1
|
Guo F, Xiao F, Song H, Li X, Xiao Y, Qin Y, Lei X. An Optimized Marinopyrrole A Derivative Targets 6-Phosphoglucosamine Synthetase to Inhibit Methicillin-Resistant Staphylococcus aureus. ACS CENTRAL SCIENCE 2024; 10:2090-2098. [PMID: 39634224 PMCID: PMC11613329 DOI: 10.1021/acscentsci.4c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common pathogenic bacterium that causes clinical infection and has become one of the most prominent antibiotic-resistant bacteria in the world. There is a pressing need to develop new antibiotics based on novel modes of action to combat increasingly severe MRSA infection. Marinopyrrole A (MA), a natural product extracted from marine Streptomyces in 2008, has a unique bipyrrole chemical skeleton and shows potent antibacterial activity against MRSA. However, its mode of action is still elusive. Herein, we developed an optimized MA derivative, MA-D1, and applied a chemoproteomic approach to reveal that MA-D1 performs its anti-MRSA activity by directly targeting 6-phosphoglucosamine synthetase (GlmS) to cause the breakdown of bacterial cell wall biosynthesis. Computational and experimental studies showed that MA-D1 interacts with the key R381 and E382 residues of GlmS in a novel binding pocket. Furthermore, MA-D1 showed a low resistance frequency for MRSA treatment and was also sensitive against the linezolid-, vancomycin-, or teicoplanin-resistant MRSA strains. MA-D1 also showed in vivo antibiotic efficacy in multiple animal models. This study demonstrates the promising potential of targeting GlmS to develop a new class of antibiotics to control MRSA pathogen infection.
Collapse
Affiliation(s)
- Fusheng Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fan Xiao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Song
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyong Li
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaxin Xiao
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key
Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry
of Education, Department of Medicinal Natural Products, West China
School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, College
of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute
for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
2
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Ikeda Y, Fujii J. The Emerging Roles of γ-Glutamyl Peptides Produced by γ-Glutamyltransferase and the Glutathione Synthesis System. Cells 2023; 12:2831. [PMID: 38132151 PMCID: PMC10741565 DOI: 10.3390/cells12242831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
L-γ-Glutamyl-L-cysteinyl-glycine is commonly referred to as glutathione (GSH); this ubiquitous thiol plays essential roles in animal life. Conjugation and electron donation to enzymes such as glutathione peroxidase (GPX) are prominent functions of GSH. Cellular glutathione balance is robustly maintained via regulated synthesis, which is catalyzed via the coordination of γ-glutamyl-cysteine synthetase (γ-GCS) and glutathione synthetase, as well as by reductive recycling by glutathione reductase. A prevailing short supply of L-cysteine (Cys) tends to limit glutathione synthesis, which leads to the production of various other γ-glutamyl peptides due to the unique enzymatic properties of γ-GCS. Extracellular degradation of glutathione by γ-glutamyltransferase (GGT) is a dominant source of Cys for some cells. GGT catalyzes the hydrolytic removal of the γ-glutamyl group of glutathione or transfers it to amino acids or to dipeptides outside cells. Such processes depend on an abundance of acceptor substrates. However, the physiological roles of extracellularly preserved γ-glutamyl peptides have long been unclear. The identification of γ-glutamyl peptides, such as glutathione, as allosteric modulators of calcium-sensing receptors (CaSRs) could provide insights into the significance of the preservation of γ-glutamyl peptides. It is conceivable that GGT could generate a new class of intercellular messaging molecules in response to extracellular microenvironments.
