1
|
Perner F, Gadrey JY, Armstrong SA, Kühn MWM. Targeting the Menin-KMT2A interaction in leukemia: Lessons learned and future directions. Int J Cancer 2025. [PMID: 39887730 DOI: 10.1002/ijc.35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Chromosomal rearrangements involving the Mixed Lineage Leukemia gene (MLL1, KMT2A) are defining a genetically distinct subset in about 10% of human acute leukemias. Translocations involving the KMT2A-locus at chromosome 11q23 are resulting in the formation of a chimeric oncogene, where the N-terminal part of KMT2A is fused to a variety of translocation partners. The most frequently found fusion partners of KMT2A in acute leukemia are the C-terminal parts of AFF1, MLLT3, MLLT1 and MLLT10. Unfortunately, the presence of an KMT2A-rearrangements is associated with adverse outcomes in leukemia patients. Moreover, non-rearranged KMT2A-complexes have been demonstrated to be crucial for disease development and maintenance in NPM1-mutated and NUP98-rearranged leukemia, expanding the spectrum of genetic disease subtypes that are dependent on KMT2A. Recent advances in the development of targeted therapy strategies to disrupt the function of KMT2A-complexes in leukemia have led to the establishment of Menin-KMT2A interaction inhibitors that effectively eradicate leukemia in preclinical model systems and show favorable tolerability and significant efficacy in early-phase clinical trials. Indeed, one Menin inhibitor, Revumenib, was recently approved for the treatment of patients with relapsed or refractory KMT2A-rearranged acute leukemia. However, single agent therapy can lead to resistance. In this Review article we summarize our current understanding about the biology of pathogenic KMT2A-complex function in cancer, specifically leukemia, and give a systematic overview of lessons learned from recent clinical and preclinical studies using Menin inhibitors.
Collapse
Affiliation(s)
- Florian Perner
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
| | - Jayant Y Gadrey
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael W M Kühn
- DGHO, Deutsche Gesellschaft für Hämatologie und Medizinische Onkologie e.V. working group, Clinical and Translational Epigenetics, Berlin, Germany
- Department of Hematology and Medical Oncology, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Rots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, Jones EA, Stewart S, Vasudevan P, Dabir T, Park SM, Jewell R, Brown N, Pais L, Jacquemont S, Jizi K, Ravenswaaij-Arts CMAV, Kroes HY, Stumpel CTRM, Ockeloen CW, Diets IJ, Nizon M, Vincent M, Cogné B, Besnard T, Kambouris M, Anderson E, Zackai EH, McDougall C, Donoghue S, O'Donnell-Luria A, Valivullah Z, O'Leary M, Srivastava S, Byers H, Leslie N, Mazzola S, Tiller GE, Vera M, Shen JJ, Boles R, Jain V, Brischoux-Boucher E, Kinning E, Simpson BN, Giltay JC, Harris J, Keren B, Guimier A, Marijon P, Vries BBAD, Motter CS, Mendelsohn BA, Coffino S, Gerkes EH, Afenjar A, Visconti P, Bacchelli E, Maestrini E, Delahaye-Duriez A, Gooch C, Hendriks Y, Adams H, Thauvin-Robinet C, Josephi-Taylor S, Bertoli M, Parker MJ, Rutten JW, Caluseriu O, Vernon HJ, Kaziyev J, Zhu J, Kremen J, Frazier Z, Osika H, Breault D, Nair S, Lewis SME, Ceroni F, Viggiano M, Posar A, Brittain H, Giovanna T, Giulia G, Quteineh L, Ha-Vinh Leuchter R, Zonneveld-Huijssoon E, Mellado C, Marey I, Coudert A, Aracena Alvarez MI, Kennis MGP, Bouman A, Roifman M, Amorós Rodríguez MI, Ortigoza-Escobar JD, Vernimmen V, Sinnema M, Pfundt R, Brunner HG, et alRots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, Jones EA, Stewart S, Vasudevan P, Dabir T, Park SM, Jewell R, Brown N, Pais L, Jacquemont S, Jizi K, Ravenswaaij-Arts CMAV, Kroes HY, Stumpel CTRM, Ockeloen CW, Diets IJ, Nizon M, Vincent M, Cogné B, Besnard T, Kambouris M, Anderson E, Zackai EH, McDougall C, Donoghue S, O'Donnell-Luria A, Valivullah Z, O'Leary M, Srivastava S, Byers H, Leslie N, Mazzola S, Tiller GE, Vera M, Shen JJ, Boles R, Jain V, Brischoux-Boucher E, Kinning E, Simpson BN, Giltay JC, Harris J, Keren B, Guimier A, Marijon P, Vries BBAD, Motter CS, Mendelsohn BA, Coffino S, Gerkes EH, Afenjar A, Visconti P, Bacchelli E, Maestrini E, Delahaye-Duriez A, Gooch C, Hendriks Y, Adams H, Thauvin-Robinet C, Josephi-Taylor S, Bertoli M, Parker MJ, Rutten JW, Caluseriu O, Vernon HJ, Kaziyev J, Zhu J, Kremen J, Frazier Z, Osika H, Breault D, Nair S, Lewis SME, Ceroni F, Viggiano M, Posar A, Brittain H, Giovanna T, Giulia G, Quteineh L, Ha-Vinh Leuchter R, Zonneveld-Huijssoon E, Mellado C, Marey I, Coudert A, Aracena Alvarez MI, Kennis MGP, Bouman A, Roifman M, Amorós Rodríguez MI, Ortigoza-Escobar JD, Vernimmen V, Sinnema M, Pfundt R, Brunner HG, Vissers LELM, Kleefstra T, Weksberg R, Banka S. Pathogenic variants in KMT2C result in a neurodevelopmental disorder distinct from Kleefstra and Kabuki syndromes. Am J Hum Genet 2024; 111:1626-1642. [PMID: 39013459 PMCID: PMC11339626 DOI: 10.1016/j.ajhg.2024.06.009] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition.
