1
|
Tufféry P, Derreumaux P. A refined pH-dependent coarse-grained model for peptide structure prediction in aqueous solution. FRONTIERS IN BIOINFORMATICS 2023; 3:1113928. [PMID: 36727106 PMCID: PMC9885153 DOI: 10.3389/fbinf.2023.1113928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Introduction: Peptides carry out diverse biological functions and the knowledge of the conformational ensemble of polypeptides in various experimental conditions is important for biological applications. All fast dedicated softwares perform well in aqueous solution at neutral pH. Methods: In this study, we go one step beyond by combining the Debye-Hückel formalism for charged-charged amino acid interactions and a coarse-grained potential of the amino acids to treat pH and salt variations. Results: Using the PEP-FOLD framework, we show that our approach performs as well as the machine-leaning AlphaFold2 and TrRosetta methods for 15 well-structured sequences, but shows significant improvement in structure prediction of six poly-charged amino acids and two sequences that have no homologous in the Protein Data Bank, expanding the range of possibilities for the understanding of peptide biological roles and the design of candidate therapeutic peptides.
Collapse
Affiliation(s)
- Pierre Tufféry
- Université Paris Cité, CNRS UMR 8251, INSERM U1133, Paris, France,*Correspondence: Pierre Tufféry,
| | - Philippe Derreumaux
- Université Paris Cité, CNRSUPR9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Lai JK, Kubelka GS, Kubelka J. Effect of Mutations on the Global and Site-Specific Stability and Folding of an Elementary Protein Structural Motif. J Phys Chem B 2018; 122:11083-11094. [PMID: 29985619 DOI: 10.1021/acs.jpcb.8b05280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the folding mechanism of proteins requires detailed knowledge of the roles of individual amino acid residues in stabilization of specific elements and local segments of the native structure. Recently, we have utilized the combination of circular dichroism (CD) and site-specific 13C isotopically edited infrared spectroscopy (IR) coupled with the Ising-like model for protein folding to map the thermal unfolding at the residue level of a de novo designed helix-turn-helix motif αtα. Here we use the same methodology to study how the sequence of local thermal unfolding is affected by selected mutations introduced into the most and least stable parts of the motif. Seven different mutants of αtα are screened to find substitutions with the most pronounced effects on the overall stability. Subsequently, thermal unfolding of two mutated αtα sequences is studied with site-specific resolution, using four distinct 13C isotopologues of each. The data are analyzed with the Ising-like model, which builds on a previous parametrization for the original αtα sequence and tests different ways of incorporating the amino acid substitution. We show that for both more and less stable mutants only the adjustment of all interaction parameters of the model can yield a satisfactory fit to the experimental data. The stabilizing and destabilizing mutations result, respectively, in a similar increase and decrease of the stability of all probed local segments, irrespective of their position with respect to the mutation site. Consequently, the relative order of their unfolding remains essentially unchanged. These results underline the importance of the interconnectivity of the stabilizing interaction network and cooperativity of the protein structure, which is evident even in a small motif with apparently noncooperative, heterogeneous unfolding. Overall, our findings are consistent with the native structure being the dominant factor in determining the folding mechanism, regardless of the details of its overall or local thermodynamic stabilization.
Collapse
Affiliation(s)
- Jason K Lai
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Ginka S Kubelka
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| | - Jan Kubelka
- Department of Chemistry , University of Wyoming , Laramie , Wyoming 82071 , United States
| |
Collapse
|
3
|
Yuan J, Yuan C, Xie M, Yu L, Bruschweiler-Li L, Brüschweiler R. The Intracellular Loop of the Na +/Ca 2+ Exchanger Contains an "Awareness Ribbon"-Shaped Two-Helix Bundle Domain. Biochemistry 2018; 57:5096-5104. [PMID: 29898361 DOI: 10.1021/acs.biochem.8b00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Na+/Ca2+ exchanger (NCX) is a ubiquitous single-chain membrane protein that plays a major role in regulating the intracellular Ca2+ homeostasis by the counter transport of Na+ and Ca2+ across the cell membrane. Other than its prokaryotic counterpart, which contains only the transmembrane domain and is self-sufficient as an active ion transporter, the eukaryotic NCX protein possesses in addition a large intracellular loop that senses intracellular calcium signals and controls the activation of ion transport across the membrane. This provides a necessary layer of regulation for the more complex function of eukaryotic cells. The Ca2+ sensor in the intracellular loop is known as the Ca2+-binding domain (CBD12). However, how the signaling of the allosteric intracellular Ca2+ binding propagates and results in transmembrane ion transportation still lacks a detailed explanation. Further structural and dynamics characterization of the intracellular loop flanking both sides of CBD12 is therefore imperative. Here, we report the identification and characterization of another structured domain that is N-terminal to CBD12 in the intracellular loop using solution nuclear magnetic resonance (NMR) spectroscopy. The atomistic structure of this domain reveals that two tandem long α-helices, connected by a short linker, form a stable crossover two-helix bundle (THB), resembling an "awareness ribbon". Considering the highly conserved amino acid sequence of the THB domain, the detailed structural and dynamics properties of the THB domain will be common among NCXs from different species and will contribute toward the understanding of the regulatory mechanism of eukaryotic Na+/Ca2+ exchangers.
