1
|
Guo J, Li W, Huang M, Qiao J, Wan P, Yao Y, Ye L, Ding Y, Wang J, Peng Q, Liu W, Xia Y, Shu X, Sun B. SARS-CoV-2 Nsp7 plays a role in cognitive dysfunction by impairing synaptic plasticity. Front Neurosci 2024; 18:1490099. [PMID: 39640294 PMCID: PMC11617585 DOI: 10.3389/fnins.2024.1490099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
It has been reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can result in long-term neurological symptoms such as cognitive dysfunction, however the specific mechanisms underlying this phenomenon remain unclear. Initially, we confirmed a reduction in the level of synaptic proteins in SH-SY5Y neurons following SARS-CoV-2 infection. SARS-CoV-2 Nsps are crucial for the efficient replication of the virus and play important roles in the interaction between virus and host cell. Nsps screening experiments implied that Nsp7 is able to reduce the level of synapsin-1. Furthermore, overexpression of Nsp7 in SH-SY5Y cells and mouse primary neurons demonstrated that Nsp7 could decrease the levels of synaptic proteins without affecting neuronal viability. Moreover, C57BL/6 mice receiving AAV-GFP-Nsp7 injections into the ventral hippocampus displayed impaired memory ability, along with reduced dendritic spine density and synaptic protein levels. Mechanistic investigations suggested that Nsp7-induced mitochondrial damage led to ROS production and ATP levels decreasing in neurons. Additional experiments employing the ROS inhibitor NAC demonstrated that Nsp7 suppressed the expression of synaptic proteins via ROS inducing, implicating mitochondrial dysfunction in synaptic plasticity impairment and subsequent cognitive dysfunction. Our findings underscore the crucial role of SARS-CoV-2 Nsp7 in cognitive dysfunction, which is potentially mediated through impaired synaptic plasticity via mitochondrial damage. This study enhances our understanding of the pathogenic mechanisms underlying central nervous system-related symptoms associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jiazheng Guo
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - WeiLing Li
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Mengbing Huang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jialu Qiao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Pin Wan
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yulin Yao
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lirui Ye
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Ye Ding
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Jianing Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Yiyuan Xia
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorders, Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
2
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Danda M, Klimešová A, Kušková K, Dostálková A, Pagáčová A, Prchal J, Kapisheva M, Ruml T, Rumlová M. Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase. Protein Sci 2024; 33:e5103. [PMID: 39145418 PMCID: PMC11325161 DOI: 10.1002/pro.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
Collapse
Affiliation(s)
- Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Anna Klimešová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Klára Kušková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Aneta Pagáčová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
4
|
Caetano-Anollés G. Are Viruses Taxonomic Units? A Protein Domain and Loop-Centric Phylogenomic Assessment. Viruses 2024; 16:1061. [PMID: 39066224 PMCID: PMC11281659 DOI: 10.3390/v16071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Ohyama T, Osawa T, Sekine SI, Ishii Y. NMR Studies of Genomic RNA in 3' Untranslated Region Unveil Pseudoknot Structure that Initiates Viral RNA Replication in SARS-CoV-2. JACS AU 2024; 4:1323-1333. [PMID: 38665648 PMCID: PMC11041675 DOI: 10.1021/jacsau.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
In the 3' untranslated region of the SARS-CoV-2 virus RNA genome, genomic RNA replication is initiated in the highly conserved region called 3'PK, containing three stem structures (P1pk, P2, and P5). According to one proposed mechanism, P1pk and distal P2 stems switch their structure to a pseudoknot through base-pairing, thereby initiating transcription by recruiting RNA-dependent RNA polymerase complexed with nonstructural proteins (nsp)7 and nsp8. However, experimental evidence of pseudoknot formation or structural switching is unavailable. Using SARS-CoV-2 3'PK fragments, we show that 3'PK adopted stem-loop and pseudoknot forms in a mutually exclusive manner. When P1pk and P2 formed a pseudoknot, the P5 stem, which includes a sequence at the 3' end, exited from the stem-loop structure and opened up. Interaction with the nsp7/nsp8 complex destabilized the stem-loop form but did not alter the pseudoknot form. These results suggest that the interaction between the pseudoknot and nsp7/nsp8 complex transformed the 3' end of viral genomic RNA into single-stranded RNA ready for synthesis, presenting the unique pseudoknot structure as a potential pharmacological target.
