1
|
Exploring IDP-Ligand Interactions: tau K18 as A Test Case. Int J Mol Sci 2020; 21:ijms21155257. [PMID: 32722166 PMCID: PMC7432903 DOI: 10.3390/ijms21155257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 11/30/2022] Open
Abstract
Over the past decade intrinsically disordered proteins (IDPs) have emerged as a biologically important class of proteins, many of which are of therapeutic relevance. Here, we investigated the interactions between a model IDP system, tau K18, and nine literature compounds that have been reported as having an effect on tau in order to identify a robust IDP–ligand system for the optimization of a range of biophysical methods. We used NMR, surface plasmon resonance (SPR) and microscale thermophoresis (MST) methods to investigate the binding of these compounds to tau K18; only one showed unambiguous interaction with tau K18. Several near neighbors of this compound were synthesized and their interactions with tau K18 characterized using additional NMR methods, including 1D ligand-observed NMR, diffusion-ordered spectroscopy (DOSY) and 19F NMR. This study demonstrates that it is possible to detect and characterize IDP–ligand interactions using biophysical methods. However, care must be taken to account for possible artefacts, particularly the impact of compound solubility and where the protein has to be immobilized.
Collapse
|
2
|
Nesmelova IV, Melnikova DL, Ranjan V, Skirda VD. Translational diffusion of unfolded and intrinsically disordered proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:85-108. [PMID: 31521238 DOI: 10.1016/bs.pmbts.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Translational (or self-diffusion) coefficient in dilute solution is inversely proportional to the size of a diffusing molecule, and hence self-diffusion coefficient measurements have been applied to determine the effective hydrodynamic radii for a range of native and nonnative protein conformations. In particular, translational diffusion coefficient measurements are useful to estimate the hydrodynamic radius of natively (or intrinsically) disordered proteins in solution, and, thereby, probe the compactness of a protein as well as its change when environmental parameters such as temperature, solution pH, or protein concentration are varied. The situation becomes more complicated in concentrated solutions. In this review, we discuss the translational diffusion of disordered proteins in dilute and crowded solutions, focusing primarily on the information provided by pulsed-field gradient NMR technique, and draw analogies to well-structured globular proteins and synthetic polymers.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC, United States; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, United States.
| | | | - Venkatesh Ranjan
- Department of Chemistry, University of North Carolina, Charlotte, NC, United States
| | | |
Collapse
|
3
|
Melnikova DL, Skirda VD, Nesmelova IV. Effect of Intrinsic Disorder and Self-Association on the Translational Diffusion of Proteins: The Case of α-Casein. J Phys Chem B 2017; 121:2980-2988. [PMID: 28346777 DOI: 10.1021/acs.jpcb.7b00772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translational diffusion is the major mode of macromolecular transport in leaving organisms, and therefore it is vital to many biological and biotechnological processes. Although translational diffusion of proteins has received considerable theoretical and experimental scrutiny, much of that attention has been directed toward the description of globular proteins. The translational diffusion of intrinsically disordered proteins (IDPs), however, is much less studied. Here, we use a pulsed-gradient nuclear magnetic resonance technique (PFG NMR) to investigate the translational diffusion of a disordered protein in a wide range of concentrations using α-casein that belongs to the class of natively disordered proteins as an example.
Collapse
Affiliation(s)
- Daria L Melnikova
- Department of Physics, Kazan Federal University , Kazan 420011, Russia
| | - Vladimir D Skirda
- Department of Physics, Kazan Federal University , Kazan 420011, Russia
| | | |
Collapse
|
4
|
Pacheco V, Ma P, Thielmann Y, Hartmann R, Weiergräber OH, Mohrlüder J, Willbold D. Assessment of GABARAP self-association by its diffusion properties. JOURNAL OF BIOMOLECULAR NMR 2010; 48:49-58. [PMID: 20665069 DOI: 10.1007/s10858-010-9437-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/13/2010] [Indexed: 05/04/2023]
Abstract
Gamma-aminobutyric acid type A receptor-associated protein (GABARAP) belongs to a family of small ubiquitin-like adaptor proteins implicated in intracellular vesicle trafficking and autophagy. We have used diffusion-ordered nuclear magnetic resonance spectroscopy to study the temperature and concentration dependence of the diffusion properties of GABARAP. Our data suggest the presence of distinct conformational states and provide support for self-association of GABARAP molecules. Assuming a monomer-dimer equilibrium, a temperature-dependent dissociation constant could be derived. Based on a temperature series of (1)H(15)N heteronuclear single quantum coherence nuclear magnetic resonance spectra, we propose residues potentially involved in GABARAP self-interaction. The possible biological significance of these observations is discussed with respect to alternative scenarios of oligomerization.