Collapse
Affiliation(s)
- Dmitrijs Rots
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Genetics Laboratory, Children's Clinical University Hospital, Riga, Latvia
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Victor Faundes
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de Los Alimentos (INTA), Universidad de Chile, Santiago, Chile; Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Shelagh Joss
- West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton SO16 5YA, UK
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Stewart
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester, Leicester Royal Infirmary, Leicester LE1 7RH, UK
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast City Hospital, Belfast, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Natasha Brown
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Melbourne, VIC, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Khadijé Jizi
- Service de Génétique Médicale, CHU Ste-Justine, Montréal, QC, Canada
| | | | - Hester Y Kroes
- Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Illja J Diets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Marie Vincent
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Marios Kambouris
- Division of Genetics, Department of Pathology and Laboratory Medicine Department, Sidra Medicine, Doha, Qatar
| | - Emily Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carey McDougall
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah Donoghue
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Melanie O'Leary
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Heather Byers
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Nancy Leslie
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sarah Mazzola
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - George E Tiller
- Department of Genetics, Kaiser Permanente, Los Angeles, CA, USA
| | - Moin Vera
- Department of Genetics, Kaiser Permanente, Los Angeles, CA, USA
| | - Joseph J Shen
- Division of Genetics, Department of Pediatrics, UCSF Fresno, Fresno, CA, USA; Division of Genomic Medicine, Department of Pediatrics, University of California Davis, Sacramento, CA, USA
| | | | - Vani Jain
- All Wales Medical Genomics Service, Wales Genomic Health Centre, Cardiff Edge Business Park, Longwood Drive, Whitchurch, Cardiff CF14 7YU, UK
| | | | - Esther Kinning
- Clinical Genetics, Birmingham Women's and Children's, Birmingham, UK
| | - Brittany N Simpson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Jacques C Giltay
- Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jacqueline Harris
- Kennedy Krieger Institute, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Anne Guimier
- Service de Médecine Genomique des Maladies Rares, CRMR Anomalies Du Développement, Hôpital Necker-Enfants Malades, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Pierre Marijon
- Laboratoire de Biologie Médicale Multisites Seqoia FMG2025, 75014 Paris, France
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Samantha Coffino
- Department of Pediatric Neurology, Kaiser Permanente, Oakland, CA, USA
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Afenjar
- APHP Sorbonne Université, Centre de Référence Malformations et Maladies Congénitales Du Cervelet et Déficiences Intellectuelles de Causes Rares, Département de Génétique et Embryologie Médicale, Hôpital Trousseau, Paris, France
| | - Paola Visconti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOSI Disturbi Dello Spettro Autistico, Bologna, Italy
| | - Elena Bacchelli
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy
| | - Elena Maestrini
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy
| | | | - Catherine Gooch
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Yvonne Hendriks
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Hieab Adams
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Dijon, France; Inserm, UMR1231, Equipe GAD, Bâtiment B3, Université de Bourgogne Franche Comté, Dijon Cedex, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Sarah Josephi-Taylor
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Genomic Medicine, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Marta Bertoli
- Northern Genetics Service, Newcastle Upon Tyne NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Michael J Parker
- Department of Clinical Genetics, Sheffield Children's Hospital, Sheffield, UK
| | - Julie W Rutten
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Hilary J Vernon
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonah Kaziyev
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jia Zhu
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica Kremen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zoe Frazier
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hailey Osika
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Breault
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sreelata Nair
- Department of Fetal Medicine, Lifeline Super Specialty Hospital, Kerala, India
| | - Suzanne M E Lewis
- Department of Medical Genetics, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Fabiola Ceroni
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy; Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Marta Viggiano
- Pharmacy and Biotechnology Department, University of Bologna, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UOSI Disturbi Dello Spettro Autistico, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Helen Brittain
- Department of Clinical Genetics, Birmingham Women's & Children's NHS Trust, Birmingham, UK
| | - Traficante Giovanna
- Medical Genetics Unit, Meyer Children's Hospital IRCCS Florence, Florence, Italy
| | - Gori Giulia
- Medical Genetics Unit,Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lina Quteineh
- Division of Genetic Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Russia Ha-Vinh Leuchter
- Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland
| | - Evelien Zonneveld-Huijssoon
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cecilia Mellado
- Sección de Genética y Errores Congénitos Del Metabolismo, División de Pediatría, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Mariana Inés Aracena Alvarez
- Unit of Genetics and Metabolic Diseases, Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milou G P Kennis
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arianne Bouman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maian Roifman
- The Prenatal Diagnosis and Medical Genetics Program, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Canada
| | | | - Juan Dario Ortigoza-Escobar
- Movement Disorders Unit, Institut de Recerca Sant Joan de Déu, CIBERER-ISCIII and European Reference Network for Rare Neurological Diseases (ERN-RND), Barcelona, Spain
| | - Vivian Vernimmen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, the Netherlands; Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, the Netherlands.
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, the Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, the Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Lin CY, Xu WB, Li BZ, Shu MA, Zhang YM. Structural and functional analysis of transforming growth factor beta regulator 1 (TBRG1) in the red swamp crayfish Procambarus clarkii: The initial insight into TBRG1's role in invertebrate immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109350. [PMID: 38168633 DOI: 10.1016/j.fsi.2023.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-β. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.
Collapse
Affiliation(s)
- Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Lomov NA, Viushkov VS, Rubtsov MA. Mechanisms of Secondary Leukemia Development Caused by Treatment with DNA Topoisomerase Inhibitors. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:892-911. [PMID: 37751862 DOI: 10.1134/s0006297923070040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/28/2023]
Abstract
Leukemia is a blood cancer originating in the blood and bone marrow. Therapy-related leukemia is associated with prior chemotherapy. Although cancer therapy with DNA topoisomerase II inhibitors is one of the most effective cancer treatments, its side effects include development of secondary leukemia characterized by the chromosomal rearrangements affecting AML1 or MLL genes. Recurrent chromosomal translocations in the therapy-related leukemia differ from chromosomal rearrangements associated with other neoplasias. Here, we reviewed the factors that drive chromosomal translocations induced by cancer treatment with DNA topoisomerase II inhibitors, such as mobility of ends of double-strand DNA breaks formed before the translocation and gain of function of fusion proteins generated as a result of translocation.
Collapse
Affiliation(s)
- Nikolai A Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Vladimir S Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| |
Collapse
|
5
|
Ozyerli‐Goknar E, Nizamuddin S, Timmers HTM. A Box of Chemistry to Inhibit the MEN1 Tumor Suppressor Gene Promoting Leukemia. ChemMedChem 2021; 16:1391-1402. [PMID: 33534953 PMCID: PMC8252030 DOI: 10.1002/cmdc.202000972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/30/2022]
Abstract
Targeting protein-protein interactions (PPIs) with small-molecule inhibitors has become a hotbed of modern drug development. In this review, we describe a new class of PPI inhibitors that block menin from binding to MLL proteins. Menin is encoded by the MEN1 tumor suppressor, but acts as an essential cofactor for MLL/KMT2A-rearranged leukemias. The most promising menin-MLL inhibitors belong to the thienopyrimidine class and have recently entered phase I/II clinical trials for treating acute leukemias characterized by MLL/KMT2A translocations or NPM1 mutations. As single agents, thienopyrimidine compounds eradicate leukemia in a xenograft models of primary leukemic cells belonging to the MLL-rearranged or NPM1-mutant subtypes. These compounds are well tolerated with few or no side effects, which is remarkable given the tumor-suppressor function of menin. The menin-MLL inhibitors highlight how leukemia patients could benefit from a targeted epigenetic therapy with novel PPI inhibitors obtained by directed chemical evolution.
Collapse
Affiliation(s)
- Ezgi Ozyerli‐Goknar
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - Sheikh Nizamuddin
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| | - H. T. Marc Timmers
- German Cancer Consortium (DKTK) partner site Freiburg German Cancer Research Center (DKFZ) Medical Center-University of Freiburg, Department of UrologyBreisacherstrasse 6679016FreiburgGermany
| |
Collapse
|
6
|
Integrative genomic analysis of pediatric T-cell lymphoblastic lymphoma reveals candidates of clinical significance. Blood 2021; 137:2347-2359. [PMID: 33152759 DOI: 10.1182/blood.2020005381] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. The dismal outcomes (15%-30%) after T-LBL relapse warrant establishing risk-based treatment. To our knowledge, this study presents the first comprehensive, systematic, integrated, genome-wide analysis including relapsed cases that identifies molecular markers of prognostic relevance for T-LBL. NOTCH1 was identified as the putative driver for T-LBL. An activated NOTCH/PI3K-AKT signaling axis and alterations in cell cycle regulators constitute the core oncogenic program for T-LBL. Mutated KMT2D was identified as a prognostic marker. The cumulative incidence of relapse was 47% ± 17% in patients with KMT2D mutations, compared with 14% ± 3% in wild-type KMT2D. Structural analysis of the mutated domains of KMT2D revealed a plausible impact on structure and functional consequences. These findings provide new insights into the pathogenesis of T-LBL, including high translational potential. The ongoing LBL 2018 trial (www.clinicaltrials.gov #NCT04043494) allows for prospective validation and subsequent fine tuning of the stratification criteria for T-LBL risk groups to improve survival of pediatric patients.
