1
|
Nasim F, Kumar MS, Alvala M, Qureshi IA. Unraveling the peculiarities and development of novel inhibitors of leishmanial arginyl-tRNA synthetase. FEBS J 2024; 291:2955-2979. [PMID: 38525644 DOI: 10.1111/febs.17122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Aminoacylation by tRNA synthetase is a crucial part of protein synthesis and is widely recognized as a therapeutic target for drug development. Unlike the arginyl-tRNA synthetases (ArgRSs) reported previously, here, we report an ArgRS of Leishmania donovani (LdArgRS) that can follow the canonical two-step aminoacylation process. Since a previously uncharacterized insertion region is present within its catalytic domain, we implemented the splicing by overlap extension PCR (SOE-PCR) method to create a deletion mutant (ΔIns-LdArgRS) devoid of this region to investigate its function. Notably, the purified LdArgRS and ΔIns-LdArgRS exhibited different oligomeric states along with variations in their enzymatic activity. The full-length protein showed better catalytic efficiency than ΔIns-LdArgRS, and the insertion region was identified as the tRNA binding domain. In addition, a benzothiazolo-coumarin derivative (Comp-7j) possessing high pharmacokinetic properties was recognized as a competitive and more specific inhibitor of LdArgRS than its human counterpart. Removal of the insertion region altered the mode of inhibition for ΔIns-LdArgRS and caused a reduction in the inhibitor's binding affinity. Both purified proteins depicted variances in the secondary structural content upon ligand binding and thus, thermostability. Apart from the trypanosomatid-specific insertion and Rossmann fold motif, LdArgRS revealed typical structural characteristics of ArgRSs, and Comp-7j was found to bind within the ATP binding pocket. Furthermore, the placement of tRNAArg near the insertion region enhanced the stability and compactness of LdArgRS compared to other ligands. This study thus reports a unique ArgRS with respect to catalytic as well as structural properties, which can be considered a plausible drug target for the derivation of novel anti-leishmanial agents.
Collapse
Affiliation(s)
- Fouzia Nasim
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Muppidi Shravan Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
2
|
Penteado RF, Iulek J. Crystal structure of Methionyl-tRNA Synthetase from Rickettsia typhi in complex with its cognate amino acid. Biochimie 2024; 219:63-73. [PMID: 37673171 DOI: 10.1016/j.biochi.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Rickettsia typhi is the causative agent of murine typhus (endemic typhus), a febrile illness that can be self-contained, though in some cases it can progress to death. The three dimensional structure of Methionyl-tRNA Synthetase from R. typhi (RtMetRS) in complex with its substrate l-methionine was solved by molecular replacement and refined at 2.30 Å resolution in space group P1 from one X-ray diffraction dataset. Processing and refinement trials were decisive to establish the lower symmetry space group and indicated the presence of twinning with four domains. RtMetRS belongs to the MetRS1 family and was crystallized with the CP domain in an open conformation, what is distinctive from other MetRS1 enzymes whose structures were solved with a bound L-methionine (therefore, in a closed conformation). This conformation resembles the ones observed in the MetRS2 family.