Collapse
Affiliation(s)
- Victor Pacheco
- Institut für Strukturbiologie und Biophysik 3, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
5
|
Bernadó P, Blackledge M. A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering. Biophys J 2009; 97:2839-45. [PMID: 19917239 PMCID: PMC2776250 DOI: 10.1016/j.bpj.2009.08.044] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 08/28/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022] Open
Abstract
Characterization of the conformational properties of unfolded proteins is essential for understanding the mechanisms of protein folding and misfolding. This information is also fundamental to determining the relationship between flexibility and function in the highly diverse families of intrinsically disordered proteins. Here we present a self-consistent model of conformational sampling of chemically denatured proteins in agreement with experimental data reporting on long-range distance distributions in unfolded proteins using small-angle x-ray scattering and nuclear magnetic resonance pulse-field gradient-based measurements. We find that standard statistical coil models, selected from folded protein databases with secondary structural elements removed, need to be refined to correct backbone dihedral angle sampling of denatured proteins, although they appear to be appropriate for intrinsically disordered proteins. For denatured proteins, pervasive increases in the sampling of more-extended regions of Ramachandran space {50 degrees
Collapse
Affiliation(s)
- Pau Bernadó
- Institute for Research in Biomedicine, c/ Baldiri Reixac, Barcelona, Spain
| | - Martin Blackledge
- Protein Dynamics and Flexibility, Institut de Biologie Structurale, UMR 5075, Commissariat à l'Énergie Atomique-Centre National de la Recherche Scientifique-Université Joseph Fourier, Grenoble, France
| |
Collapse
|
6
|
Frembgen-Kesner T, Elcock AH. Striking Effects of Hydrodynamic Interactions on the Simulated Diffusion and Folding of Proteins. J Chem Theory Comput 2009; 5:242-56. [DOI: 10.1021/ct800499p] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Adrian H. Elcock
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
7
|
Bocian W, Sitkowski J, Tarnowska A, Bednarek E, Kawȩcki R, Koźmiński W, Kozerski L. Direct insight into insulin aggregation by 2D NMR complemented by PFGSE NMR. Proteins 2008; 71:1057-65. [DOI: 10.1002/prot.21969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Cremades N, Bueno M, Neira JL, Velázquez-Campoy A, Sancho J. Conformational Stability of Helicobacter pylori Flavodoxin. J Biol Chem 2008; 283:2883-95. [DOI: 10.1074/jbc.m705677200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Inoue K, Baden N, Terazima M. Diffusion coefficient and the secondary structure of poly-L-glutamic acid in aqueous solution. J Phys Chem B 2007; 109:22623-8. [PMID: 16853945 DOI: 10.1021/jp052897y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The diffusion coefficients (D) of poly-L-glutamic acid (PLG) at various pHs are investigated by the laser-induced transient-grating method with a new photoreactive probe molecule. The pH dependence of D is compared with that of the helical content of PLG measured by circular dichroism. It is found that the pH dependences of both quantities are very similar. Since the frictions of the translational diffusion of charged and protonated carboxyl groups are found to be similar each other, it is concluded that the conformation of the main polymer chain is the main factor in determining the diffusion process; in other words, the alpha-helix conformation makes the molecular diffusion faster. This result indicates that the conformational change of a protein can be detected by monitoring the diffusion coefficient.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
10
|
Brylinski M, Konieczny L, Roterman I. Hydrophobic collapse in late-stage folding (in silico) of bovine pancreatic trypsin inhibitor. Biochimie 2006; 88:1229-39. [PMID: 16647798 DOI: 10.1016/j.biochi.2006.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 03/15/2006] [Accepted: 03/23/2006] [Indexed: 11/25/2022]
Abstract
Hydrophobic collapse is commonly considered as a process of significance for protein folding. Many models have been applied for description of this event. A model introducing an external force field mimicking the hydrophobic environment and simultaneously the driving force for the folding process is presented in this paper. Bovine pancreatic trypsin inhibitor (BPTI) was taken as a test protein. An early-stage folding (in silico) model presented elsewhere was used to create the starting structure for hydrophobic collapse. The resulting structure was energy-refined using molecular dynamics simulation in an explicit solvent. The similarity versus the crystal structure of BPTI is estimated using visual analysis, residue-residue contacts, phi, psi angle distributions, RMSD, accessible solvent area, radii of gyration and hydrodynamic radii. A program allowing creation of early-stage folding structural forms to be created for any protein is available from http://bioinformatics.cm-uj.krakow.pl/earlystage. The program for late-stage folding simulation is available on request.