Collapse
|
7
|
Li X, Song Y. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. J Hematol Oncol 2021; 14:56. [PMID: 33823889 PMCID: PMC8022399 DOI: 10.1186/s13045-021-01057-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5–10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein–protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure–function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Sugeedha J, Gautam J, Tyagi S. SET1/MLL family of proteins: functions beyond histone methylation. Epigenetics 2020; 16:469-487. [PMID: 32795105 PMCID: PMC8078731 DOI: 10.1080/15592294.2020.1809873] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SET1 family of enzymes are well known for their involvement in the histone 3 lysine 4 (H3K4) methylation, a conserved trait of euchromatin associated with transcriptional activation. These methyltransferases are distinct, and involved in various biological functions in the cell. Impairment in the function of SET1 family members leads to a number of abnormalities such as skeletal and neurological defects, leukaemogenesis and even lethality. Tremendous progress has been made in understanding the unique biological roles and the mechanism of SET1 enzymes in context with H3K4 methylation/canonical functions. However, in recent years, several studies have indicated the novel role of SET1 family proteins, other than H3K4 methylation, which are equally important for cellular functions. In this review, we focus on these non-canonical function of SET1 family members.
Collapse
Affiliation(s)
- Jeyapal Sugeedha
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Jyoti Gautam
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
9
|
Park K, Kim JA, Kim J. Transcriptional regulation by the KMT2 histone H3K4 methyltransferases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194545. [DOI: 10.1016/j.bbagrm.2020.194545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/21/2020] [Accepted: 03/13/2020] [Indexed: 01/09/2023]
|
10
|
Wang J, Yu C, Zhang S, Ye J, Dai H, Wang H, Huang J, Cao X, Ma J, Ma H, Wang Y. Cell-type-dependent histone demethylase specificity promotes meiotic chromosome condensation in Arabidopsis. NATURE PLANTS 2020; 6:823-837. [PMID: 32572214 DOI: 10.1038/s41477-020-0697-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/17/2020] [Indexed: 05/25/2023]
Abstract
Histone demethylation is crucial for proper chromatin structure and to ensure normal development, and requires the large family of Jumonji C (JmjC)-containing demethylases; however, the molecular mechanisms that regulate the substrate specificity of these JmjC-containing demethylases remain largely unknown. Here, we show that the substrate specificity of the Arabidopsis histone demethylase JMJ16 is broadened from Lys 4 of histone H3 (H3K4) alone in somatic cells to both H3K4 and H3K9 when it binds to the meiocyte-specific histone reader MMD1. Consistent with this, the JMJ16 catalytic domain exhibits both H3K4 and H3K9 demethylation activities. Moreover, the JMJ16 C-terminal FYR domain interacts with the JMJ16 catalytic domain and probably restricts its substrate specificity. By contrast, MMD1 can compete with the N-terminal catalytic domain of JMJ16 for binding to the FYR-C domain, thereby expanding the substrate specificity of JMJ16 by preventing the FYR domain from binding to the catalytic domain. We propose that MMD1 and JMJ16 together in male meiocytes promote gene expression in an H3K9me3-dependent manner and thereby contribute to meiotic chromosome condensation.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Chaoyi Yu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hang Dai
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Hongkuan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiyue Huang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Hong Ma
- Department of Biology, Eberly College of Science, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plants Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants. Protein Sci 2020; 29:1120-1137. [PMID: 32134523 DOI: 10.1002/pro.3849] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
Abstract
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3-9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.
Collapse
Affiliation(s)
- Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yuwei Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Shuifeng Li
- Hangzhou Xiaoshan District Agricultural Technology Extension Center, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Cattaneo P, Graeff M, Marhava P, Hardtke CS. Conditional effects of the epigenetic regulator JUMONJI 14 in Arabidopsis root growth. Development 2019; 146:146/23/dev183905. [PMID: 31826870 DOI: 10.1242/dev.183905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023]
Abstract
Methylation of lysine 4 in histone 3 (H3K4) is a post-translational modification that promotes gene expression. H3K4 methylation can be reversed by specific demethylases with an enzymatic Jumonji C domain. In Arabidopsis thaliana, H3K4-specific JUMONJI (JMJ) proteins distinguish themselves by the association with an F/Y-rich (FYR) domain. Here, we report that jmj14 mutations partially suppress reduced root meristem size and growth vigor of brevis radix (brx) mutants. Similar to its close homologs, JMJ15, JMJ16 and JMJ18, the JMJ14 promoter confers expression in mature root vasculature. Yet, unlike jmj14, neither jmj16 nor jmj18 mutation markedly suppresses brx phenotypes. Domain-swapping experiments suggest that the specificity of JMJ14 function resides in the FYR domain. Despite JMJ14 promoter activity in the mature vasculature, jmj14 mutation affects root meristem size. However, JMJ14 protein is observed throughout the meristem, suggesting that the JMJ14 transcript region contributes substantially to the spatial aspect of JMJ14 expression. In summary, our data reveal a role for JMJ14 in root growth in sensitized genetic backgrounds that depends on its FYR domain and regulatory input from the JMJ14 cistron.
Collapse
Affiliation(s)
- Pietro Cattaneo
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Moritz Graeff
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Petra Marhava
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Crump NT, Milne TA. Why are so many MLL lysine methyltransferases required for normal mammalian development? Cell Mol Life Sci 2019; 76:2885-2898. [PMID: 31098676 PMCID: PMC6647185 DOI: 10.1007/s00018-019-03143-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
The mixed lineage leukemia (MLL) family of proteins became known initially for the leukemia link of its founding member. Over the decades, the MLL family has been recognized as an important class of histone H3 lysine 4 (H3K4) methyltransferases that control key aspects of normal cell physiology and development. Here, we provide a brief history of the discovery and study of this family of proteins. We address two main questions: why are there so many H3K4 methyltransferases in mammals; and is H3K4 methylation their key function?
Collapse
Affiliation(s)
- Nicholas T Crump
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Dafsari HS, Sprute R, Wunderlich G, Daimagüler HS, Karaca E, Contreras A, Becker K, Schulze-Rhonhof M, Kiening K, Karakulak T, Kloss M, Horn A, Pauls A, Nürnberg P, Altmüller J, Thiele H, Assmann B, Koy A, Cirak S. Novel mutations in KMT2B offer pathophysiological insights into childhood-onset progressive dystonia. J Hum Genet 2019; 64:803-813. [PMID: 31165786 DOI: 10.1038/s10038-019-0625-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Abstract
Rapid progress has recently been made in the elucidation of the genetic basis of childhood-onset inherited generalized dystonia (IGD) due to the implementation of genomic sequencing methodologies. We identified four patients with childhood-onset IGD harboring novel disease-causing mutations in lysine-specific histone methyltransferase 2B gene (KMT2B) by whole-exome sequencing. The main focus of this paper is to gain novel pathophysiological insights through understanding the molecular consequences of these mutations. The disease course is mostly progressive, evolving from lower limbs into generalized dystonia, which could be associated with dysarthria, dysphonia, intellectual disability, orofacial dyskinesia, and sometimes distinct dysmorphic facial features. In two patients, motor performances improved after bilateral implantation of deep brain stimulation in the globus pallidus internus (GPi-DBS). Pharmacotherapy with trihexyphenidyl reduced dystonia in two patients. We discovered three novel KMT2B mutations. Our analyses revealed that the mutation in patient 1 (c.7463A > G, p.Y2488C) is localized in the highly conserved FYRC domain of KMT2B. This mutation holds the potential to alter the inter-domain FYR interactions, which could lead to KMT2B instability. The mutations in patients 2 and 3 (c.3596_3697insC, p.M1202Dfs*22; c.4229delA, p.Q1410Rfs*12) lead to predicted unstable transcripts, likely to be subject to degradation by non-sense-mediated decay. Childhood-onset progressive dystonia with orofacial involvement is one of the main clinical manifestations of KMT2B mutations. In all, 26% (18/69) of the reported cases have T2 signal alterations of the globus pallidus internus, mostly at a younger age. Anticholinergic medication and GPi-DBS are promising treatment options and shall be considered early.
