1
|
Guo Z, Chiesa G, Yin J, Sanford A, Meier S, Khalil AS, Cheng JX. Structural Mapping of Protein Aggregates in Live Cells Modeling Huntington's Disease. Angew Chem Int Ed Engl 2024; 63:e202408163. [PMID: 38880765 PMCID: PMC11781839 DOI: 10.1002/anie.202408163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a β-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller β-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.
Collapse
Affiliation(s)
- Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| | - Giulio Chiesa
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Adam Sanford
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Stefan Meier
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ahmad S Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Biological Design Center, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
2
|
Kang CY, Chang Y, Zieske K. Lipid Membrane Topographies Are Regulators for the Spatial Distribution of Liquid Protein Condensates. NANO LETTERS 2024; 24:4330-4335. [PMID: 38579181 PMCID: PMC11036382 DOI: 10.1021/acs.nanolett.3c04169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Liquid protein condensates play important roles in orchestrating subcellular organization and as biochemical reaction hubs. Recent studies have linked lipid membranes to proteins capable of forming liquid condensates, and shown that biophysical parameters, like protein enrichment and restricted diffusion at membranes, regulate condensate formation and size. However, the impact of membrane topography on liquid condensates remains poorly understood. Here, we devised a cell-free system to reconstitute liquid condensates on lipid membranes with microstructured topographies and demonstrated that lipid membrane topography is a significant biophysical regulator. Using membrane surfaces designed with microwells, we observed ordered condensate patterns. Furthermore, we demonstrate that membrane topographies influence the shape of liquid condensates. Finally, we show that capillary forces, mediated by membrane topographies, lead to the directed fusion of liquid condensates. Our results demonstrate that membrane topography is a potent biophysical regulator for the localization and shape of mesoscale liquid protein condensates.
Collapse
Affiliation(s)
- Chae Yeon Kang
- Biophysics, Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Yoohyun Chang
- Biophysics, Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Katja Zieske
- Biophysics, Max
Planck Institute for the Science of Light, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Kandola T, Venkatesan S, Zhang J, Lerbakken BT, Von Schulze A, Blanck JF, Wu J, Unruh JR, Berry P, Lange JJ, Box AC, Cook M, Sagui C, Halfmann R. Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal. eLife 2023; 12:RP86939. [PMID: 37921648 PMCID: PMC10624427 DOI: 10.7554/elife.86939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
A long-standing goal of amyloid research has been to characterize the structural basis of the rate-determining nucleating event. However, the ephemeral nature of nucleation has made this goal unachievable with existing biochemistry, structural biology, and computational approaches. Here, we addressed that limitation for polyglutamine (polyQ), a polypeptide sequence that causes Huntington's and other amyloid-associated neurodegenerative diseases when its length exceeds a characteristic threshold. To identify essential features of the polyQ amyloid nucleus, we used a direct intracellular reporter of self-association to quantify frequencies of amyloid appearance as a function of concentration, conformational templates, and rational polyQ sequence permutations. We found that nucleation of pathologically expanded polyQ involves segments of three glutamine (Q) residues at every other position. We demonstrate using molecular simulations that this pattern encodes a four-stranded steric zipper with interdigitated Q side chains. Once formed, the zipper poisoned its own growth by engaging naive polypeptides on orthogonal faces, in a fashion characteristic of polymer crystals with intramolecular nuclei. We further show that self-poisoning can be exploited to block amyloid formation, by genetically oligomerizing polyQ prior to nucleation. By uncovering the physical nature of the rate-limiting event for polyQ aggregation in cells, our findings elucidate the molecular etiology of polyQ diseases.