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Bioinformatics and Telemedicine, Collegium Medicum, Jagiellonian University, Kopernika 17, 31-501 Cracow, Poland
| | | | | |
Collapse
|
11
|
Xu Q, Abeygunawardana C, Ng AS, Sturgess AW, Harmon BJ, Hennessey JP. Characterization and quantification of C-polysaccharide in Streptococcus pneumoniae capsular polysaccharide preparations. Anal Biochem 2005; 336:262-72. [PMID: 15620891 DOI: 10.1016/j.ab.2004.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 11/29/2022]
Abstract
Purified capsular polysaccharide preparations from Streptococcus pneumoniae that are used for vaccine production typically contain residual levels of C-polysaccharide (C-Ps). Residual C-Ps is typically found in one of two forms, either chemically linked to the capsular polysaccharide (bound) or present by itself (free). Two analytical methods have been developed and applied to determine the relative percentages of the two C-Ps forms present in various capsular polysaccharide preparations. Both methods differentiate the two forms of C-Ps according to the difference of their hydrodynamic sizes. One method is based on labeling C-Ps with a fluorescent tag and separating the two forms of C-Ps by high-performance size exclusion chromatography with on-line refractive index and fluorescence detection, and the other method is based on measuring self-diffusion rates of the two forms of C-Ps by nuclear magnetic resonance (NMR) and quantifying each form with deconvolution. Both methods were evaluated for relative accuracy, precision, and ease of application, and they were found to provide comparable results for a large number of pneumococcal polysaccharide preparations. These analyses, combined with other quantitative NMR measurement of total C-Ps in the polysaccharide powder, provide a more refined means of evaluating the amount of each form of C-Ps in polysaccharide preparations targeted for vaccine production.
Collapse
Affiliation(s)
- Qiuwei Xu
- Bioprocess and Bioanalytical Research, Merck & Co. Inc., P.O. Box 4, West Point, PA 19486, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Platt GW, McParland VJ, Kalverda AP, Homans SW, Radford SE. Dynamics in the Unfolded State of β2-microglobulin Studied by NMR. J Mol Biol 2005; 346:279-94. [PMID: 15663944 DOI: 10.1016/j.jmb.2004.11.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 11/16/2004] [Accepted: 11/16/2004] [Indexed: 11/15/2022]
Abstract
Many proteins form amyloid-like fibrils in vitro under conditions that favour the population of partially folded conformations or denatured state ensembles. Characterising the structural and dynamic properties of these states is crucial towards understanding the mechanisms of self-assembly in amyloidosis. The aggregation of beta2-microglobulin (beta2m) into amyloid fibrils in vivo occurs in the condition known as dialysis-related amyloidosis (DRA) and the protein has been shown to form amyloid-like fibrils under acidic conditions in vitro. We have used a number of 1H-15N nuclear magnetic resonance (NMR) experiments in conjunction with site-directed mutagenesis to study the acid-unfolded state of beta2m. 15N NMR transverse relaxation experiments reveal that the acid-denatured ensemble, although predominantly unfolded at the N and C termini, contains substantial non-native structure in the central region of the polypeptide chain, stabilised by long-range interactions between aromatic residues and by the single disulphide bond. Relaxation dispersion studies indicate that the acid-unfolded ensemble involves two or more distinct species in conformational equilibrium on the micro- to millisecond time-scale. One of these species appears to be hydrophobically collapsed, as mutations in an aromatic-rich region of the protein, including residues that are solvent-exposed in the native protein, disrupt this structure and cause a consequent decrease in the population of this conformer. Thus, acid-unfolded beta2m consists of a heterogeneous ensemble of rapidly fluctuating species, some of which contain stable, non-native hydrophobic clusters. Given that amyloid assembly of beta2m proceeds with lag kinetics under the conditions of this study, a rarely populated species such as a conformer with non-native aromatic clustering could be key to the initiation of amyloidosis.
Collapse
Affiliation(s)
- Geoffrey W Platt
- School of Biochemistry and Microbiology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- H Jane Dyson
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
14
|
Fitter J. A measure of conformational entropy change during thermal protein unfolding using neutron spectroscopy. Biophys J 2003; 84:3924-30. [PMID: 12770898 PMCID: PMC1302974 DOI: 10.1016/s0006-3495(03)75120-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thermal unfolding of proteins at high temperatures is caused by a strong increase of the entropy change which lowers Gibbs free energy change of the unfolding transition (DeltaG(unf) = DeltaH - TDeltaS). The main contributions to entropy are the conformational entropy of the polypeptide chain itself and ordering of water molecules around hydrophobic side chains of the protein. To elucidate the role of conformational entropy upon thermal unfolding in more detail, conformational dynamics in the time regime of picoseconds was investigated with neutron spectroscopy. Confined internal structural fluctuations were analyzed for alpha-amylase in the folded and the unfolded state as a function of temperature. A strong difference in structural fluctuations between the folded and the unfolded state was observed at 30 degrees C, which increased even more with rising temperatures. A simple analytical model was used to quantify the differences of the conformational space explored by the observed protein dynamics for the folded and unfolded state. Conformational entropy changes, calculated on the basis of the applied model, show a significant increase upon heating. In contrast to indirect estimates, which proposed a temperature independent conformational entropy change, the measurements presented here, demonstrated that the conformational entropy change increases with rising temperature and therefore contributes to thermal unfolding.