Collapse
Affiliation(s)
- Renato Ferras Penteado
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Jorge Iulek
- Department of Chemistry, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
3
|
Yin H, Yan Y, Hu W, Liu G, Zeng H, Wei Y, Shi H. Genome-wide association studies reveal genetic basis of ionomic variation in cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1212-1223. [PMID: 36239073 DOI: 10.1111/tpj.16006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
As one of the most important food crops, cassava (Manihot esculenta) is the main dietary source of micronutrients for about 1 billion people. However, the ionomic variation in cassava and the underlying genetic mechanisms remain unclear so far. Herein, genome-wide association studies were performed to reveal the specific single nucleotide polymorphisms (SNPs) that affect the ionomic variation in cassava. We identified 164 SNPs with P-values lower than the threshold located in 88 loci associated with divergent ionomic variations. Among them, 13 SNPs are related to both calcium (Ca) and magnesium (Mg), and many loci for different ionomic traits seem to be clustered on specific chromosome regions. Moreover, we identified the peak SNPs in the promoter regions of Sc10g003170 (encoding methionyl-tRNA synthetase [MetRS]) and Sc18g015190 (encoding the transcriptional regulatory protein AlgP) for nitrogen (N) and phosphorus (P) accumulation, respectively. Notably, these two SNPs (chr10_32807962 and chr18_31343738) were directly correlated with the transcript levels of Sc10g003170 (MetRS) and Sc18g015190 (AlgP), which positively modulated N accumulation and P concentration in cassava, respectively. Taken together, this study provides important insight into the genetic basis of cassava natural ionomic variation, which will promote genetic breeding to improve nutrient use and accumulation of elements in cassava.
Collapse
Affiliation(s)
- Hongyan Yin
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
| | - Yu Yan
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 571101, Hainan Province, Haikou, Xueyuan Road 4, China
| | - Guoyin Liu
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Hongqiu Zeng
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Yunxie Wei
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| | - Haitao Shi
- Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources (Provincial Ministry Building State Key Laboratory Breeding Base), Sanya Nanfan Research Institute, College of Tropical Crops, Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Hainan Province, Sanya and Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Hainan Province, Sanya, China
| |
Collapse
|
4
|
Negrutskii B, Shalak V, Novosylna O, Porubleva L, Lozhko D, El'skaya A. The eEF1 family of mammalian translation elongation factors. BBA ADVANCES 2022; 3:100067. [PMID: 37082266 PMCID: PMC10074971 DOI: 10.1016/j.bbadva.2022.100067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The eEF1 family of mammalian translation elongation factors is comprised of the two variants of eEF1A (eEF1A1 and eEF1A2), and the eEF1B complex. The latter consists of eEF1Bα, eEF1Bβ, and eEF1Bγ subunits. The two eEF1A variants have similar translation activity but may differ with respect to their secondary, "moonlighting" functions. This variability is underlined by the difference in the spatial organization of eEF1A1 and eEF1A2, and also possibly by the differences in their post-translational modifications. Here, we review the data on the spatial organization and post-translation modifications of eEF1A1 and eEF1A2, and provide examples of their involvement in various processes in addition to translation. We also describe the structural models of eEF1B subunits, their organization in the subcomplexes, and the trimeric model of the entire eEF1B complex. We discuss the functional consequences of such an assembly into a complex as well as the involvement of individual subunits in non-translational processes.
Collapse
Affiliation(s)
- B.S. Negrutskii
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
- Aarhus Institute of Advanced Sciences, Høegh-Guldbergs Gade 6B, DK–8000 Aarhus C, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - V.F. Shalak
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - O.V. Novosylna
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - L.V. Porubleva
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - D.M. Lozhko
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| | - A.V. El'skaya
- Institute of Molecular Biology and Genetics, Acad. Zabolotnogo Str. 150, 03143 Kyiv, Ukraine
| |
Collapse
|
5
|
Kim DK, Lee HJ, Kong J, Cho HY, Kim S, Kang BS. Structural basis for the dynamics of human methionyl-tRNA synthetase in multi-tRNA synthetase complexes. Nucleic Acids Res 2021; 49:6549-6568. [PMID: 34086935 PMCID: PMC8216282 DOI: 10.1093/nar/gkab453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
In mammals, eight aminoacyl-tRNA synthetases (AARSs) and three AARS-interacting multifunctional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC). MSC components possess extension peptides for MSC assembly and specific functions. Human cytosolic methionyl-tRNA synthetase (MRS) has appended peptides at both termini of the catalytic main body. The N-terminal extension includes a glutathione transferase (GST) domain responsible for interacting with AIMP3, and a long linker peptide between the GST and catalytic domains. Herein, we determined crystal structures of the human MRS catalytic main body, and the complex of the GST domain and AIMP3. The structures reveal human-specific structural details of the MRS, and provide a dynamic model for MRS at the level of domain orientation. A movement of zinc knuckles inserted in the catalytic domain is required for MRS catalytic activity. Depending on the position of the GST domain relative to the catalytic main body, MRS can either block or present its tRNA binding site. Since MRS is part of a huge MSC, we propose a dynamic switching between two possible MRS conformations; a closed conformation in which the catalytic domain is compactly attached to the MSC, and an open conformation with a free catalytic domain dissociated from other MSC components.