Collapse
Affiliation(s)
- Yoshitaka Ikeda
- Division of Molecular Cell Biology, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata City 990-9585, Japan
| |
Collapse
|
4
|
Mitrić A, Castellano I. Targeting gamma-glutamyl transpeptidase: A pleiotropic enzyme involved in glutathione metabolism and in the control of redox homeostasis. Free Radic Biol Med 2023; 208:672-683. [PMID: 37739139 DOI: 10.1016/j.freeradbiomed.2023.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Gamma-glutamyl transpeptidase (GGT) is an enzyme located on the outer membrane of the cells where it regulates the metabolism of glutathione (GSH), the most abundant intracellular antioxidant thiol. GGT plays a key role in the control of redox homeostasis, by hydrolyzing extracellular GSH and providing the cell with the recovery of cysteine, which is necessary for de novo intracellular GSH and protein biosynthesis. Therefore, the upregulation of GGT confers to the cell greater resistance to oxidative stress and the advantage of growing fast. Indeed, GGT is upregulated in inflammatory conditions and in the progression of various human tumors and it is involved in many physiological disorders related to oxidative stress, such as cardiovascular disease and diabetes. Currently, increased GGT expression is considered a marker of liver damage, cancer, and low-grade chronic inflammation. This review addresses the current knowledge on the structure-function relationship of GGT, focusing on human GGT, and provides information on the pleiotropic biological role and relevance of the enzyme as a target of drugs aimed at alleviating oxidative stress-related diseases. The development of new GGT inhibitors is critically discussed, as are the advantages and disadvantages of their potential use in clinics. Considering its pleiotropic activities and evolved functions, GGT is a potential "moonlighting protein".
Collapse
Affiliation(s)
- Aleksandra Mitrić
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.
| |
Collapse
|
5
|
Bist G, Luong NT, Mahabubur Rahman KM, Ruszaj DM, Li C, Hanigan MH, You Y. SAR of L-ABBA analogs for GGT1 inhibitory activity and L-ABBA's effect on plasma cysteine and GSH species. Bioorg Med Chem Lett 2023:129406. [PMID: 37423504 DOI: 10.1016/j.bmcl.2023.129406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Gamma-glutamyl transferase 1 (GGT1) is a critical enzyme involved in the hydrolysis and/or transfer of gamma-glutamyl groups of glutathione, which helps maintain cysteine levels in plasma. In this study, we synthesized L-ABBA analogs to investigate their inhibitory effect on GGT1 hydrolysis and transpeptidase activity, with the goal of defining the pharmacophore of L-ABBA. Our structure-activity relationship (SAR) study revealed that an α-COO- and α-NH3+ group, as well as a two-CH2 unit distance between α-C and boronic acid, are essential for the activity. The addition of an R (alkyl) group at the α-C reduced the activity of GGT1 inhibition, with L-ABBA being the most potent inhibitor among the analogs. Next, we investigated the impact of L-ABBA on plasma levels of cysteine and GSH species, with the expectation of observing reduced cysteine levels and enhanced GSH levels due to its GGT1 inhibition. We administered L-ABBA intraperitoneally and determined the plasma levels of cysteine, cystine, GSH, and GSSG using LCMS. Our results showed time- and L-ABBA dose-dependent changes in total plasma cysteine and GSH levels. This study is the first to demonstrate the regulation of plasma thiol species upon GGT1 inhibition, with plasma cystine levels reduced by up to ∼75% with L-ABBA (0.3 mg/dose). Cancer cells are highly dependent on the uptake of cysteine from plasma for maintaining high levels of intracellular glutathione. Thus, our findings suggest that GGT1 inhibitors, such as L-ABBA, have a potential to be used for GSH reduction thereby inducing oxidative stress in cancer cells and reducing their resistance to many chemotherapeutic agents.