Collapse
Affiliation(s)
- Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Rosanne Sprute
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hülya-Sevcan Daimagüler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Adriana Contreras
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kerstin Becker
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mira Schulze-Rhonhof
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karl Kiening
- Department of Neurosurgery, University Hospital, Heidelberg, Germany
| | - Tülay Karakulak
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey
| | - Manja Kloss
- Department of Neurology, University Hospital, Heidelberg, Germany
| | - Annette Horn
- Department of General Pediatrics and Neonatology, University Children's Hospital, Düsseldorf, Germany
| | - Amande Pauls
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Birgit Assmann
- Department of Neuropediatrics, University Children's Hospital, Heidelberg, Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University of Cologne, Cologne, Germany. .,Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Chan AKN, Chen CW. Rewiring the Epigenetic Networks in MLL-Rearranged Leukemias: Epigenetic Dysregulation and Pharmacological Interventions. Front Cell Dev Biol 2019; 7:81. [PMID: 31157223 PMCID: PMC6529847 DOI: 10.3389/fcell.2019.00081] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
Leukemias driven by chromosomal translocation of the mixed-lineage leukemia gene (MLL or KMT2A) are highly prevalent in pediatric oncology. The poor survival rate and lack of an effective targeted therapy for patients with MLL-rearranged (MLL-r) leukemias emphasize an urgent need for improved knowledge and novel therapeutic approaches for these malignancies. The resulting chimeric products of MLL gene rearrangements, i.e., MLL-fusion proteins (MLL-FPs), are capable of transforming hematopoietic stem/progenitor cells (HSPCs) into leukemic blasts. The ability of MLL-FPs to reprogram HSPCs toward leukemia requires the involvement of multiple chromatin effectors, including the histone 3 lysine 79 methyltransferase DOT1L, the chromatin epigenetic reader BRD4, and the super elongation complex. These epigenetic regulators constitute a complicated network that dictates maintenance of the leukemia program, and therefore represent an important cluster of therapeutic opportunities. In this review, we will discuss the role of MLL and its fusion partners in normal HSPCs and hematopoiesis, including the links between chromatin effectors, epigenetic landscapes, and leukemia development, and summarize current approaches to therapeutic targeting of MLL-r leukemias.
Collapse
Affiliation(s)
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
16
|
A comparative analysis of KMT2D missense variants in Kabuki syndrome, cancers and the general population. J Hum Genet 2018; 64:161-170. [PMID: 30459467 DOI: 10.1038/s10038-018-0536-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
Determining the clinical significance of germline and somatic KMT2D missense variants (MVs) in Kabuki syndrome (KS) and cancers can be challenging. We analysed 1920 distinct KMT2D MVs that included 1535 germline MVs in controls (Control-MVs), 584 somatic MVs in cancers (Cancer-MVs) and 201 MV in individuals with KS (KS-MVs). The proportion of MVs likely to affect splicing was significantly higher for Cancer-MVs and KS-MVs than in Control-MVs (p = 0.000018). Our analysis identified significant clustering of Cancer-MVs and KS-MVs in the PHD#3 and #4, RING#4 and SET domains. Areas of enrichment restricted to just Cancer-MVs (FYR-C and between amino acids 3043-3248) or KS-MVs (coiled-coil#5, FYR-N and between amino acids 4995-5090) were also found. Cancer-MVs and KS-MVs tended to affect more conserved residues (lower BLOSUM scores, p < 0.001 and p = 0.007). KS-MVs are more likely to increase the energy for protein folding (higher ELASPIC ∆∆G scores, p = 0.03). Cancer-MVs are more likely to disrupt protein interactions (higher StructMAn scores, p = 0.019). We reclassify several presumed pathogenic MVs as benign or as variants of uncertain significance. We raise the possibility of as yet unrecognised 'non-KS' phenotype(s) associated with some germline pathogenic KMT2D MVs. Overall, this work provides insights into the disease mechanism of KMT2D variants and can be extended to other genes, mutations in which also cause developmental syndromes and cancer.
Collapse
|
17
|
Klinbunga S, Janpoom S, Rongmung P, Prasertlux S, Srisuwan V, Menasveta P, Khamnamtong B. Characterization of transforming growth factor beta regulator 1-like and association between its expression levels and growth of the giant tiger shrimp Penaeus monodon. Comp Biochem Physiol B Biochem Mol Biol 2018; 225:38-47. [PMID: 29981451 DOI: 10.1016/j.cbpb.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/28/2022]
Abstract
Molecular markers that allow selection of juveniles and broodstock with improved growth performances are useful for the shrimp industry. Here, the full-length cDNA of transforming growth factor beta regulator 1-like (PmTbrg1-l) in the giant tiger shrimp Penaeus monodon was determined. It was 1184 bp in length and contained an open reading frame (ORF) of 975 bp corresponding to a deduced polypeptide of 324 amino acids. Successful RNA interference (RNAi) carried out using juveniles injected with PmTbrg1-l dsRNA revealed reduced levels of PmTbrg1-l and myostatin (PmMstm) in hemocytes when compared to shrimp injected with saline solution and GFP dsRNA (P < .05). Associations between single-strand conformational polymorphism (SSCP) patterns or single nucleotide polymorphism (SNP) patterns and growth-related parameters (average body weight and total length) were examined. Juveniles with pattern III (corresponding to A/A918; N = 37) showed a trend for greater average body weight and total length than those with patterns II (G/G918; N = 42) and IV (A/G918; N = 75). The expression level of PmTbrg1-l in the hepatopancreas of females was significantly higher than that in males (P < .05) in two sample sets of three-month-old domesticated juveniles (N = 59 and 50; P < .05). Moreover, its expression level in large-size juveniles was significantly higher than that in medium-size and small-size juveniles in both groups of samples (P < .05). Results indicated that PmTbrg1-l is functionally related with growth of P. monodon.