Collapse
Affiliation(s)
- Jiaqi Yuan
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Mouzhe Xie
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lei Yu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States.,Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States.,Department of Biological Chemistry and Pharmacology , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
4
|
Bugge K, Staby L, Kemplen KR, O'Shea C, Bendsen SK, Jensen MK, Olsen JG, Skriver K, Kragelund BB. Structure of Radical-Induced Cell Death1 Hub Domain Reveals a Common αα-Scaffold for Disorder in Transcriptional Networks. Structure 2018; 26:734-746.e7. [DOI: 10.1016/j.str.2018.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
5
|
Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold. Interdiscip Sci 2017; 10:805-812. [DOI: 10.1007/s12539-017-0250-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/16/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022]
|
6
|
Zeng J, Jiang F, Wu YD. Folding Simulations of an α-Helical Hairpin Motif αtα with Residue-Specific Force Fields. J Phys Chem B 2015; 120:33-41. [PMID: 26673753 DOI: 10.1021/acs.jpcb.5b09027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Helical hairpin (two-helix bundle) is a structure motif composed of two interacting helices connected by a turn or a short loop. It is an important model for protein folding studies, filling the gap between isolated α-helix and larger all-α domains. Here, we present, for the first time, successful folding simulations of an α-helical hairpin. Our RSFF1 and RSFF2 force fields give very similar predicted structures of this αtα peptide, which is in good agreement with its NMR structure. Our simulations also give site-specific stability of α-helix formation in good agreement with amide hydrogen exchange experiments. Combining the folding free energy landscapes and analyses of structures sampled in five different ranges of the fraction of native contacts (Q), a folding mechanism of αtα is proposed. The most stable sites of Q9-E15 in helix-1 and E24-A30 in helix-2 close to the loop region act as the folding initiation sites. The formation of interhelix side-chain contacts also initiates near the loop region, but some residues in the central parts of the two helices also form contacts quite early. The two termini fold at a final stage, and the loop region remains flexible during the whole folding process. This mechanism is similar to the "zipping out" pathway of β-hairpin folding.
Collapse
Affiliation(s)
- Juan Zeng
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Fan Jiang
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China
| | - Yun-Dong Wu
- Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School , Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
7
|
Sequence, structure, and cooperativity in folding of elementary protein structural motifs. Proc Natl Acad Sci U S A 2015. [PMID: 26216963 DOI: 10.1073/pnas.1506309112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Residue-level unfolding of two helix-turn-helix proteins--one naturally occurring and one de novo designed--is reconstructed from multiple sets of site-specific (13)C isotopically edited infrared (IR) and circular dichroism (CD) data using Ising-like statistical-mechanical models. Several model variants are parameterized to test the importance of sequence-specific interactions (approximated by Miyazawa-Jernigan statistical potentials), local structural flexibility (derived from the ensemble of NMR structures), interhelical hydrogen bonds, and native contacts separated by intervening disordered regions (through the Wako-Saitô-Muñoz-Eaton scheme, which disallows such configurations). The models are optimized by directly simulating experimental observables: CD ellipticity at 222 nm for model proteins and their fragments and (13)C-amide I' bands for multiple isotopologues of each protein. We find that data can be quantitatively reproduced by the model that allows two interacting segments flanking a disordered loop (double sequence approximation) and incorporates flexibility in the native contact maps, but neither sequence-specific interactions nor hydrogen bonds are required. The near-identical free energy profiles as a function of the global order parameter are consistent with expected similar folding kinetics for nearly identical structures. However, the predicted folding mechanism for the two motifs is different, reflecting the order of local stability. We introduce free energy profiles for "experimental" reaction coordinates--namely, the degree of local folding as sensed by site-specific (13)C-edited IR, which highlight folding heterogeneity and contrast its overall, average description with the detailed, local picture.
