1
|
Ogawa S, Hikita M, Fujishiro T. Structural insights into the recognition of tetrapyrrole substrates by ancestral class II chelatase CfbA. Protein Sci 2024; 33:e5208. [PMID: 39548701 PMCID: PMC11568245 DOI: 10.1002/pro.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 11/18/2024]
Abstract
Nickel-chelatase CfbA, unlike descendant chelatases, is an ancestral class II chelatase with a symmetric active site architecture. CfbA utilizes sirohydrochlorin (SHC) as a physiological substrate in the biosynthesis of coenzyme F430. CbiXS, a structural analog of CfbA, can use uroporphyrin III (UPIII) and uroporphyrin I (UPI) as non-physiological substrates. Owing to the broad tetrapyrrole specificity of the unique active site of ancestral class II chelatases, the substrate recognition mechanism of CfbA has garnered interest. Herein, we conducted an X-ray crystallographic analysis of CfbA in complex with UPIII and UPI. Interestingly, the binding sites for UPIII and UPI were distinct. UPI was bound at the entrance of the active site, whereas UPIII was bound deep inside the active site cavity in a manner similar to SHC. Despite the difference in the binding positions of UPIII and UPI, Ser11 at the active site provided critical polar interactions for recognizing UPIII and UPI. Several CfbA variants with a Ser11 mutation were studied to confirm the significance of Ser11's position in the context of tetrapyrrole recognition. The CfbA S11T variant showed Ni2+-chelatase activity against coproporphyrin I (CPI), which is a more hydrophobic tetrapyrrole than UPIII and UPI. Using a CPI-docked model of the S11T variant, we proposed that balancing the hydrophobic/polar interactions at residue 11 could alter substrate selectivity. The structural and mutational analyses reported here highlight the importance of polar and hydrophobic interactions at the entry region of the active site for substrate tetrapyrrole recognition by ancestral and descendant class II chelatases.
Collapse
Affiliation(s)
- Shoko Ogawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Masahide Hikita
- Structural Biology Research Center, Institute of Materials Structure ScienceHigh Energy Accelerator Research OrganizationTsukubaJapan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
2
|
Dali A, Gabler T, Sebastiani F, Furtmüller PG, Becucci M, Hofbauer S, Smulevich G. Entrance channels to coproheme in coproporphyrin ferrochelatase probed by exogenous imidazole binding. J Inorg Biochem 2024; 260:112681. [PMID: 39146673 DOI: 10.1016/j.jinorgbio.2024.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024]
Abstract
Iron insertion into porphyrins is an essential step in heme biosynthesis. In the coproporphyrin-dependent pathway, specific to monoderm bacteria, this reaction is catalyzed by the monomeric enzyme coproporphyrin ferrochelatase. In addition to the mechanistic details of the metalation of the porphyrin, the identification of the substrate access channel for ferrous iron to the active site is important to fully understand this enzymatic system. In fact, whether the iron reaches the active site from the distal or the proximal porphyrin side is still under debate. In this study we have thoroughly addressed this question in Listeria monocytogenes coproporphyrin ferrochelatase by X-ray crystallography, steady-state and pre-steady-state imidazole ligand binding studies, together with a detailed spectroscopic characterization using resonance Raman and UV-vis absorption spectroscopies in solution. Analysis of the X-ray structures of coproporphyrin ferrochelatase-coproporphyrin III crystals soaked with ferrous iron shows that iron is present on both sides of the porphyrin. The kinetic and spectroscopic study of imidazole binding to coproporphyrin ferrochelatase‑iron coproporphyrin III clearly indicates the presence of two possible binding sites in this monomeric enzyme that influence each other, which is confirmed by the observed cooperativity at steady-state and a biphasic behavior in the pre-steady-state experiments. The current results are discussed in the context of the entire heme biosynthetic pathway and pave the way for future studies focusing on protein-protein interactions.
Collapse
Affiliation(s)
- Andrea Dali
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Thomas Gabler
- BOKU University, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Federico Sebastiani
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Paul G Furtmüller
- BOKU University, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Maurizio Becucci
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy; The European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino (FI), Italy.
| | - Stefan Hofbauer
- BOKU University, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy; INSTM Research Unit of Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy.