Collapse
Affiliation(s)
- Jörg Fitter
- Research Center Jülich, IBI-2: Structural Biology, D-52425 Jülich, Germany.
| |
Collapse
|
15
|
Gottschalk M, Venu K, Halle B. Protein self-association in solution: the bovine pancreatic trypsin inhibitor decamer. Biophys J 2003; 84:3941-58. [PMID: 12770900 PMCID: PMC1302976 DOI: 10.1016/s0006-3495(03)75122-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We have used magnetic relaxation dispersion to study bovine pancreatic trypsin inhibitor (BPTI) self-association as a function of pH, salt type and concentration, and temperature. The magnetic relaxation dispersion method sensitively detects stable oligomers without being affected by other interactions. We find that BPTI decamers form cooperatively under a wide range of solution conditions with no sign of dimers or other small oligomers. Decamer formation is opposed by electrostatic repulsion among numerous cationic residues confined within a narrow channel. Accordingly, the decamer population increases with increasing pH, as cationic residues are deprotonated, and with increasing salt concentration. The salt effect cannot be described in terms of Debye screening, but involves the ion-specific sequestering of anions within the narrow channel. The lifetime of the BPTI decamer is 101 +/- 4 min at 27 degrees C. We propose that the BPTI decamer, with a heparin chain threading the decamer channel, plays a functional role in the mast cell. We also detect a higher oligomer that appears to be a subcritical nucleation cluster of 3-5 decamers. We argue that monomeric crystals form at high pH despite a high decamer population in solution, because the ion pairs that provide the critical decamer-decamer contacts are disrupted at high pH.
Collapse
Affiliation(s)
- Michael Gottschalk
- Department of Biophysical Chemistry, Lund University, SE-22100 Lund, Sweden
| | | | | |
Collapse
|
16
|
Abstract
A simple Monte Carlo method was used to generate ensembles of simulated polypeptide conformations that are restricted only by steric repulsion. The models used for these simulations were based on the sequences of four real proteins, ranging in size from 26 to 268 amino acid residues, and included all non-hydrogen atoms. Two sets of calculations were performed, one that included only intra-residue steric repulsion terms and those between adjacent residues, and one that included repulsion terms between all possible atom pairs, so as to explicitly account for the excluded volume effect. Excluded volume was found to increase the average radius of gyration of the chains by 20-40%, with the expansion factor increasing with chain length. Contrary to recent suggestions, however, the excluded volume effect did not greatly restrict the distribution of dihedral angles or favor native-like topologies. The average dimensions of the ensembles calculated with excluded volume were consistent with those measured experimentally for unfolded proteins of similar sizes under denaturing conditions, without introducing any adjustable scaling factor. The simulations also reproduced experimentally determined effective concentrations for the formation of disulfide bonds in reduced and unfolded proteins. The statistically generated ensembles included significant numbers of conformations that were nearly as compact as the corresponding native proteins, as well as many that were as accessible to solvent as a fully extended chain. On the other hand, conformations with as much buried surface area as the native proteins were very rare, as were highly extended conformations. These results suggest that the overall properties of unfolded proteins can be usefully described by a random coil model and that an unfolded polypeptide can undergo significant collapse while losing only a relatively small fraction of its conformational entropy.
Collapse
Affiliation(s)
- David P Goldenberg
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA.