Collapse
|
8
|
Kubelka GS, Kubelka J. Site-Specific Thermodynamic Stability and Unfolding of a de Novo Designed Protein Structural Motif Mapped by 13C Isotopically Edited IR Spectroscopy. J Am Chem Soc 2014; 136:6037-48. [DOI: 10.1021/ja500918k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ginka S. Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
9
|
Mühle M, Hoffmann K, Löchelt M, Denner J. Immunisation with foamy virus Bet fusion proteins as novel strategy for HIV-1 epitope delivery. Immunol Res 2013; 56:61-72. [PMID: 23440699 DOI: 10.1007/s12026-013-8387-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The induction of 2F5- and 4E10-like antibodies broadly neutralising HIV-1 and targeting the membrane external proximal region (MPER) of the transmembrane envelope protein gp41 would be a major advancement for the development of a preventive HIV-1 vaccine, but successful attempts remain rare. Recent studies demonstrated that broadly reactive antibodies develop relatively late during infection and after intensive affinity maturation. Therefore, a prolonged antigen delivery might be beneficial to induce them. Replicating foamy viruses which are characterised by apathogenic but persistent infection could represent suitable carrier viruses for this purpose. In order to develop such a system, we modified the accessory foamy virus Bet protein to contain the MPER of gp41, or the MPER linked to the stabilising fusion peptide proximal region of gp41 and analysed here the antigenic and immunogenic properties of such hybrid proteins. The antigens, expressed and purified to homogeneity, were recognised by the monoclonal antibodies 2F5 and 4E10 with nanomolar affinities and induced high levels of antibodies specific to gp41 after immunisation of rats. The antisera also bound to virus particles attached to infected cells, and peptide-based epitope mapping showed that they recognised the 2F5 epitope. Although no HIV-1 neutralising activity was observed, the presented data demonstrate that using the foamy virus Bet for HIV-1 epitope delivery is successfully applicable. Together with the attractive potential for sustained antigen expression after transfer to replicating virus, these results should therefore provide a first basis for the development of chimeric foamy viruses as novel HIV-1 vaccine vectors.
Collapse
Affiliation(s)
- Michael Mühle
- Center for HIV and Retrovirology, Robert Koch Institute, Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Huang JJT, Larsen RW, Chan SI. The interplay of turn formation and hydrophobic interactions on the early kinetic events in protein folding. Chem Commun (Camb) 2012; 48:487-97. [DOI: 10.1039/c1cc13278d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Castro GR, Knubovets T. Homogeneous Biocatalysis in Organic Solvents and Water-Organic Mixtures. Crit Rev Biotechnol 2010. [DOI: 10.1080/bty.23.3.195] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Gerstman BS, Chapagain PP. Self-organizing dynamics in protein folding. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2008; 84:1-37. [PMID: 19121698 DOI: 10.1016/s0079-6603(08)00401-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Bernard S Gerstman
- Department of Physics, Florida International University, Miami, Florida 33199, USA
| | | |
Collapse
|
13
|
Xian W, Connolly PJ, Oslin M, Hausrath AC, Osterhout JJ. Fundamental processes of protein folding: measuring the energetic balance between helix formation and hydrophobic interactions. Protein Sci 2006; 15:2062-70. [PMID: 16882995 PMCID: PMC2242613 DOI: 10.1110/ps.062297006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 04/19/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022]
Abstract
Theories of protein folding often consider contributions from three fundamental elements: loops, hydrophobic interactions, and secondary structures. The pathway of protein folding, the rate of folding, and the final folded structure should be predictable if the energetic contributions to folding of these fundamental factors were properly understood. alphatalpha is a helix-turn-helix peptide that was developed by de novo design to provide a model system for the study of these important elements of protein folding. Hydrogen exchange experiments were performed on selectively 15N-labeled alphatalpha and used to calculate the stability of hydrogen bonds within the peptide. The resulting pattern of hydrogen bond stability was analyzed using a version of Lifson-Roig model that was extended to include a statistical parameter for tertiary interactions. This parameter, x, represents the additional statistical weight conferred upon a helical state by a tertiary contact. The hydrogen exchange data is most closely fit by the XHC model with an x parameter of 9.25. Thus the statistical weight of a hydrophobic tertiary contact is approximately 5.8x the statistical weight for helix formation by alanine. The value for the x parameter derived from this study should provide a basis for the understanding of the relationship between hydrophobic cluster formation and secondary structure formation during the early stages of protein folding.
Collapse
Affiliation(s)
- Wujing Xian
- Department of Materials Science and Engineering, University of Illinois at Urban-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
14
|
Mayewski S. A multibody, whole-residue potential for protein structures, with testing by Monte Carlo simulated annealing. Proteins 2006; 59:152-69. [PMID: 15723360 DOI: 10.1002/prot.20397] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new multibody, whole-residue potential for protein tertiary structure is described. The potential is based on the local environment surrounding each main-chain alpha carbon (CA), defined as the set of all residues whose CA coordinates lie within a spherical volume of set radius in 3-dimensional (3D) space surrounding that position. It is shown that the relative positions of the CAs in these local environments belong to a set of preferred templates. The templates are derived by cluster analysis of the presently available database of over 3000 protein chains (750,000 residues) having not more than 30% sequence similarity. For each template is derived also a set of residue propensities for each topological position in the template. Using lookup tables of these derived templates, it is then possible to calculate an energy for any conformation of a given protein sequence. The application of the potential to ab initio protein tertiary structure prediction is evaluated by performing Monte Carlo simulated annealing on test protein sequences.