Collapse
Affiliation(s)
- Dong Kyu Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hyun Joo Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Jiwon Kong
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon 21983, Korea
| | - Ha Yeon Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy & School of Medicine, Yonsei University, Incheon 21983, Korea
| | - Beom Sik Kang
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
6
|
Jin Q, Liu G, Wang B, Li S, Ni K, Wang C, Ren J, Zhang S, Dai Y. High methionyl-tRNA synthetase expression predicts poor prognosis in patients with breast cancer. J Clin Pathol 2020; 73:803-812. [PMID: 32404475 PMCID: PMC7691814 DOI: 10.1136/jclinpath-2019-206175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 01/03/2023]
Abstract
Aims Methionyl–tRNA synthetase (MARS) is known to play a critical role in initiating translation and protection against cellular damages in vivo. The aim of this study was to clarify the role of MARS in breast cancer (BC) progression. Methods The expressions of MARS messenger RNA (mRNA) and protein in human BC tissues and adjacent non-cancerous tissues were detected by quantitative real-time PCR, western blot and immunohistochemistry. The prognostic potential of MARS in patients with BC was assessed by univariate and multivariate survival analyses. The association between the MARS expression and BC progression was further evaluated by the bioinformatics database of UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA) and Gene Expression Database of Normal and Tumor Tissues (GENT). The role of MARS in the proliferation, migration and epithelial-to-mesenchymal transition (EMT) of human breast cancer cell line (MCF-7 cells) was investigated after siRNA transfection. Results The expression level of MARS mRNA in the fresh BC tissues was significantly higher than that in the adjacent tissues. Immunohistochemistry showed that the expression level of MARS was closely associated with the clinicopathologial parameters of patients with BC, including the HER-2 status, Ki-67 status, molecular classification, tumour grade, N stage and tumour, node, metastasis (TNM) stage, and this finding was further confirmed by UALCAN database. The Kaplan-Meier analysis showed that high MARS expression and TNM stage were predictors of poor prognosis of patients with BC. The proliferation, migration and EMT capabilities of MCF-7 cells were significantly suppressed after MARS knockdown. An overview of UALCAN, GEPIA and GENT results suggested that MARS may be an oncogene of BC, as well as a potential therapeutic target of this malignant tumour. Conclusions High expression level of MARS in the human BC tissues was significantly associated with the unfavourable prognosis of patients with BC, suggesting that MARS may serve as a potential prognostic marker for the clinical diagnosis and prognostic prediction of BC.
Collapse
Affiliation(s)
- Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Gang Liu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China.,Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Biao Wang
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Shubin Li
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Kan Ni
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunyu Wang
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
7
|
Kapps D, Cela M, Théobald-Dietrich A, Hendrickson T, Frugier M. OB or Not OB: Idiosyncratic utilization of the tRNA-binding OB-fold domain in unicellular, pathogenic eukaryotes. FEBS Lett 2016; 590:4180-4191. [PMID: 27714804 DOI: 10.1002/1873-3468.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 11/11/2022]
Abstract
In this review, we examine the so-called OB-fold, a tRNA-binding domain homologous to the bacterial tRNA-binding protein Trbp111. We highlight the ability of OB-fold homologs to bind tRNA species and summarize their distribution in evolution. Nature has capitalized on the advantageous effects acquired when an OB-fold domain binds to tRNA by evolutionarily selecting this domain for fusion to different enzymes. Here, we review our current understanding of how the complexity of OB-fold-containing proteins and enzymes developed to expand their functions, especially in unicellular, pathogenic eukaryotes.