| |
Collapse
|
17
|
Weljie AM, Yamniuk AP, Yoshino H, Izumi Y, Vogel HJ. Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins. Protein Sci 2003; 12:228-36. [PMID: 12538886 PMCID: PMC2312419 DOI: 10.1110/ps.0226203] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pulsed-field gradient (PFG) diffusion NMR spectroscopy studies were conducted with several helix-loop-helix regulatory Ca(2+)-binding proteins to characterize the conformational changes associated with Ca(2+)-saturation and/or binding targets. The calmodulin (CaM) system was used as a basis for evaluation, with similar hydrodynamic radii (R(h)) obtained for apo- and Ca(2+)-CaM, consistent with previously reported R(h) data. In addition, conformational changes associated with CaM binding to target peptides from myosin light chain kinase (MLCK), phosphodiesterase (PDE), and simian immunodeficiency virus (SIV) were accurately determined compared with small-angle X-ray scattering results. Both sets of data demonstrate the well-established collapse of the extended Ca(2+)-CaM molecule into a globular complex upon peptide binding. The R(h) of CaM complexes with target peptides from CaM-dependent protein kinase I (CaMKI) and an N-terminal portion of the SIV peptide (SIV-N), as well as the anticancer drug cisplatin were also determined. The CaMKI complex demonstrates a collapse analogous to that observed for MLCK, PDE, and SIV, while the SIV-N shows only a partial collapse. Interestingly, the covalent CaM-cisplatin complex shows a near complete collapse, not expected from previous studies. The method was extended to related calcium binding proteins to show that the R(h) of calcium and integrin binding protein (CIB), calbrain, and the calcium-binding region from soybean calcium-dependent protein kinase (CDPK) decrease on Ca(2+)-binding to various extents. Heteronuclear NMR spectroscopy suggests that for CIB and calbrain this is likely because of shifting the equilibrium from unfolded to folded conformations, with calbrain forming a dimer structure. These results demonstrate the utility of PFG-diffusion NMR to rapidly and accurately screen for molecular size changes on protein-ligand and protein-protein interactions for this class of proteins.
Collapse
Affiliation(s)
- Aalim M Weljie
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
18
|
Abstract
The effect of non-random conformational averaging in the urea-unfolded state on the folding pathway has been investigated in a variant of the FK506 binding protein with three additional residues at the amino terminus (FKBP(*)). Three mutations (asparagine, aspartate, and threonine) were introduced into position Q53 to enhance formation of non-native helix observed in this part of the protein in the urea-unfolded state. NMR analysis showed minor structural changes in the native state of each mutant, but additional medium-range alphaN(i,i+2) of each mutant nuclear Overhauser enhancements were observed in the urea-unfolded state that were not in FKBP(*), indicating that the mutations had a more substantial effect on the unfolded state ensemble than on the native state ensemble. Isothermal equilibrium denaturation measurements showed that the Q53T and Q53D mutants were destabilized, whereas the Q53N mutant was stabilized relative to FKBP(*) with little change in the equilibrium m values. The unfolding rates of Q53N and Q53T were similar to that of FKBP(*), but Q53D unfolded twice as fast as FKBP(*). In contrast, the mutations had a more pronounced effect on the refolding kinetics. Q53N refolded slightly faster and exhibited a kinetic folding intermediate similar to that of FKBP(*). The Q53D and Q53T mutants also refolded faster than FKBP(*) but lacked the folding intermediate, indicating that these mutants experienced a different folding trajectory and transition state than FKBP(*) and Q53N. The refolding kinetic Phi values were 0.74, 1.4 and 7.9 for Q53N, Q53T, and Q53D, respectively. The data point to Q53 functioning as a gatekeeper residue in the folding of FKBP(*). This study shows that perturbing the unfolded state ensemble via mutagenesis can provide insights into residues that play important roles in the folding pathway, and represents an attractive strategy for mapping the high-energy portions of the folding energy landscape.
Collapse
Affiliation(s)
- Alla Korepanova
- Graduate Program in Molecular Biophysics, Florida State University, 501 MBB 4380, Tallahassee, FL 32306-4380, USA
| | | | | |
Collapse
|
19
|
|
20
|
Garke G, Deckwer WD, Anspach FB. Modeling chromatographic purification of rh-bFGF with Heparin HyperD affinity sorbent using a homogeneous and a pore diffusion model. SEP SCI TECHNOL 2002. [DOI: 10.1081/ss-120002735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Choy WY, Mulder FAA, Crowhurst KA, Muhandiram DR, Millett IS, Doniach S, Forman-Kay JD, Kay LE. Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 2002; 316:101-12. [PMID: 11829506 DOI: 10.1006/jmbi.2001.5328] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The size distribution of molecules within an unfolded state of the N-terminal SH3 domain of drk (drkN SH3) has been studied by small-angle X-ray scattering (SAXS) and pulsed-field-gradient NMR (PFG-NMR) methods. An empirical model to describe this distribution in the unfolded state ensemble has been proposed based on (i) the ensemble-averaged radius of gyration and hydrodynamic radius derived from the SAXS and PFG-NMR data, respectively, and (ii) a histogram of the size distribution of structures obtained from preliminary analyses of structural parameters recorded on the unfolded state. Results show that this unfolded state, U(exch), which exists in equilibrium with the folded state, F(exch), under non-denaturing conditions, is relatively compact, with the average size of conformers within the unfolded state ensemble only 30-40% larger than the folded state structure. In addition, the model predicts a significant overlap in the size range of structures comprising the U(exch) state with those in a denatured state obtained by addition of 2 M guanidinium chloride.