Collapse
Affiliation(s)
- Takako Ohyama
- Laboratory for Advanced NMR Application and
Development, Center for Biosystems Dynamics Research, RIKEN,
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa,
Japan
- School of Life Science and Technology,
Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku,
Yokohama 226-8503, Kanagawa, Japan
| | - Takuo Osawa
- Laboratory for Transcription Structural Biology,
Center for Biosystems Dynamics Research, RIKEN, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology,
Center for Biosystems Dynamics Research, RIKEN, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Yoshitaka Ishii
- Laboratory for Advanced NMR Application and
Development, Center for Biosystems Dynamics Research, RIKEN,
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa,
Japan
- School of Life Science and Technology,
Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku,
Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
6
|
Subong BJJ, Ozawa T. Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability. Curr Issues Mol Biol 2024; 46:2598-2619. [PMID: 38534781 PMCID: PMC10968879 DOI: 10.3390/cimb46030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
The nonstructural proteins 7 and 8 (nsp7 and nsp8) of SARS-CoV-2 are highly important proteins involved in the RNA-dependent polymerase (RdRp) protein replication complex. In this study, we analyzed the global mutation of nsp7 and nsp8 in 2022 and 2023 and analyzed the effects of mutation on the viral replication protein complex using bio-chemoinformatics. Frequently occurring variants are found to be single amino acid mutations for both nsp7 and nsp8. The most frequently occurring mutations for nsp7 which include L56F, L71F, S25L, M3I, D77N, V33I and T83I are predicted to cause destabilizing effects, whereas those in nsp8 are predicted to cause stabilizing effects, with the threonine to isoleucine mutation (T89I, T145I, T123I, T148I, T187I) being a frequent mutation. A conserved domain database analysis generated critical interaction residues for nsp7 (Lys-7, His-36 and Asn-37) and nsp8 (Lys-58, Pro-183 and Arg-190), which, according to thermodynamic calculations, are prone to destabilization. Trp-29, Phe-49 of nsp7 and Trp-154, Tyr-135 and Phe-15 of nsp8 cause greater destabilizing effects to the protein complex based on a computational alanine scan suggesting them as possible new target sites. This study provides an intensive analysis of the mutations of nsp7 and nsp8 and their possible implications for viral complex stability.
Collapse
Affiliation(s)
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan;
| |
Collapse
|
7
|
Wei X, Pan C, Zhang X, Zhang W. Total network controllability analysis discovers explainable drugs for Covid-19 treatment. Biol Direct 2023; 18:55. [PMID: 37670359 PMCID: PMC10478273 DOI: 10.1186/s13062-023-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The active pursuit of network medicine for drug repurposing, particularly for combating Covid-19, has stimulated interest in the concept of structural controllability in cellular networks. We sought to extend this theory, focusing on the defense rather than control of the cell against viral infections. Accordingly, we extended structural controllability to total structural controllability and introduced the concept of control hubs. Perturbing any control hub may render the cell uncontrollable by exogenous stimuli like viral infections, so control hubs are ideal drug targets. RESULTS We developed an efficient algorithm to identify all control hubs, applying it to a largest homogeneous network of human protein interactions, including interactions between human and SARS-CoV-2 proteins. Our method recognized 65 druggable control hubs with enriched antiviral functions. Utilizing these hubs, we categorized potential drugs into four groups: antiviral and anti-inflammatory agents, drugs acting on the central nervous system, dietary supplements, and compounds enhancing immunity. An exemplification of our approach's effectiveness, Fostamatinib, a drug initially developed for chronic immune thrombocytopenia, is now in clinical trials for treating Covid-19. Preclinical trial data demonstrated that Fostamatinib could reduce mortality rates, ICU stay length, and disease severity in Covid-19 patients. CONCLUSIONS Our findings confirm the efficacy of our novel strategy that leverages control hubs as drug targets. This approach provides insights into the molecular mechanisms of potential therapeutics for Covid-19, making it a valuable tool for interpretable drug discovery. Our new approach is general and applicable to repurposing drugs for other diseases.