Collapse
Affiliation(s)
- Stefan Mayewski
- Max-Planck-Institut für Biochemie, 82152 Martinsried, Germany.
| |
Collapse
|
15
|
Yun MR, Lavery R, Mousseau N, Zakrzewska K, Derreumaux P. ARTIST: An activated method in internal coordinate space for sampling protein energy landscapes. Proteins 2006; 63:967-75. [PMID: 16523485 DOI: 10.1002/prot.20938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present the first applications of an activated method in internal coordinate space for sampling all-atom protein conformations, the activation-relaxation technique for internal coordinate space trajectories (ARTIST). This method differs from all previous internal coordinate-based studies aimed at folding or refining protein structures in that conformational changes result from identifying and crossing well-defined saddle points connecting energy minima. Our simulations of four model proteins containing between 4 and 47 amino acids indicate that this method is efficient for exploring conformational space in both sparsely and densely packed environments, and offers new perspectives for applications ranging from computer-aided drug design to supramolecular assembly.
Collapse
Affiliation(s)
- Mi-Ran Yun
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique, Université Paris, France
| | | | | | | | | |
Collapse
|
16
|
Liang FC, Chen RPY, Lin CC, Huang KT, Chan SI. Tuning the conformation properties of a peptide by glycosylation and phosphorylation. Biochem Biophys Res Commun 2006; 342:482-8. [PMID: 16487934 DOI: 10.1016/j.bbrc.2006.01.168] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 01/27/2006] [Indexed: 11/30/2022]
Abstract
We have deployed the alpha-helical hairpin peptide (alpha-helix/turn/alpha-helix) and used it as a model system to explore how glycosylation and phosphorylation might affect the conformational properties of the peptide. The native conformations of the modified peptides in buffer solution have been compared with that of the wild-type peptide by nuclear magnetic resonance spectroscopy. Circular dichroism spectroscopy was used to probe the effects of an O-linked beta-GlcNAc and a phosphate group on the overall folding stability of the peptide. Finally, the rate of fibrillogenesis was used to infer the effects of these chemical modifications on the alpha-to-beta transition as well as the rate of nucleation of amyloidogenesis.
Collapse
Affiliation(s)
- Fu-Cheng Liang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
17
|
Offredi F, Dubail F, Kischel P, Sarinski K, Stern AS, Van de Weerdt C, Hoch JC, Prosperi C, François JM, Mayo SL, Martial JA. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. J Mol Biol 2003; 325:163-74. [PMID: 12473459 DOI: 10.1016/s0022-2836(02)01206-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have designed, synthesized, and characterized a 216 amino acid residue sequence encoding a putative idealized alpha/beta-barrel protein. The design was elaborated in two steps. First, the idealized backbone was defined with geometric parameters representing our target fold: a central eight parallel-stranded beta-sheet surrounded by eight parallel alpha-helices, connected together with short structural turns on both sides of the barrel. An automated sequence selection algorithm, based on the dead-end elimination theorem, was used to find the optimal amino acid sequence fitting the target structure. A synthetic gene coding for the designed sequence was constructed and the recombinant artificial protein was expressed in bacteria, purified and characterized. Far-UV CD spectra with prominent bands at 222nm and 208nm revealed the presence of alpha-helix secondary structures (50%) in fairly good agreement with the model. A pronounced absorption band in the near-UV CD region, arising from immobilized aromatic side-chains, showed that the artificial protein is folded in solution. Chemical unfolding monitored by tryptophan fluorescence revealed a conformational stability (DeltaG(H2O)) of 35kJ/mol. Thermal unfolding monitored by near-UV CD revealed a cooperative transition with an apparent T(m) of 65 degrees C. Moreover, the artificial protein did not exhibit any affinity for the hydrophobic fluorescent probe 1-anilinonaphthalene-8-sulfonic acid (ANS), providing additional evidence that the artificial barrel is not in the molten globule state, contrary to previously designed artificial alpha/beta-barrels. Finally, 1H NMR spectra of the folded and unfolded proteins provided evidence for specific interactions in the folded protein. Taken together, the results indicate that the de novo designed alpha/beta-barrel protein adopts a stable three-dimensional structure in solution. These encouraging results show that de novo design of an idealized protein structure of more than 200 amino acid residues is now possible, from construction of a particular backbone conformation to determination of an amino acid sequence with an automated sequence selection algorithm.