Collapse
Affiliation(s)
- Ganesh Bist
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Nguyen T Luong
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Donna M Ruszaj
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Marie H Hanigan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States.
| |
Collapse
|
6
|
Nguyen L, Schultz DC, Terzyan SS, Rezaei M, Songb J, Li C, You Y, Hanigan MH. Design and evaluation of novel analogs of 2-amino-4-boronobutanoic acid (ABBA) as inhibitors of human gamma-glutamyl transpeptidase. Bioorg Med Chem 2022; 73:116986. [PMID: 36208545 DOI: 10.1016/j.bmc.2022.116986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
Inhibitors of gamma-glutamyl transpeptidase (GGT1, aka gamma-glutamyl transferase) are needed for the treatment of cancer, cardiovascular illness and other diseases. Compounds that inhibit GGT1 have been evaluated in the clinic, but no inhibitor has successfully demonstrated specific and systemic GGT1 inhibition. All have severe side effects. L-2-amino-4‑boronobutanoic acid (l-ABBA), a glutamate analog, is the most potent GGT1 inhibitor in vitro. In this study, we have solved the crystal structure of human GGT1 (hGGT1) with ABBA bound in the active site. The structure was interrogated to identify interactions between the enzyme and the inhibitor. Based on these data, a series of novel ABBA analogs were designed and synthesized. Their inhibitory activity against the hydrolysis and transpeptidation activities of hGGT1 were determined. The lead compounds were crystalized with hGGT1 and the structures solved. The kinetic data and structures of the complexes provide new insights into the critical role of protein structure dynamics in developing compounds for inhibition of hGGT1.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Simon S Terzyan
- Laboratory of Biomolecular Structure and Function, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Mohammad Rezaei
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Jinhua Songb
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, United States
| | - Youngjae You
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Marie H Hanigan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States.
| |
Collapse
|
7
|
Li G, Liu L, Yin Z, Ye Z, Shen N. Glutamine metabolism is essential for the production of IL-17A in γδ T cells and skin inflammation. Tissue Cell 2021; 71:101569. [PMID: 34146944 DOI: 10.1016/j.tice.2021.101569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
γδ T cell is one of the most important pathogenic immune cells in autoimmunity, especially in mucosal and epithelial diseases. Metabolism is essential for the maintenance of immune homeostasis. However, unlike αβ T cells, the metabolic regulation of γδ T cell activation still remain unclear. Here, we identified glutamine metabolism as a critical regulator for the generation of IL-17-producing γδ T cells. Metabolic screening uncovered that amino acids related to glutamine metabolism increased most obviously during γδ T cell activation. Pharmaceutical blocking of glutamine impaired IL-17 production in γδ T cells both in vitro and in vivo. Mechanism studies further revealed that genes downregulated upon glutamine deprivation enriched in IL-17 and IL-23/STAT3 signaling pathways. Consistent with this, the activation of STAT3 was suppressed after glutamine blocking. More importantly, application of glutamine antagonist in vivo alleviated the progression of IL-23 induced psoriatic mice model. In addition, both the glutamine level and the expression of glutamine related enzymes were found higher in psoriasis patients when compared with healthy controls. Therefore, our work identified an important metabolic regulatory pathway in γδ T cell activation and suggested that glutamine metabolism could be used as a target for the treatment of γδ T cell related diseases.
Collapse
Affiliation(s)
- Guanhua Li
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, 200001, China; Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Lu Liu
- Institute of Dermatology and Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China.
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University (SJTUSM), Shanghai, 200001, China; Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, 518040, China; Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200032, China.