Collapse
Affiliation(s)
- Delphine Kapps
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | - Marta Cela
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| | | | | | - Magali Frugier
- RNA Architecture and Reactivity, Strasbourg University, CNRS, IBMC, France
| |
Collapse
|
8
|
Zuo DY, Yi SY, Liu RJ, Qu B, Huang T, He WJ, Li C, Li HP, Liao YC. A Deoxynivalenol-Activated Methionyl-tRNA Synthetase Gene from Wheat Encodes a Nuclear Localized Protein and Protects Plants Against Fusarium Pathogens and Mycotoxins. PHYTOPATHOLOGY 2016; 106:614-623. [PMID: 26882849 DOI: 10.1094/phyto-12-15-0327-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fusarium graminearum is the fungal pathogen that causes globally important diseases of cereals and produces mycotoxins such as deoxynivalenol (DON). Owing to the dearth of available sources of resistance to Fusarium pathogens, characterization of novel genes that confer resistance to mycotoxins and mycotoxin-producing fungi is vitally important for breeding resistant crop varieties. In this study, a wheat methionyl-tRNA synthetase (TaMetRS) gene was identified from suspension cell cultures treated with DON. It shares conserved aminoacylation catalytic and tRNA anticodon binding domains with human MetRS and with the only previously characterized plant MetRS, suggesting that it functions in aminoacylation in the cytoplasm. However, the TaMetRS comprises a typical nuclear localization signal and cellular localization studies with a TaMetRS::GFP fusion protein showed that TaMetRS is localized in the nucleus. Expression of TaMetRS was activated by DON treatment and by infection with a DON-producing F. graminearum strain in wheat spikes. No such activation was observed following infection with a non-DON-producing F. graminearum strain. Expression of TaMetRS in Arabidopsis plants conferred significant resistance to DON and F. graminearum. These results indicated that this DON-activated TaMetRS gene may encode a novel type of MetRS in plants that has a role in defense and detoxification.
Collapse
Affiliation(s)
- Dong-Yun Zuo
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Shu-Yuan Yi
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rong-Jing Liu
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bo Qu
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Huang
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wei-Jie He
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Cheng Li
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - He-Ping Li
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu-Cai Liao
- All authors: Molecular Biotechnology Laboratory of Triticeae Crops, first, third, fifth, sixth, and eighth authors: College of Life Science and Technology; second, fourth, seventh, and ninth authors: College of Plant Science and Technology, and ninth author: National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
9
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
10
|
Piégu B, Bire S, Arensburger P, Bigot Y. A survey of transposable element classification systems--a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 2015; 86:90-109. [PMID: 25797922 DOI: 10.1016/j.ympev.2015.03.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 10/25/2022]
Abstract
The increase of publicly available sequencing data has allowed for rapid progress in our understanding of genome composition. As new information becomes available we should constantly be updating and reanalyzing existing and newly acquired data. In this report we focus on transposable elements (TEs) which make up a significant portion of nearly all sequenced genomes. Our ability to accurately identify and classify these sequences is critical to understanding their impact on host genomes. At the same time, as we demonstrate in this report, problems with existing classification schemes have led to significant misunderstandings of the evolution of both TE sequences and their host genomes. In a pioneering publication Finnegan (1989) proposed classifying all TE sequences into two classes based on transposition mechanisms and structural features: the retrotransposons (class I) and the DNA transposons (class II). We have retraced how ideas regarding TE classification and annotation in both prokaryotic and eukaryotic scientific communities have changed over time. This has led us to observe that: (1) a number of TEs have convergent structural features and/or transposition mechanisms that have led to misleading conclusions regarding their classification, (2) the evolution of TEs is similar to that of viruses by having several unrelated origins, (3) there might be at least 8 classes and 12 orders of TEs including 10 novel orders. In an effort to address these classification issues we propose: (1) the outline of a universal TE classification, (2) a set of methods and classification rules that could be used by all scientific communities involved in the study of TEs, and (3) a 5-year schedule for the establishment of an International Committee for Taxonomy of Transposable Elements (ICTTE).
