonne Université, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France
| | - Sébastien Renoud
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Jeanne Doré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Daniel Lévy
- Sorbonne Université, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France
| | - Ludovic Vial
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Céline Lavire
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Solange Moréra
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
11
|
Kovari DT, Dunlap D, Weeks ER, Finzi L. Model-free 3D localization with precision estimates for brightfield-imaged particles. OPTICS EXPRESS 2019; 27:29875-29895. [PMID: 31684243 PMCID: PMC6825595 DOI: 10.1364/oe.27.029875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Volumetric imaging and 3D particle tracking are becoming increasingly common and have a variety of microscopy applications including in situ fluorescent imaging, in-vitro single-molecule characterization, and analysis of colloidal systems. While recent interest has generated discussion of optimal schemes for localizing diffraction-limited fluorescent puncta, there have been relatively few published routines for tracking particles imaged with bright-field illumination. To address this, we outline a simple, look-up-table based 3D tracking strategy, which can be adapted to most commercially available wide-field microscopes, and present two image processing algorithms that together yield high-precision localization and return estimates of statistical accuracy. Under bright-field illumination, a particle's depth can be determined based on the size and shape of its diffractive pattern due to Mie scattering. Contrary to typical "super-resolution" fluorescence tracking routines, which typically fit a diffraction-limited spot to a model point-spread-function, the lateral (XY) tracking routine relies on symmetry to locate a particle without prior knowledge of the form of the particle. At low noise levels (signal:noise > 1000), the symmetry routine estimates particle positions with accuracy better than 0.01 pixel. Depth localization is accomplished by matching images of particles to those in a pre-recorded look-up-table. The routine presented here optimally interpolates between LUT entries with better than 0.05 step accuracy. Both routines are tolerant of high levels of image noise, yielding sub-pixel/step accuracy with signal-to-noise ratios as small as 1, and, by design, return confidence intervals indicating the expected accuracy of each calculated position. The included implementations operate extremely quickly and are amenable to real-time analysis at frame rates exceeding several hundred frames per second.
Collapse
|
12
|
Shen BA, Landick R. Transcription of Bacterial Chromatin. J Mol Biol 2019; 431:4040-4066. [PMID: 31153903 PMCID: PMC7248592 DOI: 10.1016/j.jmb.2019.05.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Decades of research have probed the interplay between chromatin (genomic DNA associated with proteins and RNAs) and transcription by RNA polymerase (RNAP) in all domains of life. In bacteria, chromatin is compacted into a membrane-free region known as the nucleoid that changes shape and composition depending on the bacterial state. Transcription plays a key role in both shaping the nucleoid and organizing it into domains. At the same time, chromatin impacts transcription by at least five distinct mechanisms: (i) occlusion of RNAP binding; (ii) roadblocking RNAP progression; (iii) constraining DNA topology; (iv) RNA-mediated interactions; and (v) macromolecular demixing and heterogeneity, which may generate phase-separated condensates. These mechanisms are not mutually exclusive and, in combination, mediate gene regulation. Here, we review the current understanding of these mechanisms with a focus on gene silencing by H-NS, transcription coordination by HU, and potential phase separation by Dps. The myriad questions about transcription of bacterial chromatin are increasingly answerable due to methodological advances, enabling a needed paradigm shift in the field of bacterial transcription to focus on regulation of genes in their native state. We can anticipate answers that will define how bacterial chromatin helps coordinate and dynamically regulate gene expression in changing environments.
Collapse
Affiliation(s)
- Beth A Shen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
13
|
Yan Y, Ding Y, Leng F, Dunlap D, Finzi L. Protein-mediated loops in supercoiled DNA create large topological domains. Nucleic Acids Res 2019. [PMID: 29538766 PMCID: PMC5961096 DOI: 10.1093/nar/gky153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Yue Ding
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Yan Y, Leng F, Finzi L, Dunlap D. Protein-mediated looping of DNA under tension requires supercoiling. Nucleic Acids Res 2019; 46:2370-2379. [PMID: 29365152 PMCID: PMC5861448 DOI: 10.1093/nar/gky021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Beckwitt EC, Kong M, Van Houten B. Studying protein-DNA interactions using atomic force microscopy. Semin Cell Dev Biol 2017; 73:220-230. [PMID: 28673677 DOI: 10.1016/j.semcdb.2017.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Atomic force microscopy (AFM) has made significant contributions to the study of protein-DNA interactions by making it possible to topographically image biological samples. A single protein-DNA binding reaction imaged by AFM can reveal protein binding specificity and affinity, protein-induced DNA bending, and protein binding stoichiometry. Changes in DNA structure, complex conformation, and cooperativity, can also be analyzed. In this review we highlight some important examples in the literature and discuss the advantages and limitations of these measurements. We also discuss important advances in technology that will facilitate the progress of AFM in the future.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Muwen Kong
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|