| |
Collapse
|
8
|
Usama SM, Inagaki F, Kobayashi H, Schnermann MJ. Norcyanine-Carbamates Are Versatile Near-Infrared Fluorogenic Probes. J Am Chem Soc 2021; 143:5674-5679. [PMID: 33844539 DOI: 10.1021/jacs.1c02112] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorogenic probes in the near-infrared (NIR) region have the potential to provide stimuli-dependent information in living organisms. Here, we describe a new class of fluorogenic probes based on the heptamethine cyanine scaffold, the most broadly used NIR chromophore. These compounds result from modification of heptamethine norcyanines with stimuli-responsive carbamate linkers. The resulting cyanine carbamates (CyBams) exhibit exceptional turn-ON ratios (∼170×) due to dual requirements for NIR emission: carbamate cleavage through 1,6-elimination and chromophore protonation. Illustrating their utility in complex in vivo settings, a γ-glutamate substituted CyBam was applied to imaging γ-glutamyl transpeptidase (GGT) activity in a metastatic model of ovarian cancer. Overall, CyBams have significant potential to extend the reach of fluorogenic strategies to intact tissue and live animal imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
9
|
A Systematic Review of Serum γ-Glutamyltransferase as a Prognostic Biomarker in Patients with Genitourinary Cancer. Antioxidants (Basel) 2021; 10:antiox10040549. [PMID: 33916150 PMCID: PMC8066142 DOI: 10.3390/antiox10040549] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
γ-Glutamyltransferase (GGT), a membrane-bound enzyme, contributes to the metabolism of glutathione (GSH), which plays a critical physiological role in protecting cells against oxidative stress. GGT has been proposed as a biomarker of carcinogenesis and tumor progression given that GGT activity is important during both the promotion and invasion phases in cancer cells. Moreover, GGT expression is reportedly related to drug-resistance possibly because a wide range of drugs are conjugated with GSH, the availability of which is influenced by GGT activity. While serum GGT activity is commonly used as a quick, inexpensive, yet reliable means of assessing liver function, recent epidemiological studies have shown that it may also be an indicator of an increased risk of prostate cancer development. Moreover, elevated serum GGT is reportedly an adverse prognostic predictor in patients with urologic neoplasms, including renal cell carcinoma, prostate cancer, and urothelial carcinoma, although the background mechanisms have still not been well-characterized. The present review article summarizes the possible role of GGT in cancer cells and focuses on evidence evaluation through a systematic review of the latest literature on the prognostic role of serum GGT in patients with genitourinary cancer.
Collapse
|
10
|
Terzyan SS, Nguyen LT, Burgett AWG, Heroux A, Smith CA, You Y, Hanigan MH. Crystal structures of glutathione- and inhibitor-bound human GGT1: critical interactions within the cysteinylglycine binding site. J Biol Chem 2021; 296:100066. [PMID: 33187988 PMCID: PMC7949050 DOI: 10.1074/jbc.ra120.016265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Overexpression of γ-glutamyl transpeptidase (GGT1) has been implicated in an array of human diseases including asthma, reperfusion injury, and cancer. Inhibitors are needed for therapy, but development of potent, specific inhibitors of GGT1 has been hampered by a lack of structural information regarding substrate binding and cleavage. To enhance our understanding of the molecular mechanism of substrate cleavage, we have solved the crystal structures of human GGT1 (hGGT1) with glutathione (a substrate) and a phosphate-glutathione analog (an irreversible inhibitor) bound in the active site. These are the first structures of any eukaryotic GGT with the cysteinylglycine region of the substrate-binding site occupied. These structures and the structure of apo-hGGT reveal movement of amino acid residues within the active site as the substrate binds. Asn-401 and Thr-381 each form hydrogen bonds with two atoms of GSH spanning the γ-glutamyl bond. Three different atoms of hGGT1 interact with the carboxyl oxygen of the cysteine of GSH. Interactions between the enzyme and substrate change as the substrate moves deeper into the active site cleft. The substrate reorients and a new hydrogen bond is formed between the substrate and the oxyanion hole. Thr-381 is locked into a single conformation as an acyl bond forms between the substrate and the enzyme. These data provide insight on a molecular level into the substrate specificity of hGGT1 and provide an explanation for seemingly disparate observations regarding the enzymatic activity of hGGT1 mutants. This knowledge will aid in the design of clinically useful hGGT1 inhibitors.