Collapse
Affiliation(s)
- Sirawut Klinbunga
- Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirithorn Janpoom
- Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Puttawan Rongmung
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sirikan Prasertlux
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Vipawadee Srisuwan
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Piamsak Menasveta
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Bavornlak Khamnamtong
- Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
18
|
Steinhilber D, Marschalek R. How to effectively treat acute leukemia patients bearing MLL-rearrangements ? Biochem Pharmacol 2017; 147:183-190. [PMID: 28943239 DOI: 10.1016/j.bcp.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Chromosomal translocations - leading to the expression of fusion genes - are well-studied genetic abberrations associated with the development of leukemias. Most of them represent altered transcription factors that affect transcription or epigenetics, while others - like BCR-ABL - are enhancing signaling. BCR-ABL has become the prototype for rational drug design, and drugs like Imatinib and subsequently improved drugs have a great impact on cancer treatments. By contrast, MLL-translocations in acute leukemia patients are hard to treat, display a high relapse rate and the overall survival rate is still very poor. Therefore, new treatment modalities are urgently needed. Based on the molecular insights of the most frequent MLL rearrangements, BET-, DOT1L-, SET- and MEN1/LEDGF-inhibitors have been developed and first clinical studies were initiated. Not all results of these studies have are yet available, however, a first paper reports a failure in the DOT1L-inhibitor study although it was the most promising drug based on literature data. One possible explanation is that all of the above mentioned drugs also target the cognate wildtype proteins. Here, we want to strengthen the fact that efforts should be made to develop drugs or strategies to selectively inhibit only the fusion proteins. Some examples will be given that follow exactly this guideline, and proof-of-concept experiments have already demonstrated their feasibility and effectiveness. Some of the mentioned approaches were using drugs that are already on the market, indicating that there are existing opportunities for the future which should be implemented in future therapy strategies.
Collapse
Affiliation(s)
- Dieter Steinhilber
- Institute of Pharm. Chemistry, Goethe-University, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharm. Biology/DCAL, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
19
|
Pardo M, Yu L, Shen S, Tate P, Bode D, Letney BL, Quelle DE, Skarnes W, Choudhary JS. Myst2/Kat7 histone acetyltransferase interaction proteomics reveals tumour-suppressor Niam as a novel binding partner in embryonic stem cells. Sci Rep 2017; 7:8157. [PMID: 28811661 PMCID: PMC5557939 DOI: 10.1038/s41598-017-08456-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
MYST histone acetyltransferases have crucial functions in transcription, replication and DNA repair and are hence implicated in development and cancer. Here we characterise Myst2/Kat7/Hbo1 protein interactions in mouse embryonic stem cells by affinity purification coupled to mass spectrometry. This study confirms that in embryonic stem cells Myst2 is part of H3 and H4 histone acetylation complexes similar to those described in somatic cells. We identify a novel Myst2-associated protein, the tumour suppressor protein Niam (Nuclear Interactor of ARF and Mdm2). Human NIAM is involved in chromosome segregation, p53 regulation and cell proliferation in somatic cells, but its role in embryonic stem cells is unknown. We describe the first Niam embryonic stem cell interactome, which includes proteins with roles in DNA replication and repair, transcription, splicing and ribosome biogenesis. Many of Myst2 and Niam binding partners are required for correct embryonic development, implicating Myst2 and Niam in the cooperative regulation of this process and suggesting a novel role for Niam in embryonic biology. The data provides a useful resource for exploring Myst2 and Niam essential cellular functions and should contribute to deeper understanding of organism early development and survival as well as cancer. Data are available via ProteomeXchange with identifier PXD005987.
Collapse
Affiliation(s)
- Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Shihpei Shen
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Cold Genesys Inc., Santa Ana, CA, USA
| | - Peri Tate
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Daniel Bode
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Wellcome Trust PhD Program, Cambridge Stem Cell Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Blake L Letney
- Departments of Pharmacology and Pathology, The University of Iowa and Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - Dawn E Quelle
- Departments of Pharmacology and Pathology, The University of Iowa and Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - William Skarnes
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
20
|
Stanne T, Narayanan MS, Ridewood S, Ling A, Witmer K, Kushwaha M, Wiesler S, Wickstead B, Wood J, Rudenko G. Identification of the ISWI Chromatin Remodeling Complex of the Early Branching Eukaryote Trypanosoma brucei. J Biol Chem 2015; 290:26954-26967. [PMID: 26378228 PMCID: PMC4646403 DOI: 10.1074/jbc.m115.679019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 12/25/2022] Open
Abstract
ISWI chromatin remodelers are highly conserved in eukaryotes and are important for the assembly and spacing of nucleosomes, thereby controlling transcription initiation and elongation. ISWI is typically associated with different subunits, forming specialized complexes with discrete functions. In the unicellular parasite Trypanosoma brucei, which causes African sleeping sickness, TbISWI down-regulates RNA polymerase I (Pol I)-transcribed variant surface glycoprotein (VSG) gene expression sites (ESs), which are monoallelically expressed. Here, we use tandem affinity purification to determine the interacting partners of TbISWI. We identify three proteins that do not show significant homology with known ISWI-associated partners. Surprisingly, one of these is nucleoplasmin-like protein (NLP), which we had previously shown to play a role in ES control. In addition, we identify two novel ISWI partners, regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP), both containing protein motifs typically found on chromatin proteins. Knockdown of RCCP or FYRP in bloodstream form T. brucei results in derepression of silent variant surface glycoprotein ESs, as had previously been shown for TbISWI and NLP. All four proteins are expressed and interact with each other in both major life cycle stages and show similar distributions at Pol I-transcribed loci. They are also found at Pol II strand switch regions as determined with ChIP. ISWI, NLP, RCCP, and FYRP therefore appear to form a single major ISWI complex in T. brucei (TbIC). This reduced complexity of ISWI regulation and the presence of novel ISWI partners highlights the early divergence of trypanosomes in evolution.
Collapse
Affiliation(s)
- Tara Stanne
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Sophie Ridewood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Alexandra Ling
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Kathrin Witmer
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Manish Kushwaha
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Simone Wiesler
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Bill Wickstead
- the School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | - Jennifer Wood
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and
| | - Gloria Rudenko
- Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and.
| |
Collapse
|
21
|
Huang Y, Chen D, Liu C, Shen W, Ruan Y. Evolution and conservation of JmjC domain proteins in the green lineage. Mol Genet Genomics 2015; 291:33-49. [PMID: 26152513 DOI: 10.1007/s00438-015-1089-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/29/2015] [Indexed: 10/25/2022]
Abstract
Histone modification regulates plant development events by epigenetically silencing or activating gene expression, and histone methylation is regulated by histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The JmjC domain proteins, an important KDM family, erase methyl marks (CH3-) from histones and play key roles in maintaining homeostasis of histone methylation in vivo. Here, we analyzed 169 JmjC domain proteins from whole genomes of plants ranging from green alga to higher plants together with 36 from two animals (fruit fly and human). The plant JmjC domain proteins were divided into seven groups. Group-I KDM4/JHDM3 and Group-V JMJD6 were found in all the plant species and the other groups were detected mainly in vascular or seed plants. Group-I KDM4/JHDM3 was potentially associated with demethylation of H3K9me2/3, H3K27me2/3, and H3K36me1/2/3, Group-II KDM5A with H3K4me1/2/3, Group-III KDM5B with H3K4me1/2/3 and H3K9me1/2/3, Group-V JMJD6 with H3R2, H4R3, and hydroxylation of H4, and Group-VII KDM3/JHDM2 with H3K9me1/2/3. Group-IV/Group-VI JmjC domain-only A/B proteins were involved in hydroxylation and demethylation of unknown substrate sites. The binding sites for the cofactors Fe(II) and α-ketoglutarate in the JmjC domains also were analyzed. In the α-ketoglutarate binding sites, Thr/Phe/Ser and Lys were conserved and in the Fe(II) binding sites, two His and Glu/Asp were conserved. The results show that JmjC domain proteins are a conserved family in which domain organization and cofactor binding sites have been modified in some species. Our results provide insights into KDM evolution and lay a foundation for functional characterization of KDMs.