| |
Collapse
|
3
|
Dali A, Sebastiani F, Gabler T, Frattini G, Moreno DM, Estrin DA, Becucci M, Hofbauer S, Smulevich G. Proximal ligand tunes active site structure and reactivity in bacterial L. monocytogenes coproheme ferrochelatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124120. [PMID: 38479228 DOI: 10.1016/j.saa.2024.124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 04/02/2024]
Abstract
Ferrochelatases catalyze the insertion of ferrous iron into the porphyrin during the heme b biosynthesis pathway, which is fundamental for both prokaryotes and eukaryotes. Interestingly, in the active site of ferrochelatases, the proximal ligand coordinating the porphyrin iron of the product is not conserved, and its catalytic role is still unclear. Here we compare the L. monocytogenes bacterial coproporphyrin ferrochelatase native enzyme together with selected variants, where the proximal Tyr residue was replaced by a His (i.e. the most common ligand in heme proteins), a Met or a Phe (as in human and actinobacterial ferrochelatases, respectively), in their Fe(III), Fe(II) and Fe(II)-CO adduct forms. The study of the active site structure and the activity of the proteins in solution has been performed by UV-vis electronic absorption and resonance Raman spectroscopies, biochemical characterization, and classical MD simulations. All the mutations alter the H-bond interactions between the iron porphyrin propionate groups and the protein, and induce effects on the activity, depending on the polarity of the proximal ligand. The overall results confirm that the weak or non-existing coordination of the porphyrin iron by the proximal residue is essential for the binding of the substrate and the release of the final product.
Collapse
Affiliation(s)
- Andrea Dali
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Federico Sebastiani
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy
| | - Thomas Gabler
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Gianfranco Frattini
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Diego M Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Darío A Estrin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes, 2160 Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
| | - Maurizio Becucci
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy.
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino (FI), Italy; INSTM Research Unit of Firenze, via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Gabler T, Dali A, Bellei M, Sebastiani F, Becucci M, Battistuzzi G, Furtmüller PG, Smulevich G, Hofbauer S. Revisiting catalytic His and Glu residues in coproporphyrin ferrochelatase - unexpected activities of active site variants. FEBS J 2024; 291:2260-2272. [PMID: 38390750 DOI: 10.1111/febs.17101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
The identification of the coproporphyrin-dependent heme biosynthetic pathway, which is used almost exclusively by monoderm bacteria in 2015 by Dailey et al. triggered studies aimed at investigating the enzymes involved in this pathway that were originally assigned to the protoporphyrin-dependent heme biosynthetic pathway. Here, we revisit the active site of coproporphyrin ferrochelatase by a biophysical and biochemical investigation using the physiological substrate coproporphyrin III, which in contrast to the previously used substrate protoporphyrin IX has four propionate substituents and no vinyl groups. In particular, we have compared the reactivity of wild-type coproporphyrin ferrochelatase from the firmicute Listeria monocytogenes with those of variants, namely, His182Ala (H182A) and Glu263Gln (E263Q), involving two key active site residues. Interestingly, both variants are active only toward the physiological substrate coproporphyrin III but inactive toward protoporphyrin IX. In addition, E263 exchange impairs the final oxidation step from ferrous coproheme to ferric coproheme. The characteristics of the active site in the context of the residues involved and the substrate binding properties are discussed here using structural and functional means, providing a further contribution to the deciphering of this enigmatic reaction mechanism.
Collapse
Affiliation(s)
- Thomas Gabler
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrea Dali
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Sesto Fiorentino, Italy
| | - Marzia Bellei
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Federico Sebastiani
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Sesto Fiorentino, Italy
| | - Maurizio Becucci
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Sesto Fiorentino, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paul Georg Furtmüller
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Giulietta Smulevich
- Department of Chemistry "Ugo Schiff" (DICUS), University of Florence, Sesto Fiorentino, Italy
- INSTM Research Unit of Firenze, Sesto Fiorentino, Italy
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
Aftab H, Donegan RK. Regulation of heme biosynthesis via the coproporphyrin dependent pathway in bacteria. Front Microbiol 2024; 15:1345389. [PMID: 38577681 PMCID: PMC10991733 DOI: 10.3389/fmicb.2024.1345389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Heme biosynthesis in the Gram-positive bacteria occurs mostly via a pathway that is distinct from that of eukaryotes and Gram-negative bacteria in the three terminal heme synthesis steps. In many of these bacteria heme is a necessary cofactor that fulfills roles in respiration, gas sensing, and detoxification of reactive oxygen species. These varying roles for heme, the requirement of iron and glutamate, as glutamyl tRNA, for synthesis, and the sharing of intermediates with the synthesis of other porphyrin derivatives necessitates the need for many points of regulation in response to nutrient availability and metabolic state. In this review we examine the regulation of heme biosynthesis in these bacteria via heme, iron, and oxygen species. We also discuss our perspective on emerging roles of protein-protein interactions and post-translational modifications in regulating heme biosynthesis.