Collapse
Affiliation(s)
- Xinru Wei
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China
| | - Chunyu Pan
- School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 210001, China.
| | - Weixiong Zhang
- Department of Health Technology and Informatics, Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
8
|
Wei X, Pan C, Zhang X, Zhang W. Total network controllability analysis discovers explainable drugs for Covid-19 treatment. RESEARCH SQUARE 2023:rs.3.rs-3147521. [PMID: 37503262 PMCID: PMC10371104 DOI: 10.21203/rs.3.rs-3147521/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Background The active pursuit of network medicine for drug repurposing, particularly for combating Covid-19, has stimulated interest in the concept of structural control capability in cellular networks. We sought to extend this theory, focusing on the defense rather than control of the cell against viral infections. Accordingly, we extended structural controllability to total structural controllability and introduced the concept of control hubs. Perturbing any control hub may render the cell uncontrollable by exogenous stimuli like viral infections, so control hubs are ideal drug targets. Results We developed an efficient algorithm to identify all control hubs, applying it to the largest homogeneous network of human protein interactions, including interactions between human and SARS-CoV-2 proteins. Our method recognized 65 druggable control hubs with enriched antiviral functions. Utilizing these hubs, we categorized potential drugs into four groups: antiviral and anti-inflammatory agents, drugs acting on the central nervous system, dietary supplements, and compounds enhancing immunity. An exemplification of our approach's effectiveness, Fostamatinib, a drug initially developed for chronic immune thrombocytopenia, is now in clinical trials for treating Covid-19. Preclinical trial data demonstrated that Fostamatinib could reduce mortality rates, ICU stay length, and disease severity in Covid-19 patients. Conclusions Our findings confirm the efficacy of our novel strategy that leverages control hubs as drug targets. This approach provides insights into the molecular mechanisms of potential therapeutics for Covid-19, making it a valuable tool for interpretable drug discovery.
Collapse
Affiliation(s)
- Xinru Wei
- The Affiliated Brain Hospital of Nanjing Medical University
| | | | - Xizhe Zhang
- The Affiliated Brain Hospital of Nanjing Medical University
| | | |
Collapse
|
9
|
Multiscale characterization reveals oligomerization dependent phase separation of primer-independent RNA polymerase nsp8 from SARS-CoV-2. Commun Biol 2022; 5:925. [PMID: 36071105 PMCID: PMC9451113 DOI: 10.1038/s42003-022-03892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
RNA replication and transcription machinery is an important drug target for fighting against coronavirus. Non-structure protein nsp8 was proposed harboring primase activity. However, the RNA primer synthesis mechanism of nsp8 is still largely unknown. Here, we purified dimer and tetramer forms of SARS-CoV-2 nsp8. Combined with dynamic light scattering, small-angle neutron scattering and thermo-stability analysis, we found that both dimer and tetramer become loosened and destabilized with decreasing salt concentration, and the dimer form is more stable than the tetramer form. Further investigation showed that nsp8 dimer and tetramer can undergo phase separation but exhibit different phase separation behaviors. Nsp8 dimer can form liquid-like droplets in the buffer with a low concentration of NaCl; phase separation of nsp8 tetramer depends on the assistance of RNA. Our findings on different phase separation behaviors of nsp8 dimer and tetramer may provide insight into the functional studies of nsp8 in coronavirus. The phase separation behaviour of non-structure protein nsp8 of SARS CoV2 in the primer synthesis mechanism is presented, underpinning the replication of coronavirus.