Collapse
Affiliation(s)
- Yong Huang
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China. .,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China.
| | - Donghong Chen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, 410128, Changsha, China
| | - Wenhui Shen
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China.,Institut de Biologie Moléculaire Des Plantes Du CNRS, Université de Strasbourg, 12 Rue Du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Ying Ruan
- College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-FU-HAU On Plant Epigenome Research, Hunan Agricultural University, 410128, Changsha, China. .,Key Laboratory of Education, Department of Hunan Province On Plant Genetics and Molecular Biology, Hunan Agricultural University, 410128, Changsha, China. .,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, 410128, Changsha, China.
| |
Collapse
|
22
|
C-terminal domains of a histone demethylase interact with a pair of transcription factors and mediate specific chromatin association. Cell Discov 2015; 1. [PMID: 26617990 PMCID: PMC4659397 DOI: 10.1038/celldisc.2015.3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Jumonji C (JmjC) domain-containing protein 14 (JMJ14) is an H3K4-specific histone demethylase that has important roles in RNA-mediated gene silencing and flowering time regulation in Arabidopsis. However, how JMJ14 is recruited to its target genes remains unclear. Here, we show that the C-terminal FYRN (F/Y-rich N terminus) and FYRC (F/Y-rich C terminus) domains of JMJ14 are required for RNA silencing and flowering time regulation. Chromatin binding of JMJ14 is lost upon deletion of its FYRN and FYRC domains, and H3K4me3 is increased. FYRN and FYRC domains interact with a pair of NAC (NAM, ATAF, CUC) domain-containing transcription factors, NAC050 and NAC052. Genome-wide chromatin immunoprecipitation analysis revealed that JMJ14 and NAC050/052 share a set of common target genes with CTTGNNNNNCAAG consensus sequences. Mutations in either NAC052 or NAC050 impair RNA-mediated gene silencing. Together, our findings demonstrate an important role of FYRN and FYRC domains in targeting JMJ14 through direct interaction with NAC050/052 proteins, which reveals a novel mechanism of histone demethylase recruitment.
Collapse
|
23
|
Wang Z, Chen Q, Yang Y, Yang H, He P, Zhang Z, Chen Z, Liao R, Tu Y, Zhang X, Wang Q, Pan Y. A genome-wide scan for selection signatures in Yorkshire and Landrace pigs based on sequencing data. Anim Genet 2014; 45:808-16. [PMID: 25327778 PMCID: PMC4276287 DOI: 10.1111/age.12229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 01/12/2023]
Abstract
Pigs have experienced dramatic selection due to domestication, which has led to many different phenotypes when compared to their wild counterparts, especially in the last several decades. Currently, genome-wide scans in both cattle and humans showing positive selection footprints have been investigated. However, few studies have focused on porcine selection footprints, particularly on a genome-wide scale. Surveying for selection footprints across porcine genomes can be quite valuable for revealing the genetic mechanisms of phenotypic diversity. Here, we employed a medium sequencing depth (5–20x/site per individual, on average) approach called genotyping by genome reducing and sequencing (GGRS) to detect genome-wide selection signatures of two domestic pig breeds (Yorkshire and Landrace) that have been under intensive selection for traits of muscle development, growth and behavior. The relative extended haplotype homozygosity test, which identifies selection signatures by measuring the characteristics of haplotypes’ frequency distribution within a single population, was also applied to identify potential positively selected regions. As a result, signatures of positive selection were found in each breed. However, most selection signatures were population specific and related to genomic regions containing genes for biological categories including brain development, metabolism, growth and olfaction. Furthermore, the result of the gene set enrichment analysis indicated that selected regions of the two breeds presented a different over-representation of genes in the Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes pathways. Our results revealed a genome-wide map of selection footprints in pigs and may help us better understand the mechanisms of selection in pig breeding.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Aravind L, Burroughs AM, Zhang D, Iyer LM. Protein and DNA modifications: evolutionary imprints of bacterial biochemical diversification and geochemistry on the provenance of eukaryotic epigenetics. Cold Spring Harb Perspect Biol 2014; 6:a016063. [PMID: 24984775 DOI: 10.1101/cshperspect.a016063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetic information, which plays a major role in eukaryotic biology, is transmitted by covalent modifications of nuclear proteins (e.g., histones) and DNA, along with poorly understood processes involving cytoplasmic/secreted proteins and RNAs. The origin of eukaryotes was accompanied by emergence of a highly developed biochemical apparatus for encoding, resetting, and reading covalent epigenetic marks in proteins such as histones and tubulins. The provenance of this apparatus remained unclear until recently. Developments in comparative genomics show that key components of eukaryotic epigenetics emerged as part of the extensive biochemical innovation of secondary metabolism and intergenomic/interorganismal conflict systems in prokaryotes, particularly bacteria. These supplied not only enzymatic components for encoding and removing epigenetic modifications, but also readers of some of these marks. Diversification of these prokaryotic systems and subsequently eukaryotic epigenetics appear to have been considerably influenced by the great oxygenation event in the Earth's history.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| |
Collapse
|
25
|
Reed SM, Hagen J, Tompkins VS, Thies K, Quelle FW, Quelle DE. Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53. Cell Cycle 2014; 13:1288-98. [PMID: 24621507 DOI: 10.4161/cc.28202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The p53 tumor suppressor is controlled by an interactive network of factors that stimulate or inhibit its transcriptional activity. Within that network, Mdm2 functions as the major antagonist of p53 by promoting its ubiquitylation and degradation. Conversely, Tip60 activates p53 through direct association on target promoters as well as acetylation of p53 at lysine 120 (K120). This study examines the functional relationship between Mdm2 and Tip60 with a novel p53 regulator, NIAM (nuclear interactor of ARF and Mdm2). Previous work showed NIAM can suppress proliferation and activate p53 independently of ARF, indicating that other factors mediate those activities. Here, we demonstrate that NIAM is a chromatin-associated protein that binds Tip60. NIAM can promote p53 K120 acetylation, although that modification is not required for NIAM to inhibit proliferation or induce p53 transactivation of the p21 promoter. Notably, Tip60 silencing showed it contributes to but is not sufficient for NIAM-mediated p53 activation, suggesting other mechanisms are involved. Indeed, growth-inhibitory forms of NIAM also bind to Mdm2, and increased NIAM expression levels disrupt p53-Mdm2 association, inhibit p53 polyubiquitylation, and prevent Mdm2-mediated inhibition of p53 transcriptional activity. Importantly, loss of NIAM significantly impairs p53 activation. Together, these results show that NIAM activates p53 through multiple mechanisms involving Tip60 association and Mdm2 inhibition. Thus, NIAM regulates 2 critical pathways that control p53 function and are altered in human cancers, implying an important role for NIAM in tumorigenesis.