Collapse
Affiliation(s)
- F Offredi
- Laboratoire de Biologie Moléculaire et Génie Génétique, Université de Liège, B6, Sart Tilman, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Frank BS, Vardar D, Buckley DA, McKnight CJ. The role of aromatic residues in the hydrophobic core of the villin headpiece subdomain. Protein Sci 2002; 11:680-7. [PMID: 11847290 PMCID: PMC2373478 DOI: 10.1110/ps.22202] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2001] [Revised: 11/27/2001] [Accepted: 12/03/2001] [Indexed: 10/17/2022]
Abstract
Small autonomously folding proteins are of interest as model systems to study protein folding, as the same molecule can be used for both experimental and computational approaches. The question remains as to how well these minimized peptide model systems represent larger native proteins. For example, is the core of a minimized protein tolerant to mutation like larger proteins are? Also, do minimized proteins use special strategies for specifying and stabilizing their folded structure? Here we examine these questions in the 35-residue autonomously folding villin headpiece subdomain (VHP subdomain). Specifically, we focus on a cluster of three conserved phenylalanine (F) residues F47, F51, and F58, that form most of the hydrophobic core. These three residues are oriented such that they may provide stabilizing aromatic-aromatic interactions that could be critical for specifying the fold. Circular dichroism and 1D-NMR spectroscopy show that point mutations that individually replace any of these three residues with leucine were destabilized, but retained the native VHP subdomain fold. In pair-wise replacements, the double mutant that retains F58 can adopt the native fold, while the two double mutants that lack F58 cannot. The folding of the double mutant that retains F58 demonstrates that aromatic-aromatic interactions within the aromatic cluster are not essential for specifying the VHP subdomain fold. The ability of the VHP subdomain to tolerate mutations within its hydrophobic core indicates that the information specifying the three dimensional structure is distributed throughout the sequence, as observed in larger proteins. Thus, the VHP subdomain is a legitimate model for larger, native proteins.
Collapse
Affiliation(s)
- Benjamin S Frank
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
19
|
Mousseau N, Derreumaux P, Barkema GT, Malek R. Sampling activated mechanisms in proteins with the activation-relaxation technique. J Mol Graph Model 2002; 19:78-86. [PMID: 11381533 DOI: 10.1016/s1093-3263(00)00134-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The activated dynamics of proteins occur on time scales of milliseconds and longer. Standard all-atom molecular dynamics simulations are limited to much shorter times, of the order of tens of nanoseconds. Therefore, many activated mechanisms that are crucial for long-time dynamics will not be observed in such molecular dynamics simulation; different methods are required. Here, we describe in detail the activation-relaxation technique (ART) that generates directly activated mechanisms. The method is defined in the configurational energy landscape and defines moves in a two step fashion: (a) a configuration is first brought from a local minimum to a nearby first-order saddle point (the activation); and (b) the configuration is relaxed to a new metastable state (the relaxation). The method has already been applied to a wide range of problems in condensed matter, including metallic glasses, amorphous semiconductors and silica glass. We review the algorithm in detail, discuss some previously published results and present simulations of activated mechanisms for a two-helix bundle protein using an all-atom energy function.
Collapse
Affiliation(s)
- N Mousseau
- Department of Physics and Astronomy, Condensed Matter and Surface Science Program, Ohio University, Athens, OH 45701, USA.
| | | | | | | |
Collapse
|
20
|
Ferrara P, Apostolakis J, Caflisch A. Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 2002; 46:24-33. [PMID: 11746700 DOI: 10.1002/prot.10001] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A solvation term based on the solvent accessible surface area (SASA) is combined with the CHARMM polar hydrogen force field for the efficient simulation of peptides and small proteins in aqueous solution. Only two atomic solvation parameters are used: one is negative for favoring the direct solvation of polar groups and the other positive for taking into account the hydrophobic effect on apolar groups. To approximate the water screening effects on the intrasolute electrostatic interactions, a distance-dependent dielectric function is used and ionic side chains are neutralized. The use of an analytical approximation of the SASA renders the model extremely efficient (i.e., only about 50% slower than in vacuo simulations). The limitations and range of applicability of the SASA model are assessed by simulations of proteins and structured peptides. For the latter, the present study and results reported elsewhere show that with the SASA model it is possible to sample a significant amount of folding/unfolding transitions, which permit the study of the thermodynamics and kinetics of folding at an atomic level of detail.