Collapse
|
10
|
Wang J, Shi Y, Reiss K, Allen B, Maschietto F, Lolis E, Konigsberg WH, Lisi GP, Batista VS. Insights into Binding of Single-Stranded Viral RNA Template to the Replication-Transcription Complex of SARS-CoV-2 for the Priming Reaction from Molecular Dynamics Simulations. Biochemistry 2022; 61:424-432. [PMID: 35199520 PMCID: PMC8887646 DOI: 10.1021/acs.biochem.1c00755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2022] [Indexed: 01/18/2023]
Abstract
A minimal replication-transcription complex (RTC) of SARS-CoV-2 for synthesis of viral RNAs includes the nsp12 RNA-dependent RNA polymerase and two nsp8 RNA primase subunits for de novo primer synthesis, one nsp8 in complex with its accessory nsp7 subunit and the other without it. The RTC is responsible for faithfully copying the entire (+) sense viral genome from its first 5'-end to the last 3'-end nucleotides through a replication-intermediate (RI) template. The single-stranded (ss) RNA template for the RI is its 33-nucleotide 3'-poly(A) tail adjacent to a well-characterized secondary structure. The ssRNA template for viral transcription is a 5'-UUUAU-3' next to stem-loop (SL) 1'. We analyze the electrostatic potential distribution of the nsp8 subunit within the RTC around the template strand of the primer/template (P/T) RNA duplex in recently published cryo-EM structures to address the priming reaction using the viral poly(A) template. We carried out molecular dynamics (MD) simulations with a P/T RNA duplex, the viral poly(A) template, or a generic ssRNA template. We find evidence that the viral poly(A) template binds similarly to the template strand of the P/T RNA duplex within the RTC, mainly through electrostatic interactions, providing new insights into the priming reaction by the nsp8 subunit within the RTC, which differs significantly from the existing proposal of the nsp7/nsp8 oligomer formed outside the RTC. High-order oligomerization of nsp8 and nsp7 for SARS-CoV observed outside the RTC of SARS-CoV-2 is not found in the RTC and not likely to be relevant to the priming reaction.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry,
Yale University, New Haven, Connecticut 06520-8114,
United States
| | - Yuanjun Shi
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Krystle Reiss
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Brandon Allen
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Federica Maschietto
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Elias Lolis
- Department of Pharmacology, Yale
University, New Haven, Connecticut 06520-8066, United
States
| | - William H. Konigsberg
- Department of Molecular Biophysics and Biochemistry,
Yale University, New Haven, Connecticut 06520-8114,
United States
| | - George P. Lisi
- Department of Molecular and Cell Biology and
Biochemistry, Brown University, Providence, Rhode Island 02912,
United States
| | - Victor S. Batista
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| |
Collapse
|
11
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
12
|
Azeem M, Mustafa G, Mahrosh HS. Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies. Int J Immunopathol Pharmacol 2022; 36:3946320221142793. [PMID: 36442514 PMCID: PMC9716588 DOI: 10.1177/03946320221142793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Medicinal herbs are being investigated for medicationhg development against SARS-CoV-2 as a rich source of bioactive chemicals. One of the finest approaches for finding therapeutically effective drug molecules in real time is virtual screening scheme such as molecular docking in conjunction with molecular dynamics (MD) simulation. These virtual techniques provide an ample opportunity for the screening of plausible inhibitors of SARS-CoV-2 different target proteins from a comprehensive and extensive phytochemical library. The study was designed to identify potential phytochemicals by virtual screening against different receptor proteins. METHODS In the current study, a library of plant secondary metabolites was created by manually curating 120 phytochemicals known to have antimicrobial as well as antiviral properties. In the current study, different potential phytochemicals were identified by virtual screening against various selected receptor proteins (i.e., viral main proteases, RNA-dependent RNA polymerase (RdRp), ADP ribose phosphatase, nonstructural proteins NSP7, NSP8, and NSP9) which are key proteins responsible for transcription, replication and maturation of SARS-CoV-2 in the host. Top three phytochemicals were selected against each viral