Collapse
Affiliation(s)
- Sara M Reed
- Department of Pharmacology; University of Iowa College of Medicine; Iowa City, IA USA; Medical Scientist Training Program; University of Iowa College of Medicine; Iowa City, IA USA
| | - Jussara Hagen
- Department of Pharmacology; University of Iowa College of Medicine; Iowa City, IA USA
| | - Van S Tompkins
- Department of Pathology; University of Iowa College of Medicine; Iowa City, IA USA
| | - Katie Thies
- Department of Pharmacology; University of Iowa College of Medicine; Iowa City, IA USA
| | - Frederick W Quelle
- Department of Pharmacology; University of Iowa College of Medicine; Iowa City, IA USA
| | - Dawn E Quelle
- Department of Pharmacology; University of Iowa College of Medicine; Iowa City, IA USA; Medical Scientist Training Program; University of Iowa College of Medicine; Iowa City, IA USA; Department of Pathology; University of Iowa College of Medicine; Iowa City, IA USA
| |
Collapse
|
26
|
HCF-1 self-association via an interdigitated Fn3 structure facilitates transcriptional regulatory complex formation. Proc Natl Acad Sci U S A 2012; 109:17430-5. [PMID: 23045687 DOI: 10.1073/pnas.1208378109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Host-cell factor 1 (HCF-1) is an unusual transcriptional regulator that undergoes a process of proteolytic maturation to generate N- (HCF-1(N)) and C- (HCF-1(C)) terminal subunits noncovalently associated via self-association sequence elements. Here, we present the crystal structure of the self-association sequence 1 (SAS1) including the adjacent C-terminal HCF-1 nuclear localization signal (NLS). SAS1 elements from each of the HCF-1(N) and HCF-1(C) subunits form an interdigitated fibronectin type 3 (Fn3) tandem repeat structure. We show that the C-terminal NLS recruited by the interdigitated SAS1 structure is required for effective formation of a transcriptional regulatory complex: the herpes simplex virus VP16-induced complex. Thus, HCF-1(N)-HCF-1(C) association via an integrated Fn3 structure permits an NLS to facilitate formation of a transcriptional regulatory complex.
Collapse
|
27
|
Le Masson I, Jauvion V, Bouteiller N, Rivard M, Elmayan T, Vaucheret H. Mutations in the Arabidopsis H3K4me2/3 demethylase JMJ14 suppress posttranscriptional gene silencing by decreasing transgene transcription. THE PLANT CELL 2012; 24:3603-12. [PMID: 23001035 PMCID: PMC3480290 DOI: 10.1105/tpc.112.103119] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 05/23/2023]
Abstract
Posttranscriptional gene silencing (PTGS) mediated by sense transgenes (S-PTGS) results in RNA degradation and DNA methylation of the transcribed region. Through a forward genetic screen, a mutant defective in the Histone3 Lysine4 di/trimethyl (H3K4me2/3) demethylase Jumonji-C (JmjC) domain-containing protein14 (JMJ14) was identified. This mutant reactivates various transgenes silenced by S-PTGS and shows reduced Histone3 Lysine9 Lysine14 acetylation (H3K9K14Ac) levels, reduced polymerase II occupancy, reduced transgene transcription, and increased DNA methylation in the promoter region, consistent with the hypothesis that high levels of transcription are required to trigger S-PTGS. The jmj14 mutation also reduces the expression of transgenes that do not trigger S-PTGS. Moreover, expression of transgenes that undergo S-PTGS in a wild-type background is reduced in jmj14 sgs3 double mutants compared with PTGS-deficient sgs3 mutants, indicating that JMJ14 is required for high levels of transcription in a PTGS-independent manner. Whereas endogenous loci regulated by JMJ14 exhibit increased H3K4me2 and H3K4me3 levels in the jmj14 mutant, transgene loci exhibit unchanged H3K4me2 and decreased H3K4me3 levels. Because jmj14 mutations impair PTGS of transgenes expressed under various plant or viral promoters, we hypothesize that JMJ14 demethylation activity is prevented by antagonistic epigenetic marks specifically imposed at transgene loci. Removing JMJ14 likely allows other H3K4 demethylases encoded by the Arabidopsis thaliana genome to act on transgenes and reduce transcription levels, thus preventing the triggering of S-PTGS.
Collapse
|
28
|
Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 2012; 11:119-31. [PMID: 22186017 DOI: 10.4161/cc.11.1.18475] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human ASXL proteins, orthologs of Drosophila Additional Sex combs, have been implicated in conjunction with TET2 as a major target for mutations and translocations leading to a wide range of myeloid leukemias, related myelodysplastic conditions (ASXL1 and ASXL2) and the Bohring-Opitz syndrome, a developmental disorder (ASXL1). Using sensitive sequence and structure comparison methods, we show that most animal ASXL proteins contain a novel N-terminal domain that is also found in several other eukaryotic chromatin proteins, diverse restriction endonucleases and DNA glycosylases, the RNA polymerase delta subunit of Gram-positive bacteria and certain bacterial proteins that combine features of the RNA polymerase α-subunit and sigma factors. This domain adopts the winged helix-turn-helix fold and is predicted to bind DNA. Based on its domain architectural contexts, we present evidence that this domain might play an important role, both in eukaryotes and bacteria, in the recruitment of diverse effector activities, including the Polycomb repressive complexes, to DNA, depending on the state of epigenetic modifications such as 5-methylcytosine and its oxidized derivatives. In other eukaryotic chromatin proteins, this predicted DNA-binding domain is fused to a region with three conserved motifs that are also found in diverse eukaryotic chromatin proteins, such as the animal BAZ/WAL proteins, plant HB1 and MBD9, yeast Itc1p and Ioc3, RSF1, CECR2 and NURF1. Based on the crystal structure of Ioc3, we establish that these motifs in conjunction with the DDT motif constitute a structural determinant that is central to nucleosomal repositioning by the ISWI clade of SWI2/SNF2 ATPases. We also show that the central domain of the ASXL proteins (ASXH domain) is conserved outside of animals in fungi and plants, where it is combined with other domains, suggesting that it might be an ancient module mediating interactions between chromatin-linked protein complexes and transcription factors via its conserved LXLLL motif. We present evidence that the C-terminal PHD finger of ASXL protein has certain peculiar structural modifications that might allow it to recognize internal modified lysines other than those from the N terminus of histone H3, making it the mediator of previously unexpected interactions in chromatin.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
29
|
Yokoyama A, Ficara F, Murphy MJ, Meisel C, Naresh A, Kitabayashi I, Cleary ML. Proteolytically cleaved MLL subunits are susceptible to distinct degradation pathways. J Cell Sci 2011; 124:2208-19. [PMID: 21670200 DOI: 10.1242/jcs.080523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The mixed lineage leukemia (MLL) proto-oncogenic protein is a histone-lysine N-methyltransferase that is produced by proteolytic cleavage and self-association of the respective functionally distinct subunits (MLL(N) and MLL(C)) to form a holocomplex involved in epigenetic transcriptional regulation. On the basis of studies in Drosophila it has been suggested that the separated subunits might also have distinct functions. In this study, we used a genetically engineered mouse line that lacked MLL(C) to show that the MLL(N)-MLL(C) holocomplex is responsible for MLL functions in various developmental processes. The stability of MLL(N) is dependent on its intramolecular interaction with MLL(C), which is mediated through the first and fourth plant homeodomain (PHD) fingers (PHD1 and PHD4) and the phenylalanine/tyrosine-rich (FYRN) domain of MLL(N). Free MLL(N) is destroyed by a mechanism that targets the FYRN domain, whereas free MLL(C) is exported to the cytoplasm and degraded by the proteasome. PHD1 is encoded by an alternatively spliced exon that is occasionally deleted in T-cell leukemia, and its absence produces an MLL mutant protein that is deficient for holocomplex formation. Therefore, this should be a loss-of-function mutant allele, suggesting that the known tumor suppression role of MLL may also apply to the T-cell lineage. Our data demonstrate that the dissociated MLL subunits are subjected to distinct degradation pathways and thus not likely to have separate functions unless the degradation mechanisms are inhibited.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Micale L, Augello B, Fusco C, Selicorni A, Loviglio MN, Silengo MC, Reymond A, Gumiero B, Zucchetti F, D'Addetta EV, Belligni E, Calcagnì A, Digilio MC, Dallapiccola B, Faravelli F, Forzano F, Accadia M, Bonfante A, Clementi M, Daolio C, Douzgou S, Ferrari P, Fischetto R, Garavelli L, Lapi E, Mattina T, Melis D, Patricelli MG, Priolo M, Prontera P, Renieri A, Mencarelli MA, Scarano G, della Monica M, Toschi B, Turolla L, Vancini A, Zatterale A, Gabrielli O, Zelante L, Merla G. Mutation spectrum of MLL2 in a cohort of Kabuki syndrome patients. Orphanet J Rare Dis 2011; 6:38. [PMID: 21658225 PMCID: PMC3141365 DOI: 10.1186/1750-1172-6-38] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/09/2011] [Indexed: 12/30/2022] Open