Collapse
Affiliation(s)
- Philippe Ferrara
- Department of Biochemistry, University of Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Affiliation(s)
- L Baltzer
- Department of Chemistry, Linköping University, 581 83 Linköping, Sweden.
| | | | | |
Collapse
|
22
|
Gibbs N, Clarke AR, Sessions RB. Ab initio protein structure prediction using physicochemical potentials and a simplified off-lattice model. Proteins 2001; 43:186-202. [PMID: 11276088 DOI: 10.1002/1097-0134(20010501)43:2<186::aid-prot1030>3.0.co;2-l] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study describes a computational method for ab inito protein structure prediction. Protein conformation has been modeled by using six optimized backbone torsion angles and fixed side chains approximating rotationally averaged real side chains. The approximations aim to keep complexity of the structure description to a minimum without seriously compromising the accuracy of the structural representation. An evolutionary Monte Carlo algorithm has been developed to search through this restricted conformational space to locate low-energy protein structures. A simple physicochemical force field has been developed to assess the energies of different conformations within this structural description. The corresponding residue interaction energies are based on hydrophobic, hydrophilic, steric, and hydrogen-bonding potentials. The search procedure has been used to locate native energy minima from primary sequence alone. The 3-D structures of polypeptides up to 38 residues with both beta and alpha secondary structural elements have been accurately predicted. The search procedure has been found to be highly efficient and follows an energetically and structurally plausible pathway to locate native populations. The simple force field described in the study has been compared with a more complex all-atom model and been found to be similarly effective in predicting the structures of proposed independent folding units. Proteins 2001;43:186-202.
Collapse
Affiliation(s)
- N Gibbs
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
23
|
Hill RB, Bracken C, DeGrado WF, Palmer AG. Molecular Motions and Protein Folding: Characterization of the Backbone Dynamics and Folding Equilibrium of α2D Using 13C NMR Spin Relaxation. J Am Chem Soc 2000. [DOI: 10.1021/ja001129b] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Blake Hill
- Contribution from the Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Clay Bracken
- Contribution from the Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - William F. DeGrado
- Contribution from the Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Arthur G. Palmer
- Contribution from the Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059, Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, and Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| |
Collapse
|
24
|
HILL RBLAKE, RALEIGH DANIELP, LOMBARDI ANGELA, DEGRADO WILLIAMF. De novo design of helical bundles as models for understanding protein folding and function. Acc Chem Res 2000; 33:745-54. [PMID: 11087311 PMCID: PMC3050006 DOI: 10.1021/ar970004h] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
De novo protein design has proven to be a powerful tool for understanding protein folding, structure, and function. In this Account, we highlight aspects of our research on the design of dimeric, four-helix bundles. Dimeric, four-helix bundles are found throughout nature, and the history of their design in our laboratory illustrates our hierarchic approach to protein design. This approach has been successfully applied to create a completely native-like protein. Structural and mutational analysis allowed us to explore the determinants of native protein structure. These determinants were then applied to the design of a dinuclear metal-binding protein that can now serve as a model for this important class of proteins.
Collapse
Affiliation(s)
| | | | | | - WILLIAM F. DEGRADO
- To whom correspondence should be addressed. . Telephone: (215) 898-4590. Fax: (215) 573-7229
| |
Collapse
|
25
|
DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A. De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem 2000; 68:779-819. [PMID: 10872466 DOI: 10.1146/annurev.biochem.68.1.779] [Citation(s) in RCA: 463] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
De novo protein design has recently emerged as an attractive approach for studying the structure and function of proteins. This approach critically tests our understanding of the principles of protein folding; only in de novo design must one truly confront the issue of how to specify a protein's fold and function. If we truly understand proteins, it should be possible to design receptors, enzymes, and ion channels from scratch. Further, as this understanding evolves and is further refined, it should be possible to design proteins and biomimetic polymers with properties unprecedented in nature.
Collapse
Affiliation(s)
- W F DeGrado
- Johnson Research Foundation, Pennsylvania, Philadelphia, USA.
| | | | | | | | | |
Collapse
|
26
|
Lombardi A, Summa CM, Geremia S, Randaccio L, Pavone V, DeGrado WF. Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc Natl Acad Sci U S A 2000; 97:6298-305. [PMID: 10841536 PMCID: PMC18597 DOI: 10.1073/pnas.97.12.6298] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2000] [Indexed: 11/18/2022] Open
Abstract
De novo protein design provides an attractive approach for the construction of models to probe the features required for function of complex metalloproteins. The metal-binding sites of many metalloproteins lie between multiple elements of secondary structure, inviting a retrostructural approach to constructing minimal models of their active sites. The backbone geometries comprising the metal-binding sites of zinc fingers, diiron proteins, and rubredoxins may be described to within approximately 1 A rms deviation by using a simple geometric model with only six adjustable parameters. These geometric models provide excellent starting points for the design of metalloproteins, as illustrated in the construction of Due Ferro 1 (DF1), a minimal model for the Glu-Xxx-Xxx-His class of dinuclear metalloproteins. This protein was synthesized and structurally characterized as the di-Zn(II) complex by x-ray crystallography, by using data that extend to 2.5 A. This four-helix bundle protein is comprised of two noncovalently associated helix-loop-helix motifs. The dinuclear center is formed by two bridging Glu and two chelating Glu side chains, as well as two monodentate His ligands. The primary ligands are mostly buried in the protein interior, and their geometries are stabilized by a network of hydrogen bonds to second-shell ligands. In particular, a Tyr residue forms a hydrogen bond to a chelating Glu ligand, similar to a motif found in the diiron-containing R2 subunit of Escherichia coli ribonucleotide reductase and the ferritins. DF1 also binds cobalt and iron ions and should provide an attractive model for a variety of diiron proteins that use oxygen for processes including iron storage, radical formation, and hydrocarbon oxidation.