Collapse
Affiliation(s)
- Benoît Piégu
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France
| | - Solenne Bire
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Institute of Biotechnology, University of Lausanne, Center for Biotechnology UNIL-EPFL, 1015 Lausanne, Switzerland
| | - Peter Arensburger
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France; Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768, United States.
| | - Yves Bigot
- UMR INRA-CNRS 7247, PRC, Centre INRA de Nouzilly, 37380 Nouzilly, France.
| |
Collapse
|
11
|
Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases. Antimicrob Agents Chemother 2015; 59:1856-67. [PMID: 25583729 DOI: 10.1128/aac.02220-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs.
Collapse
|
12
|
Alriyami MZ, Jones MR, Johnsen RC, Banerjee Y, Baillie DL. let-65 is cytoplasmic methionyl tRNA synthetase in C. elegans. Meta Gene 2014; 2:819-30. [PMID: 25606464 PMCID: PMC4287814 DOI: 10.1016/j.mgene.2014.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/07/2023] Open
Abstract
Cytoplasmic methionyl tRNA synthetase (MetRS) is one of more than 20 cytoplasmic aminoacyl tRNA synthetase enzymes (ARS). This family of enzymes catalyzes a process fundamental for protein translation. Using a combination of genetic mapping, oligonucleotide array comparative genomic hybridization, and phenotypic correlation, we show that mutations in the essential gene, let-65, reside within the predicted Caenorhabditis elegans homologue of MetRS, which we have named mars-1. We demonstrate that the lethality associated with alleles of let-65 is fully rescued by a transgenic array that spans the mars-1 genomic region. Furthermore, sequence analysis reveals that six let-65 alleles lead to the alteration of highly conserved amino acids.
Collapse
Affiliation(s)
- Maha Z Alriyami
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, 8888 University Drive, Burnaby, BC V5A 1S6 Canada ; Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Al-Khod 123, Oman
| | - Martin R Jones
- Genome Sciences Centre, British Columbia Cancer Research Centre, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Robert C Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Yajnavalka Banerjee
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Al-Khod 123, Oman
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| |
Collapse
|
13
|
Laporte D, Huot JL, Bader G, Enkler L, Senger B, Becker HD. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms. FEBS Lett 2014; 588:4268-78. [PMID: 25315413 DOI: 10.1016/j.febslet.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently 'simple' organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.
Collapse
Affiliation(s)
- Daphné Laporte
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Jonathan L Huot
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Gaétan Bader
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ludovic Enkler
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Bruno Senger
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
14
|
Bio-orthogonal labeling as a tool to visualize and identify newly synthesized proteins in Caenorhabditis elegans. Nat Protoc 2014; 9:2237-55. [DOI: 10.1038/nprot.2014.150] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Abstract
When compared to other conserved housekeeping protein families, such as ribosomal proteins, during the evolution of higher eukaryotes, aminoacyl-tRNA synthetases (aaRSs) show an apparent high propensity to add new sequences, and especially new domains. The stepwise emergence of those new domains is consistent with their involvement in a broad range of biological functions beyond protein synthesis, and correlates with the increasing biological complexity of higher organisms. These new domains have been extensively characterized based on their evolutionary origins and their sequence, structural, and functional features. While some of the domains are uniquely found in aaRSs and may have originated from nucleic acid binding motifs, others are common domain modules mediating protein-protein interactions that play a critical role in the assembly of the multi-synthetase complex (MSC). Interestingly, the MSC has emerged from a miniature complex in yeast to a large stable complex in humans. The human MSC consists of nine aaRSs (LysRS, ArgRS, GlnRS, AspRS, MetRS, IleRS, LeuRS, GluProRS, and bifunctional aaRs) and three scaffold proteins (AIMP1/p43, AIMP2/p38, and AIMP3/p18), and has a molecular weight of 1.5 million Dalton. The MSC has been proposed to have a functional dualism: facilitating protein synthesis and serving as a reservoir of non-canonical functions associated with its synthetase and non-synthetase components. Importantly, domain additions and functional expansions are not limited to the components of the MSC and are found in almost all aaRS proteins. From a structural perspective, multi-functionalities are represented by multiple conformational states. In fact, alternative conformations of aaRSs have been generated by various mechanisms from proteolysis to alternative splicing and posttranslational modifications, as well as by disease-causing mutations. Therefore, the metamorphosis between different conformational states is connected to the activation and regulation of the novel functions of aaRSs in higher eukaryotes.