Collapse
Affiliation(s)
- Wing-Yiu Choy
- Protein Engineering Network Centers of Excellence and Department of Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Woodward C, Barbar E, Carulla N, Battiste J, Barany G. Experimental approaches to protein folding based on the concept of a slow hydrogen exchange core. J Mol Graph Model 2002; 19:94-101. [PMID: 11381535 DOI: 10.1016/s1093-3263(00)00131-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In a review of protein hydrogen exchange, we concluded that the slow exchange core is the folding core. By this we mean that the elements of secondary structure carrying the slowest exchanging backbone amides will tend to be the elements of secondary structure to fold first, that partially folded proteins will tend to be most organized in the core, and that peptides made to mimic the slow exchange core will tend to show nativelike structure. These generalizations have led us to ask several experimental questions that will be examined here: (1) In partially folded and unfolded proteins, how do the dynamics and structure of core regions differ from noncore regions? (2) Can we make protein 'core modules' as peptides corresponding to the slow exchange core? Can core modules be covalently linked to make a native state in which one conformation is significantly more stable than all other accessible conformations? (3) In a mutant perturbed outside the core, what are the effects on hydrogen exchange and folding?
Collapse
Affiliation(s)
- C Woodward
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 1479 Gortner Ave. St. Paul, MN 55108, USA.
| | | | | | | | | |
Collapse
|
23
|
Wain R, Pertinhez TA, Tomlinson EJ, Hong L, Dobson CM, Ferguson SJ, Smith LJ. The cytochrome c fold can be attained from a compact apo state by occupancy of a nascent heme binding site. J Biol Chem 2001; 276:45813-7. [PMID: 11584011 DOI: 10.1074/jbc.m107572200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
NMR techniques and 8-anilino-1-napthalenesulphonate (ANS) binding studies have been used to characterize the apo state of a variant of cytochrome c(552) from Hydrogenobacter thermophilus. In this variant the two cysteines that form covalent thioether linkages to the heme group have been replaced by alanine residues (C11A/C14A). CD studies show that the apo state contains approximately 14% helical secondary structure, and measurements of hydrodynamic radii using pulse field gradient NMR methods show that it is compact (R(h), 16.6 A). The apo state binds 1 mol of ANS/mol of protein, and a linear reduction in fluorescence enhancement is observed on adding aliquots of hemin to a solution of apo C11A/C14A cytochrome c(552) with ANS bound. These results suggest that the bound ANS is located in the heme binding pocket, which would therefore be at least partially formed in the apo state. Consistent with these characteristics, the formation of the holo state of the variant cytochrome c(552) from the apo state on the addition of heme has been demonstrated using NMR techniques. The properties of the apo state of C11A/C14A cytochrome c(552) reported here contrast strongly with those of mitochondrial cytochrome c whose apo state resembles a random coil under similar conditions.
Collapse
Affiliation(s)
- R Wain
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Morar AS, Olteanu A, Young GB, Pielak GJ. Solvent-induced collapse of alpha-synuclein and acid-denatured cytochrome c. Protein Sci 2001; 10:2195-9. [PMID: 11604526 PMCID: PMC2374057 DOI: 10.1110/ps.24301] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 08/03/2001] [Accepted: 08/07/2001] [Indexed: 10/14/2022]
Abstract
The effects of solution conditions on protein collapse were studied by measuring the hydrodynamic radii of two unfolded proteins, alpha-synuclein and acid-denatured ferricytochrome c, in dilute solution and in 1 M glucose. The radius of alpha-synuclein in dilute solution is less than that predicted for a highly denatured state, and adding 1 M glucose causes further collapse. Circular dichroic data show that alpha-synuclein lacks organized structure in both dilute solution and 1 M glucose. On the other hand, the radius of acid-denatured cytochrome c in dilute solution is consistent with that of a highly denatured state, and 1 M glucose induces collapse to the size and structure of native cytochrome c. Taken together, these data show that alpha-synuclein, a natively unfolded protein, is collapsed even in dilute solution, but lacks structure.
Collapse
Affiliation(s)
- A S Morar
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
25
|
Wijesinha-Bettoni R, Dobson CM, Redfield C. Comparison of the denaturant-induced unfolding of the bovine and human alpha-lactalbumin molten globules. J Mol Biol 2001; 312:261-73. [PMID: 11545601 DOI: 10.1006/jmbi.2001.4927] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Residue-specific information on the urea-induced unfolding of the molten globule state of bovine alpha-lactalbumin (BLA) has been obtained using NMR spectroscopy. In agreement with previous studies on human alpha-lactalbumin (HLA) the unfolding process for BLA has been found to be non-cooperative. Both the alpha and beta-domains of the protein are substantially collapsed in the absence of denaturant but in both proteins the majority of the structure in the beta-domain unfolds prior to that in the alpha-domain. However, in BLA the protein unfolds completely in 10 M urea at 50 degrees C, whilst in HLA a stable core region persists even under these extreme conditions. Previous studies on HLA have identified eight residues that are crucial for the stability of the molten globule. Of these residues, only three are conserved in the sequence of BLA. By taking into consideration the differences in inter-residue contacts between the four alpha-helices arising from these substitutions, and the relative hydrophobicity of the helices in the two proteins, we show that it is possible to rationalise the observed differences in the behaviour of the molten globule states of the two proteins. Taken together, these results suggest that there may be a number of ways of stabilising a given protein fold, and the specific manner that this is achieved for a particular protein is determined by details of its sequence.