Collapse
Affiliation(s)
- A Lombardi
- Department of Chemistry, University of Napoli "Federico II," Via Mezzocannone, 4, I-80134 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Yeagle PL, Salloum A, Chopra A, Bhawsar N, Ali L, Kuzmanovski G, Alderfer JL, Albert AD. Structures of the intradiskal loops and amino terminus of the G-protein receptor, rhodopsin. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:455-65. [PMID: 10888202 DOI: 10.1034/j.1399-3011.2000.00707.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intradiskal surface of the transmembrane protein, rhodopsin, consists of the amino terminal domain and three loops connecting six of the seven transmembrane helices. This surface corresponds to the extracellular surface of other G-protein receptors. Peptides that represent each of the extramembraneous domains on this surface (three loops and the amino terminus) were synthesized. These peptides also included residues which, based on a hydrophobic plot, could be expected to be part of the transmembrane helix. The structure of each of these peptides in solution was then determined using two-dimensional 1H nuclear magnetic resonance. All peptide domains showed ordered structures in solution. The structures of each of the peptides from intradiskal loops of rhodopsin exhibited a turn in the central region of the peptide. The ends of the peptides show an unwinding of the transmembrane helices to form this turn. The amino terminal domain peptide exhibited alpha-helical regions with breaks and bends at proline residues. This region forms a compact domain. Together, the structures for the loop and amino terminus domains indicate that the intradiskal surface of rhodopsin is ordered. These data further suggest a structural motif for short loops in transmembrane proteins. The ordered structures of these loops, in the absence of the transmembrane helices, indicate that the primary sequences of these loops are sufficient to code for the turn.
Collapse
Affiliation(s)
- P L Yeagle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
BACKGROUND A large energy gap between the native state and the non-native folded states is required for folding into a unique three-dimensional structure. The features that define this energy gap are not well understood, but can be addressed using de novo protein design. Previously, alpha(2)D, a dimeric four-helix bundle, was designed and shown to adopt a native-like conformation. The high-resolution solution structure revealed that this protein adopted a bisecting U motif. Glu7, a solvent-exposed residue that adopts many conformations in solution, might be involved in defining the unique three-dimensional structure of alpha(2)D. RESULTS A variety of hydrophobic and polar residues were substituted for Glu7 and the dynamic and thermodynamic properties of the resulting proteins were characterized by analytical ultracentrifugation, circular dichroism spectroscopy, and nuclear magnetic resonance spectroscopy. The majority of substitutions at this solvent-exposed position had little affect on the ability to fold into a dimeric four-helix bundle. The ability to adopt a unique conformation, however, was profoundly modulated by the residue at this position despite the similar free energies of folding of each variant. CONCLUSIONS Although Glu7 is not involved directly in stabilizing the native state of alpha(2)D, it is involved indirectly in specifying the observed fold by modulating the energy gap between the native state and the non-native folded states. These results provide experimental support for hypothetical models arising from lattice simulations of protein folding, and underscore the importance of polar interfacial residues in defining the native conformations of proteins.