Abstract
Background Kabuki syndrome (Niikawa-Kuroki syndrome) is a rare, multiple congenital anomalies/mental retardation syndrome characterized by a peculiar face, short stature, skeletal, visceral and dermatoglyphic abnormalities, cardiac anomalies, and immunological defects. Recently mutations in the histone methyl transferase MLL2 gene have been identified as its underlying cause. Methods Genomic DNAs were extracted from 62 index patients clinically diagnosed as affected by Kabuki syndrome. Sanger sequencing was performed to analyze the whole coding region of the MLL2 gene including intron-exon junctions. The putative causal and possible functional effect of each nucleotide variant identified was estimated by in silico prediction tools. Results We identified 45 patients with MLL2 nucleotide variants. 38 out of the 42 variants were never described before. Consistently with previous reports, the majority are nonsense or frameshift mutations predicted to generate a truncated polypeptide. We also identified 3 indel, 7 missense and 3 splice site. Conclusions This study emphasizes the relevance of mutational screening of the MLL2 gene among patients diagnosed with Kabuki syndrome. The identification of a large spectrum of MLL2 mutations possibly offers the opportunity to improve the actual knowledge on the clinical basis of this multiple congenital anomalies/mental retardation syndrome, design functional studies to understand the molecular mechanisms underlying this disease, establish genotype-phenotype correlations and improve clinical management.
Collapse
Affiliation(s)
- Lucia Micale
- Medical Genetics Unit, IRCCS Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev 2011; 25:661-72. [PMID: 21460034 DOI: 10.1101/gad.2015411] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation at the level of elongation is vital for the control of gene expression and metazoan development. The mixed lineage leukemia (MLL) protein and its Drosophila homolog, Trithorax, which exist within COMPASS (complex of proteins associated with Set1)-like complexes, are master regulators of development. They are required for proper homeotic gene expression, in part through methylation of histone H3 on Lys 4. In humans, the MLL gene is involved in a large number of chromosomal translocations that create chimeric proteins, fusing the N terminus of MLL to several proteins that share little sequence similarity. Several frequent translocation partners of MLL were found recently to coexist in a super elongation complex (SEC) that includes known transcription elongation factors such as eleven-nineteen lysine-rich leukemia (ELL) and P-TEFb. Importantly, the SEC is required for HOX gene expression in leukemic cells, suggesting that chromosomal translocations involving MLL could lead to the overexpression of HOX and other genes through the involvement of the SEC. Here, we review the normal developmental roles of MLL and the SEC, and how MLL fusion proteins can mediate leukemogenesis.
Collapse
Affiliation(s)
- Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
32
|
The heterodimerization domains of MLL—FYRN and FYRC—are potential target structures in t(4;11) leukemia. Leukemia 2011; 25:663-70. [DOI: 10.1038/leu.2010.308] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
33
|
Aravind L, Abhiman S, Iyer LM. Natural history of the eukaryotic chromatin protein methylation system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:105-76. [PMID: 21507350 DOI: 10.1016/b978-0-12-387685-0.00004-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In eukaryotes, methylation of nucleosomal histones and other nuclear proteins is a central aspect of chromatin structure and dynamics. The past 15 years have seen an enormous advance in our understanding of the biochemistry of these modifications, and of their role in establishing the epigenetic code. We provide a synthetic overview, from an evolutionary perspective, of the main players in the eukaryotic chromatin protein methylation system, with an emphasis on catalytic domains. Several components of the eukaryotic protein methylation system had their origins in bacteria. In particular, the Rossmann fold protein methylases (PRMTs and DOT1), and the LSD1 and jumonji-related demethylases and oxidases, appear to have emerged in the context of bacterial peptide methylation and hydroxylation systems. These systems were originally involved in synthesis of peptide secondary metabolites, such as antibiotics, toxins, and siderophores. The peptidylarginine deiminases appear to have been acquired by animals from bacterial enzymes that modify cell-surface proteins. SET domain methylases, which display the β-clip fold, apparently first emerged in prokaryotes from the SAF superfamily of carbohydrate-binding domains. However, even in bacteria, a subset of the SET domains might have evolved a chromatin-related role in conjunction with a BAF60a/b-like SWIB domain protein and topoisomerases. By the time of the last eukaryotic common ancestor, multiple SET and PRMT methylases were already in place and are likely to have mediated methylation at the H3K4, H3K9, H3K36, and H4K20 positions, and carried out both asymmetric and symmetric arginine dimethylation. Inference of H3K27 methylation in the ancestral eukaryote appears uncertain, though it was certainly in place a little later in eukaryotic evolution. Current data suggest that unlike SET methylases, which are universally present in eukaryotes, demethylases are not. They appear to be absent in the earliest-branching eukaryotic lineages, and emerged later along with several other chromatin proteins, such as the Dot1-methylase, prior to divergence of the kinetoplastid-heterolobosean lineage from the remaining eukaryotes. This period also corresponds to the point of origin of DNA cytosine methylation by DNMT1. Origin of major lineages of SET domains such as the Trithorax, Su(var)3-9, Ash1, SMYD, and TTLL12 and E(Z) might have played the initial role in the establishment of multiple distinct heterochromatic and euchromatic states that are likely to have been present, in some form, through much of eukaryotic evolution. Elaboration of these chromatin states might have gone hand-in-hand with acquisition of multiple jumonji-related and LSD1-like demethylases, and functional linkages with the DNA methylation and RNAi systems. Throughout eukaryotic evolution, there were several lineage-specific expansions of SET domain proteins, which might be related to a special transcription regulation process in trypanosomes, acquisition of new meiotic recombination hotspots in animals, and methylation and associated modifications of the diatom silaffin proteins involved in silica biomineralization. The use of specific domains to "read" the methylation marks appears to have been present in the ancestral eukaryote itself. Of these the chromo-like domains appear to have been acquired from bacterial secreted proteins that might have a role in binding cell-surface peptides or peptidoglycan. Domain architectures of the primary enzymes involved in the eukaryotic protein methylation system indicate key features relating to interactions with each other and other modifications in chromatin, such as acetylation. They also emphasize the profound functional distinction between the role of demethylation and deacetylation in regulation of chromatin dynamics.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|