Collapse
Affiliation(s)
- Min Guo
- Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33410, USA,
| | - Xiang-Lei Yang
- Department of Cancer Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA,
| |
Collapse
|
16
|
A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol Cell Biol 2013; 33:4872-88. [PMID: 24126051 DOI: 10.1128/mcb.00711-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development.
Collapse
|
17
|
He L, Lu X, Tian J, Yang Y, Li B, Li J, Guo S. Proteomic analysis of the effects of exogenous calcium on hypoxic-responsive proteins in cucumber roots. Proteome Sci 2012; 10:42. [PMID: 22788869 PMCID: PMC3576256 DOI: 10.1186/1477-5956-10-42] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 06/20/2012] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED BACKGROUND Hypoxia acts as a plant stress factor, particularly in cucumbers plants under hydroponic culture. Calcium is involved in stress signal transmission and in the growth of plants. To determine the effect of exogenous calcium on hypoxic-responsive proteins in cucumber (Cucumis sativus L. cv. Jinchun No.2) roots, proteomic analysis was performed using two-dimensional electrophoresis (2-DE) and mass spectrometry. RESULTS Cucumber roots were used to analyze the influence of hypoxia on plants. The expressions of 38 protein spots corresponding to enzymes were shown to change in response to hypoxia. Of these, 30 spots were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS analysis). The proteins were categorized according to functional groups, including glycolysis, the tricarboxylic acid (TCA) cycle, fermentative metabolism, nitrogen metabolism, energy metabolism, protein synthesis and defense against stress. Exogenous calcium appeared to alleviate hypoxic stress via these metabolic and physiological systems. Western blotting was used to analyze the accumulation of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC); calcium further increased the expression of ADH and PDC under hypoxia. In addition, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to assess the transcript levels of differentially expressed proteins. CONCLUSIONS Exogenous calcium enhanced the expression of enzymes involved in glycolysis, the TCA cycle, fermentative metabolism, nitrogen metabolism, and reactive oxygen species (ROS) defense in plants under hypoxia. Calcium appears to induce hypoxic tolerance of cucumber seedlings. These phenomena have prompted us to further investigate the mechanisms by which cucumbers respond to exogenous calcium under hypoxia.
Collapse
Affiliation(s)
- Lizhong He
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Xiaomin Lu
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China.,Anhui Science and Technology University, Fengyang, 233100, An Hui, P. R. China
| | - Jing Tian
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Yanjuan Yang
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Bin Li
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Jing Li
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| | - Shirong Guo
- College of Horticulture, Nanjing Agriculture University/Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing, 210095, P. R. China
| |
Collapse
|
18
|
Havrylenko S, Legouis R, Negrutskii B, Mirande M. Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex. J Biol Chem 2011; 286:28476-87. [PMID: 21685384 DOI: 10.1074/jbc.m111.254037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains.
Collapse
Affiliation(s)
- Svitlana Havrylenko
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|