Collapse
Affiliation(s)
- R Wijesinha-Bettoni
- Oxford Centre for Molecular Sciences, Central Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QH, UK
| | | | | |
Collapse
|
26
|
Nicolay K, Braun KP, Graaf RA, Dijkhuizen RM, Kruiskamp MJ. Diffusion NMR spectroscopy. NMR IN BIOMEDICINE 2001; 14:94-111. [PMID: 11320536 DOI: 10.1002/nbm.686] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
MR offers unique tools for measuring molecular diffusion. This review focuses on the use of diffusion-weighted MR spectroscopy (DW-MRS) to non-invasively quantitate the translational displacement of endogenous metabolites in intact mammalian tissues. Most of the metabolites that are observed by in vivo MRS are predominantly located in the intracellular compartment. DW-MRS is of fundamental interest because it enables one to probe the in situ status of the intracellular space from the diffusion characteristics of the metabolites, while at the same time providing information on the intrinsic diffusion properties of the metabolites themselves. Alternative techniques require the introduction of exogenous probe molecules, which involves invasive procedures, and are also unable to measure molecular diffusion in and throughout intact tissues. The length scale of the process(es) probed by MR is in the micrometer range which is of the same order as the dimensions of many intracellular entities. DW-MRS has been used to estimate the dimensions of the cellular elements that restrict intracellular metabolite diffusion in muscle and nerve tissue. In addition, it has been shown that DW-MRS can provide novel information on the cellular response to pathophysiological changes in relation to a range of disorders, including ischemia and excitotoxicity of the brain and cancer.
Collapse
Affiliation(s)
- K Nicolay
- Department of Experimental In Vivo NMR, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Studies of unfolded and partially folded proteins provide important insight into the initiation and process of protein folding. This review focuses on the use of nmr in characterization of ensembles of proteins that model the early stages of folding. Analysis of an ensemble includes description of the number of conformations, their structure, relative populations, interconversion rates, and dynamics of subconformations. A chemically synthesized analogue of bovine pancreatic trypsin inhibitor (BPTI), [14-38](Abu), has provided a rare system for characterization of multiple partially folded conformations in slow exchange at near physiological conditions. Multidimensional nmr techniques coupled with selective labeling were used to probe different segments of the polypeptide chain. At each labeled site, there is evidence of slow interconversion between two families of partially folded conformations that in themselves are ensembles of rapidly interconverting conformers. All these conformers display significantly more order in the core relative to the rest of the molecule. For other variants of BPTI that are unfolded at equilibrium, the most ordered structure is also favored in the hydrophobic core residues of the native protein. This is consistent with the hypothesis that the residues that are the first to fold go on to form the most stable, structure-determining part of the protein.
Collapse
Affiliation(s)
- E Barbar
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
28
|
Morgan CJ, Wilkins DK, Smith LJ, Kawata Y, Dobson CM. A compact monomeric intermediate identified by NMR in the denaturation of dimeric triose phosphate isomerase. J Mol Biol 2000; 300:11-6. [PMID: 10864494 DOI: 10.1006/jmbi.2000.3834] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The denaturation of triose phosphate isomerase (TIM) from Saccharomyces cerevisiae by guanidine hydrochlorids at pH 7.2 has been monitored by NMR spectroscopy in conjunction with optical spectroscopy. In the absence of denaturant, the hydrodynamic radius of 29.6(+/-0.25) A and the substantial chemical shift dispersion evident in the NMR spectrum are consistent with the highly structured dimeric native state of the protein. On the addition of 2. 2 M guanidine hydrochloride the effective hydrodynamic radius increases to 51.4(+/-0.43) A, consistent with that anticipated for the polypeptide chain in a highly unstructured random coil state. In 1.1 M guanidine hydrochloride, however, the effective hydrodynamic radius is 24.0(+/-0.25) A, a value substantially decreased relative to that of the native dimeric state but very close to that anticipated for a monomeric species with native-like compaction (23. 5 A). The lack of chemical shift dispersion indicates, however, that few tertiary interactions persist within this species. Far UV CD and intrinsic fluorescence measurements show that this compact intermediate retains significant secondary structure and that on average the fluorophores are partially excluded from solvent. Such a species could be important in the formation of dimeric TIM from its unfolded state.