Collapse
Affiliation(s)
- Tej Kandola
- Stowers Institute for Medical ResearchKansas CityUnited States
- The Open UniversityMilton KeynesUnited Kingdom
| | | | - Jiahui Zhang
- Department of Physics, North Carolina State UniversityRaleighUnited States
| | | | | | | | - Jianzheng Wu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Paula Berry
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Andrew C Box
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Malcolm Cook
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Celeste Sagui
- Department of Physics, North Carolina State UniversityRaleighUnited States
| | - Randal Halfmann
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
4
|
Arnold ML, Cooper J, Androwski R, Ardeshna S, Melentijevic I, Smart J, Guasp RJ, Nguyen KCQ, Bai G, Hall DH, Grant BD, Driscoll M. Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers. Nat Commun 2023; 14:4450. [PMID: 37488107 PMCID: PMC10366101 DOI: 10.1038/s41467-023-39700-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Toxic protein aggregates can spread among neurons to promote human neurodegenerative disease pathology. We found that in C. elegans touch neurons intermediate filament proteins IFD-1 and IFD-2 associate with aggresome-like organelles and are required cell-autonomously for efficient production of neuronal exophers, giant vesicles that can carry aggregates away from the neuron of origin. The C. elegans aggresome-like organelles we identified are juxtanuclear, HttPolyQ aggregate-enriched, and dependent upon orthologs of mammalian aggresome adaptor proteins, dynein motors, and microtubule integrity for localized aggregate collection. These key hallmarks indicate that conserved mechanisms drive aggresome formation. Furthermore, we found that human neurofilament light chain (NFL) can substitute for C. elegans IFD-2 in promoting exopher extrusion. Taken together, our results suggest a conserved influence of intermediate filament association with aggresomes and neuronal extrusions that eject potentially toxic material. Our findings expand understanding of neuronal proteostasis and suggest implications for neurodegenerative disease progression.
Collapse
Affiliation(s)
- Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Rebecca Androwski
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Sohil Ardeshna
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Ilija Melentijevic
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Ryan J Guasp
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, 10461, USA
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, NY, 10461, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA.
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08855, USA.
| |
Collapse
|
5
|
Gouveia B, Kim Y, Shaevitz JW, Petry S, Stone HA, Brangwynne CP. Capillary forces generated by biomolecular condensates. Nature 2022; 609:255-264. [PMID: 36071192 DOI: 10.1038/s41586-022-05138-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/25/2022] [Indexed: 12/21/2022]
Abstract
Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,The Howard Hughes Medical Institute, Princeton, NJ, USA.
| |
Collapse
|
6
|
Fisher RS, Jimenez RM, Soto E, Kalev D, Elbaum-Garfinkle S. An apparent core/shell architecture of polyQ aggregates in the aging Caenorhabditis elegans neuron. Protein Sci 2021; 30:1482-1486. [PMID: 33966305 DOI: 10.1002/pro.4105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/28/2023]
Abstract
Huntington's disease is caused by a polyglutamine (polyQ) expansion in the huntingtin protein which results in its abnormal aggregation in the nervous system. Huntingtin aggregates are linked to toxicity and neuronal dysfunction, but a comprehensive understanding of the aggregation mechanism in vivo remains elusive. Here, we examine the morphology of polyQ aggregates in Caenorhabditis elegans mechanosensory neurons as a function of age using confocal and fluorescence lifetime imaging microscopy. We find that aggregates in young worms are mostly spherical with homogenous intensity, but as the worm ages aggregates become substantially more heterogeneous. Most prominently, in older worms we observe an apparent core/shell morphology of polyQ assemblies with decreased intensity in the center. The fluorescence lifetime of polyQ is uniform across the aggregate indicating that the dimmed intensity in the assembly center is most likely not due to quenching or changes in local environment, but rather to displacement of fluorescent polyQ from the central region. This apparent core/shell architecture of polyQ aggregates in aging C. elegans neurons contributes to the diverse landscape of polyQ aggregation states implicated in Huntington's disease.
Collapse
Affiliation(s)
- Rachel S Fisher
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Rosa Meyo Jimenez
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Elizabeth Soto
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Darin Kalev
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA.,Ph.D. Programs in Biochemistry and Biology, The Graduate Center, CUNY, New York, New York, USA
| |
Collapse
|