Collapse
|
29
|
|
30
|
Albert AD, Yeagle PL. Structural aspects of the G-protein receptor, rhodopsin. VITAMINS AND HORMONES 2000; 58:27-51. [PMID: 10668394 DOI: 10.1016/s0083-6729(00)58020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- A D Albert
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | |
Collapse
|
31
|
Gibney BR, Dutton P. De novo design and synthesis of heme proteins. ADVANCES IN INORGANIC CHEMISTRY 2000. [DOI: 10.1016/s0898-8838(00)51008-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Rosenbaum DM, Roy S, Hecht MH. Screening Combinatorial Libraries of de Novo Proteins by Hydrogen−Deuterium Exchange and Electrospray Mass Spectrometry. J Am Chem Soc 1999. [DOI: 10.1021/ja991843x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel M. Rosenbaum
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009
| | - Sushmita Roy
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009
| | - Michael H. Hecht
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009
| |
Collapse
|
33
|
Mezo AR, Sherman JC. Cavitands Are Effective Templates for Inducing Stability and Nativelike Structure in de Novo Four-Helix Bundles. J Am Chem Soc 1999. [DOI: 10.1021/ja990487f] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam R. Mezo
- Contribution from the Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - John C. Sherman
- Contribution from the Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| |
Collapse
|
34
|
Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 1999; 274:25945-52. [PMID: 10464339 DOI: 10.1074/jbc.274.36.25945] [Citation(s) in RCA: 851] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease is characterized by extensive cerebral amyloid deposition. Amyloid deposits associated with damaged neuropil and blood vessels contain abundant fibrils formed by the amyloid beta-protein (Abeta). Fibrils, both in vitro and in vivo, are neurotoxic. For this reason, substantial effort has been expended to develop therapeutic approaches to control Abeta production and amyloidogenesis. Achievement of the latter goal is facilitated by a rigorous mechanistic understanding of the fibrillogenesis process. Recently, we discovered a novel intermediate in the pathway of Abeta fibril formation, the amyloid protofibril (Walsh, D. M., Lomakin, A., Benedek, G. B., Condron, M. M., and Teplow, D. B. (1997) J. Biol. Chem. 272, 22364-22372). We report here results of studies of the assembly, structure, and biological activity of these polymers. We find that protofibrils: 1) are in equilibrium with low molecular weight Abeta (monomeric or dimeric); 2) have a secondary structure characteristic of amyloid fibrils; 3) appear as beaded chains in rotary shadowed preparations examined electron microscopically; 4) give rise to mature amyloid-like fibrils; and 5) affect the normal metabolism of cultured neurons. The implications of these results for the development of therapies for Alzheimer's disease and for our understanding of fibril assembly are discussed.
Collapse
Affiliation(s)
- D M Walsh
- Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Imperiali B, Ottesen JJ. Uniquely folded mini-protein motifs. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1999; 54:177-84. [PMID: 10517154 DOI: 10.1034/j.1399-3011.1999.00121.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mini-proteins containing fewer than 40 amino acids provide simple model systems for studying protein folding and stability as well as serving as scaffolds for the rational design of new functional motifs. This article reviews current progress on the design and characterization of discretely folded mini-protein motifs.
Collapse
Affiliation(s)
- B Imperiali
- Deapartment of Chemistry, Massachusetts, Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
36
|
|
37
|
Derreumaux P. From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential. J Chem Phys 1999. [DOI: 10.1063/1.479501] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Walsh ST, Cheng H, Bryson JW, Roder H, DeGrado WF. Solution structure and dynamics of a de novo designed three-helix bundle protein. Proc Natl Acad Sci U S A 1999; 96:5486-91. [PMID: 10318910 PMCID: PMC21886 DOI: 10.1073/pnas.96.10.5486] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/1999] [Accepted: 03/10/1999] [Indexed: 11/18/2022] Open
Abstract
Although de novo protein design is an important endeavor with implications for understanding protein folding, until now, structures have been determined for only a few 25- to 30-residue designed miniproteins. Here, the NMR solution structure of a complex 73-residue three-helix bundle protein, alpha3D, is reported. The structure of alpha3D was not based on any natural protein, and yet it shows thermodynamic and spectroscopic properties typical of native proteins. A variety of features contribute to its unique structure, including electrostatics, the packing of a diverse set of hydrophobic side chains, and a loop that incorporates common capping motifs. Thus, it is now possible to design a complex protein with a well defined and predictable three-dimensional structure.
Collapse
Affiliation(s)
- S T Walsh
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Bryson JW, Desjarlais JR, Handel TM, DeGrado WF. From coiled coils to small globular proteins: design of a native-like three-helix bundle. Protein Sci 1998; 7:1404-14. [PMID: 9655345 PMCID: PMC2144029 DOI: 10.1002/pro.5560070617] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A monomolecular native-like three-helix bundle has been designed in an iterative process, beginning with a peptide that noncooperatively assembled into an antiparallel three-helix bundle. Three versions of the protein were designed in which specific interactions were incrementally added. The hydrodynamic and spectroscopic properties of the proteins were examined by size exclusion chromatography, sedimentation equilibrium, fluorescence spectroscopy, and NMR. The thermodynamics of folding were evaluated by monitoring the thermal and guanidine-induced unfolding transitions using far UV circular dichroism spectroscopy. The attainment of a unique, native-like state was achieved through the introduction of: (1) helix capping interactions; (2) electrostatic interactions between partially exposed charged residues; (3) a diverse collection of apolar side chains within the hydrophobic core.
Collapse
Affiliation(s)
- J W Bryson
- The DuPont Merck Pharmaceutical Company, Wilmington, Delaware, USA
| | | | | | | |
Collapse
|
41
|
Hill RB, DeGrado WF. Solution Structure of α2D, a Nativelike de Novo Designed Protein. J Am Chem Soc 1998. [DOI: 10.1021/ja9733649] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Blake Hill
- Contribution from The Johnson Research Foundation, Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| | - William F. DeGrado
- Contribution from The Johnson Research Foundation, Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6059
| |
Collapse
|