Collapse
|
6
|
De Simone G, di Masi A, Pasquadibisceglie A, Coletta A, Sebastiani F, Smulevich G, Coletta M, Ascenzi P. Nitrobindin versus myoglobin: A comparative structural and functional study. J Inorg Biochem 2024; 250:112387. [PMID: 37914583 DOI: 10.1016/j.jinorgbio.2023.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 11/03/2023]
Abstract
Most hemoproteins display an all-α-helical fold, showing the classical three on three (3/3) globin structural arrangement characterized by seven or eight α-helical segments that form a sandwich around the heme. Over the last decade, a completely distinct class of heme-proteins called nitrobindins (Nbs), which display an all-β-barrel fold, has been identified and characterized from both structural and functional perspectives. Nbs are ten-stranded anti-parallel all-β-barrel heme-proteins found across the evolutionary ladder, from bacteria to Homo sapiens. Myoglobin (Mb), commonly regarded as the prototype of monomeric all-α-helical globins, is involved along with the oligomeric hemoglobin (Hb) in diatomic gas transport, storage, and sensing, as well as in the detoxification of reactive nitrogen and oxygen species. On the other hand, the function(s) of Nbs is still obscure, even though it has been postulated that they might participate to O2/NO signaling and metabolism. This function might be of the utmost importance in poorly oxygenated tissues, such as the eye's retina, where a delicate balance between oxygenation and blood flow (regulated by NO) is crucial. Dysfunction in this balance is associated with several pathological conditions, such as glaucoma and diabetic retinopathy. Here a detailed comparison of the structural, spectroscopic, and functional properties of Mb and Nbs is reported to shed light on the similarities and differences between all-α-helical and all-β-barrel heme-proteins.
Collapse
Affiliation(s)
| | | | | | | | - Federico Sebastiani
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, 50019 Sesto Fiorentino, FI, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, 50019 Sesto Fiorentino, FI, Italy
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, 00146 Roma, Italy.
| |
Collapse
|
7
|
Zámocký M, Hofbauer S, Gabler T, Furtmüller PG. The Molecular Evolution, Structure, and Function of Coproporphyrinogen Oxidase and Protoporphyrinogen Oxidase in Prokaryotes. BIOLOGY 2023; 12:1527. [PMID: 38132353 PMCID: PMC10740692 DOI: 10.3390/biology12121527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Coproporphyrinogen oxidase (CgoX) and protoporphyrinogen oxidase (PgoX) catalyze the oxidation of the flexible cyclic tetrapyrrole of porphyrinogen compounds into fully conjugated, planar macrocyclic porphyrin compounds during heme biosynthesis. These enzymes are activated via different pathways. CgoX oxidizes coproporphyrinogen III to coproporphyrin III in the coproporphyrin-dependent pathway, whereas PgoX oxidizes protoporphyrinogen IX to protoporphyrin IX in the penultimate step of the protoporphyrin-dependent pathway. The phylogenetic analysis presented herein demonstrates a clear differentiation between the two enzyme classes, as evidenced by the clustering of sequences in distinct clades, and it shows that, at the origin of porphyrinogen-type oxidase evolution, PgoXs from cyanobacteria were found, which were noticeably separated from descendant PgoX representatives of Deltaproteobacteria and all later PgoX variants, leading to many eukaryotic clades. CgoX sequences originating from the monoderm Actinomycetota and Bacillota were well separated from the predecessor clades containing PgoX types and represent a peculiar type of gene speciation. The structural similarities and differences between these two oxidases are discussed based on their protein sequence alignment and a structural comparison.
Collapse
Affiliation(s)
- Marcel Zámocký
- Laboratory of Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, SK-84551 Bratislava, Slovakia;
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, SK-84215 Bratislava, Slovakia
| | - Stefan Hofbauer
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria; (S.H.); (T.G.)
| | - Thomas Gabler
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria; (S.H.); (T.G.)
| | - Paul G. Furtmüller
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria; (S.H.); (T.G.)
| |
Collapse
|
8
|
Gabler T, Dali A, Sebastiani F, Furtmüller PG, Becucci M, Hofbauer S, Smulevich G. Iron insertion into coproporphyrin III-ferrochelatase complex: Evidence for an intermediate distorted catalytic species. Protein Sci 2023; 32:e4788. [PMID: 37743577 PMCID: PMC10578119 DOI: 10.1002/pro.4788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Understanding the reaction mechanism of enzymes at the molecular level is generally a difficult task, since many parameters affect the turnover. Often, due to high reactivity and formation of transient species or intermediates, detailed information on enzymatic catalysis is obtained by means of model substrates. Whenever possible, it is essential to confirm a reaction mechanism based on substrate analogues or model systems by using the physiological substrates. Here we disclose the ferrous iron incorporation mechanism, in solution, and in crystallo, by the coproporphyrin III-coproporphyrin ferrochelatase complex from the firmicute, pathogen, and antibiotic resistant, Listeria monocytogenes. Coproporphyrin ferrochelatase plays an important physiological role as the metalation represents the penultimate reaction step in the prokaryotic coproporphyrin-dependent heme biosynthetic pathway, yielding coproheme (ferric coproporphyrin III). By following the metal titration with resonance Raman spectroscopy and x-ray crystallography, we prove that upon metalation the saddling distortion becomes predominant both in the crystal and in solution. This is a consequence of the readjustment of hydrogen bond interactions of the propionates with the protein scaffold during the enzymatic catalysis. Once the propionates have established the interactions typical of the coproheme complex, the distortion slowly decreases, to reach the almost planar final product.