Collapse
Affiliation(s)
- Simon S Terzyan
- Laboratory of Biomolecular Structure and Function, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Luong T Nguyen
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Anthony W G Burgett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Annie Heroux
- Energy Sciences Directorate/Photon Science Division, Brookhaven National Laboratory, Upton, New York, USA
| | - Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Marie H Hanigan
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
11
|
Sano C, Itoh T, Phumsombat P, Hayashi J, Wakayama M, Hibi T. Mutagenesis and structure-based analysis of the role of Tryptophan525 of γ-glutamyltranspeptidase from Pseudomonas nitroreducens. Biochem Biophys Res Commun 2020; 534:286-291. [PMID: 33288198 DOI: 10.1016/j.bbrc.2020.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is a ubiquitous enzyme that catalyzes the hydrolysis of the γ-glutamyl linkage of γ-glutamyl compounds and the transfer of their γ-glutamyl moiety to acceptor substrates. Pseudomonas nitroreducens GGT (PnGGT) is used for the industrial synthesis of theanine, thus it is important to determine the structural basis of hydrolysis and transfer reactions and identify the acceptor site of PnGGT to improve the efficient of theanine synthesis. Our previous structural studies of PnGGT have revealed that crucial interactions between three amino acid residues, Trp385, Phe417, and Trp525, distinguish PnGGT from other GGTs. Here we report the role of Trp525 in PnGGT based on site-directed mutagenesis and structural analyses. Seven mutant variants of Trp525 were produced (W525F, W525V, W525A, W525G, W525S, W525D, and W525K), with substitution of Trp525 by nonaromatic residues resulting in dramatically reduced hydrolysis activity. All Trp525 mutants exhibited significantly increased transfer activity toward hydroxylamine with hardly any effect on acceptor substrate preference. The crystal structure of PnGGT in complex with the glutamine antagonist, 6-diazo-5-oxo-l-norleucine, revealed that Trp525 is a key residue limiting the movement of water molecules within the PnGGT active site.
Collapse
Affiliation(s)
- Chiharu Sano
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Putthapong Phumsombat
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Junji Hayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| |
Collapse
|
12
|
Reo YJ, Dai M, Yang YJ, Ahn KH. Cell-Membrane-Localizing, Two-Photon Probe for Ratiometric Imaging of γ-Glutamyl Transpeptidase in Cancerous Cells and Tissues. Anal Chem 2020; 92:12678-12685. [PMID: 32808765 DOI: 10.1021/acs.analchem.0c03013] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
γ-Glutamyl transpeptidase (GGT), a cell surface-bound protease, is associated with various diseases including cancer. The detection of the enzyme activity is an important subject, leading to about 40 activatable fluorescent probes so far. All of them, however, lack the membrane-localizing ability, raising a reliability issue in the quantitative analysis. Disclosed is the first fluorescent probe that senses the cell surface-bound enzyme, which, furthermore, is capable of ratiometric as well as two-photon imaging with desirable features. Ratiometric imaging of cancer cell lines reveals a 6.4-8.4-fold higher GGT levels than those in normal cell lines. A comparison of the enzyme activity in organ tissues of normal and tumor xenograft mice reveals notably different levels of enzyme activity depending on the kind of tissue. Normal tissues exhibited comparable levels of enzyme activity, except the kidney that has significantly higher GGT activity (2.7-4.0-fold) than the other organs. Compared with the normal tissues, considerably higher enzyme activity was observed in the tumor tissues of the thigh (4.0-fold), colon (2.5-fold), lung (3.6-fold), and liver (2.1-fold), but essentially no enhanced activity in the tumor tissues of the spleen, stomach, and pancreas and a comparable level in both the tumor and normal kidney tissues were observed. The probe offers practical means for studying GGT-associated biology in cells and tissues by one- as well as two-photon ratiometric imaging.