receptor protein based on their best S-scores, RMSD values, molecular interactions, binding patterns and drug-likeness properties. RESULTS The results of molecular docking study revealed that phytochemicals (i.e., baicalin, betaxanthin, epigallocatechin, fomecin A, gallic acid, hortensin, ichangin, kaempferol, limonoic acid, myricetin hexaacetat, pedalitin, quercetin, quercitrin, and silvestrol) have strong antiviral potential against SARS-CoV-2. Additionally, the reported preeminent reliable phytochemicals also revealed toxicity by no means during the evaluation through ADMET profiling. Moreover, the MD simulation study also exhibited thermal stability and stable binding affinity of the pedalitin with SARS-CoV-2 RdRp and SARS-CoV-2 main protease which suggests appreciable efficacy of the lead optimization. CONCLUSION The biological activity and pharmacologically distinguishing characteristics of these lead compounds also satisfied as repurposing antiviral drug contenders and are worth substantial evaluation in the biological laboratory for the recommendation of being plausible antiviral drug candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Muhammad Azeem
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiza S Mahrosh
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
13
|
Xu D, Biswal M, Neal A, Hai R. Review Devil's tools: SARS-CoV-2 antagonists against innate immunity. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100013. [PMID: 34812428 PMCID: PMC8598260 DOI: 10.1016/j.crviro.2021.100013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 04/22/2023]
Abstract
The unprecedented Coronavirus pandemic of 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Like other coronaviruses, to establish its infection, SARS-CoV-2 is required to overcome the innate interferon (IFN) response, which is the first line of host defense. SARS-CoV-2 has also developed complex antagonism approaches involving almost all its encoding viral proteins. Here, we summarize our current understanding of these different viral factors and their roles in suppressing IFN responses. Some of them are conserved IFN evasion strategies used by SARS-CoV; others are novel countermeasures only employed by SARS-CoV-2. The filling of gaps in understanding these underlying mechanisms will provide rationale guidance for applying IFN treatment against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Duo Xu
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Arrmund Neal
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
14
|
Jochheim FA, Tegunov D, Hillen HS, Schmitzová J, Kokic G, Dienemann C, Cramer P. The structure of a dimeric form of SARS-CoV-2 polymerase. Commun Biol 2021; 4:999. [PMID: 34429502 PMCID: PMC8385044 DOI: 10.1038/s42003-021-02529-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs.
Collapse
Affiliation(s)
- Florian A Jochheim
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Dimitry Tegunov
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
15
|
Zhang C, Li L, He J, Chen C, Su D. Nonstructural protein 7 and 8 complexes of SARS-CoV-2. Protein Sci 2021; 30:873-881. [PMID: 33594727 PMCID: PMC7980517 DOI: 10.1002/pro.4046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/05/2023]
Abstract
The pandemic outbreak of coronavirus disease 2019 (COVID‐19) across the world has led to millions of infection cases and caused a global public health crisis. Current research suggests that SARS‐CoV‐2 is a highly contagious coronavirus that spreads rapidly through communities. To understand the mechanisms of viral replication, it is imperative to investigate coronavirus viral replicase, a huge protein complex comprising up to 16 viral nonstructural and associated host proteins, which is the most promising antiviral target for inhibiting viral genome replication and transcription. Recently, several components of the viral replicase complex in SARS‐CoV‐2 have been solved to provide a basis for the design of new antiviral therapeutics. Here, we report the crystal structure of the SARS‐CoV‐2 nsp7+8 tetramer, which comprises two copies of each protein representing nsp7's full‐length and the C‐terminus of nsp8 owing to N‐terminus proteolysis during the process of crystallization. We also identified a long helical extension and highly flexible N‐terminal domain of nsp8, which is preferred for interacting with single‐stranded nucleic acids. PDB Code(s): 7DCD;
Collapse
Affiliation(s)
- Changhui Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jun He
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|