Collapse
Affiliation(s)
- Thomas Gabler
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Andrea Dali
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
| | - Federico Sebastiani
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
| | - Paul Georg Furtmüller
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Maurizio Becucci
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
| | - Stefan Hofbauer
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”—DICUSUniversità di FirenzeSesto FiorentinoItaly
- INSTM Research Unit of FirenzeSesto FiorentinoItaly
| |
Collapse
|
9
|
Falb N, Patil G, Furtmüller PG, Gabler T, Hofbauer S. Structural aspects of enzymes involved in prokaryotic Gram-positive heme biosynthesis. Comput Struct Biotechnol J 2023; 21:3933-3945. [PMID: 37593721 PMCID: PMC10427985 DOI: 10.1016/j.csbj.2023.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
The coproporphyrin dependent heme biosynthesis pathway is almost exclusively utilized by Gram-positive bacteria. This fact makes it a worthwhile topic for basic research, since a fundamental understanding of a metabolic pathway is necessary to translate the focus towards medical biotechnology, which is very relevant in this specific case, considering the need for new antibiotic targets to counteract the pathogenicity of Gram-positive superbugs. Over the years a lot of structural data on the set of enzymes acting in Gram-positive heme biosynthesis has accumulated in the Protein Database (www.pdb.org). One major challenge is to filter and analyze all available structural information in sufficient detail in order to be helpful and to draw conclusions. Here we pursued to give a holistic overview of structural information on enzymes involved in the coproporphyrin dependent heme biosynthesis pathway. There are many aspects to be extracted from experimentally determined structures regarding the reaction mechanisms, where the smallest variation of the position of an amino acid residue might be important, but also on a larger level regarding protein-protein interactions, where the focus has to be on surface characteristics and subunit (secondary) structural elements and oligomerization. This review delivers a status quo, highlights still missing information, and formulates future research endeavors in order to better understand prokaryotic heme biosynthesis.
Collapse
Affiliation(s)
- Nikolaus Falb
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Gaurav Patil
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G. Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Thomas Gabler
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
10
|
Sebastiani F, Baroni C, Patil G, Dali A, Becucci M, Hofbauer S, Smulevich G. The Role of the Hydrogen Bond Network in Maintaining Heme Pocket Stability and Protein Function Specificity of C. diphtheriae Coproheme Decarboxylase. Biomolecules 2023; 13:235. [PMID: 36830604 PMCID: PMC9953210 DOI: 10.3390/biom13020235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Monoderm bacteria accumulate heme b via the coproporphyrin-dependent biosynthesis pathway. In the final step, in the presence of two molecules of H2O2, the propionate groups of coproheme at positions 2 and 4 are decarboxylated to form vinyl groups by coproheme decarboxylase (ChdC), in a stepwise process. Decarboxylation of propionate 2 produces an intermediate that rotates by 90° inside the protein pocket, bringing propionate 4 near the catalytic tyrosine, to allow the second decarboxylation step. The active site of ChdCs is stabilized by an extensive H-bond network involving water molecules, specific amino acid residues, and the propionate groups of the porphyrin. To evaluate the role of these H-bonds in the pocket stability and enzyme functionality, we characterized, via resonance Raman and electronic absorption spectroscopies, single and double mutants of the actinobacterial pathogen Corynebacterium diphtheriae ChdC complexed with coproheme and heme b. The selective elimination of the H-bond interactions between propionates 2, 4, 6, and 7 and the polar residues of the pocket allowed us to establish the role of each H-bond in the catalytic reaction and to follow the changes in the interactions from the substrate to the product.
Collapse
Affiliation(s)
- Federico Sebastiani
- Dipartimento di Chimica “Ugo Schiff”, DICUS, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Chiara Baroni
- Dipartimento di Chimica “Ugo Schiff”, DICUS, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Gaurav Patil
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Dali
- Dipartimento di Chimica “Ugo Schiff”, DICUS, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Maurizio Becucci
- Dipartimento di Chimica “Ugo Schiff”, DICUS, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, DICUS, Università di Firenze, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
- INSTM Research Unit of Firenze, via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|