Collapse
Affiliation(s)
- Ye Jin Reo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, Republic of Korea
| |
Collapse
|
13
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
14
|
Milito A, Brancaccio M, Lisurek M, Masullo M, Palumbo A, Castellano I. Probing the Interactions of Sulfur-Containing Histidine Compounds with Human Gamma-Glutamyl Transpeptidase. Mar Drugs 2019; 17:md17120650. [PMID: 31757046 PMCID: PMC6949936 DOI: 10.3390/md17120650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Gamma-glutamyl transpeptidase (GGT) is a cell surface enzyme involved in glutathione metabolism and maintenance of redox homeostasis. High expression of GGT on tumor cells is associated with an increase of cell proliferation and resistance against chemotherapy. GGT inhibitors that have been evaluated in clinical trials are too toxic for human use. We have previously identified ovothiols, 5(Nπ)-methyl-thiohistidines of marine origin, as non-competitive-like inhibitors of GGT that are more potent than the known GGT inhibitor, 6-diazo-5-oxo-l-norleucine (DON), and are not toxic for human embryonic cells. We extended these studies to the desmethylated form of ovothiol, 5-thiohistidine, and confirmed that this ovothiol derivative also acts as a non-competitive-like GGT inhibitor, with a potency comparable to ovothiol. We also found that both 5-thiohistidine derivatives act as reversible GGT inhibitors compared to the irreversible DON. Finally, we probed the interactions of 5-thiohistidines with GGT by docking analysis and compared them with the 2-thiohistidine ergothioneine, the physiological substrate glutathione, and the DON inhibitor. Overall, our results provide new insight for further development of 5-thiohistidine derivatives as therapeutics for GGT-positive tumors.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Michael Lisurek
- Department of Computational Chemistry and Drug Design, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany;
| | - Mariorosario Masullo
- Department of Human Movement Sciences and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (A.M.); (M.B.); (A.P.)
- Correspondence: ; Tel.: +39-081-5833206
| |
Collapse
|
15
|
Brancaccio M, Russo M, Masullo M, Palumbo A, Russo GL, Castellano I. Sulfur-containing histidine compounds inhibit γ-glutamyl transpeptidase activity in human cancer cells. J Biol Chem 2019; 294:14603-14614. [PMID: 31375562 DOI: 10.1074/jbc.ra119.009304] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
γ-Glutamyl transpeptidase (GGT) is an enzyme located on the surface of cellular membranes and involved in GSH metabolism and maintenance of redox homeostasis. High GGT expression on tumor cells is associated with increased cell proliferation and resistance against chemotherapy. GGT inhibitors evaluated so far in clinical trials are too toxic for human use. In this study, using enzyme kinetics analyses, we demonstrate that ovothiols, 5(Nπ)-methyl thiohistidines of marine origin, act as noncompetitive inhibitors of GGT, with an apparent Ki of 21 μm, when we fixed the concentrations of the donor substrate. We found that these compounds are more potent than the known GGT inhibitor 6-diazo-5-oxo-l-norleucine and are not toxic toward human embryonic cells. In particular, cellular process-specific fluorescence-based assays revealed that ovothiols induce a mixed cell-death phenotype of apoptosis and autophagy in GGT-overexpressing cell lines, including human liver cancer and chronic B leukemic cells. The findings of our study provide the basis for further development of 5-thiohistidines as therapeutics for GGT-positive tumors and highlight that GGT inhibition is involved in autophagy.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Mariorosario Masullo
- Department of Movement Sciences and Wellbeing, University of Naples "Parthenope," 80133 Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Gian Luigi Russo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.,Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
16
|
Watanabe B, Tabuchi Y, Wada K, Hiratake J. Synthesis and evaluation of the inhibitory activity of the four stereoisomers of the potent and selective human γ-glutamyl transpeptidase inhibitor GGsTop. Bioorg Med Chem Lett 2017; 27:4920-4924. [PMID: 28985998 DOI: 10.1016/j.bmcl.2017.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 12/30/2022]
Abstract
2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon=174M-1s-1) was ca. 8-fold more potent than the d-isomer (kon=21.5M-1s-1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon=21.5-174M-1s-1), while the RP-isomers were inactive even at concentrations of 0.1mM.
Collapse
Affiliation(s)
- Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
| | - Yukiko Tabuchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Jun Hiratake
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|