Collapse
Affiliation(s)
- C J Morgan
- Oxford Centre for Molecular Sciences, New Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QT, UK
| | | | | | | | | |
Collapse
|
29
|
Yao S, Howlett GJ, Norton RS. Peptide self-association in aqueous trifluoroethanol monitored by pulsed field gradient NMR diffusion measurements. JOURNAL OF BIOMOLECULAR NMR 2000; 16:109-119. [PMID: 10723990 DOI: 10.1023/a:1008382624724] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Defining the self-association state of a molecule in solution can be an important step in NMR-based structure determination. This is particularly true of peptides, where there can be a relatively small number of long-range interactions and misinterpretation of an intermolecular NOE as an intramolecular contact can have a dramatic influence on the final calculated structure. In this paper, we have investigated the use of translational self-diffusion coefficient measurements to detect self-association in aqueous trifluoroethanol of three peptides which are analogues of the C-terminal region of human neuropeptide Y. Experimentally measured diffusion coefficients were extrapolated to D0, the limiting value as the peptide concentration approaches zero, and then converted to D(20,w), the diffusion coefficient after correction for temperature and the viscosity of the solvent. A decrease in D(20,w) of about 16% was found for all three peptides in aqueous TFE (30% by volume) compared with water, which is in reasonable agreement with the expected decrease upon dimerisation, the presence of which was indicated by sedimentation equilibrium measurements. Apparent molecular masses of these peptides in both solutions were also calculated from their diffusion coefficients and similar results were obtained. Several potential internal standards, including acetone, acetonitrile, dimethylsulfoxide and dioxane, were assessed as monitors of solution viscosity over a range of trifluoroethanol concentrations. Compared with independent measurements of viscosity, acetonitrile was the most accurate standard among these four. The practical limitations of a quantitative assessment of peptide self-association from translational diffusion coefficients measured by PFGNMR, including the calculation of apparent molecular mass, are also discussed.
Collapse
Affiliation(s)
- S Yao
- Biomolecular Research Institute, Parkville, VIC, Australia
| | | | | |
Collapse
|
30
|
Abstract
Recent studies of the refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) have shown that a previously unidentified intermediate with a single disulfide is formed much more rapidly than any other one-disulfide species. This intermediate contains a disulfide that is present in the native protein (between Cys14 and 38), but it is thermodynamically less stable than the other two intermediates with single native disulfides. To characterize the role of the [14-38] intermediate and the factors that favor its formation, detailed kinetic and mutational analyses of the early disulfide-formation steps were carried out. The results of these studies indicate that the formation of [14-38] from the fully reduced protein is favored by both local electrostatic effects, which enhance the reactivities of the Cys14 and 38 thiols, and conformational tendencies that are diminished by the addition of urea and are enhanced at lower temperatures. At 25 degrees C and pH 7.3, approximately 35% of the reduced molecules were found to initially form the 14-38 disulfide, but the majority of these molecules then undergo intramolecular rearrangements to generate non-native disulfides, and subsequently the more stable intermediates with native disulfides. Amino acid replacements, other than those involving Cys residues, were generally found to have only small effects on either the rate of forming [14-38] or its thermodynamic stability, even though many of the same substitutions greatly destabilized the native protein and other disulfide-bonded intermediates. In addition, those replacements that did decrease the steady-state concentration of [14-38] did not adversely affect further folding and disulfide formation. These results suggest that the weak and transient interactions that are often detected in unfolded proteins and early folding intermediates may, in some cases, not persist or promote subsequent folding steps.
Collapse
Affiliation(s)
- G Bulaj
- Department of Biology, University of Utah, Salt Lake City 84112-0840, USA
| | | |
Collapse
|
31
|
Zdanowski K, Dadlez M. Stability of the residual structure in unfolded BPTI in different conditions of temperature and solvent composition measured by disulphide kinetics and double mutant cycle analysis. J Mol Biol 1999; 287:433-45. [PMID: 10080904 DOI: 10.1006/jmbi.1999.2622] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding funnel model proposes a clear description of the protein folding process. To test this model, additional data on the structures populated in different stages of folding and their influence on further folding are required. Here, we use the double mutant strategy and disulphide formation kinetics measurements to study the impact on folding of the residual structure in unfolded bovine pancreatic trypsin inhibitor (BPTI). We show how five amino acid residues stabilise a folding initiation site, possibly a beta-hairpin, and influence the shape of the upper region of the folding funnel in BPTI in different conditions of temperature and solvent composition. Our data provide experimental evidence for the mechanism by which a fast search for a proper chain topology is made possible early in the folding of proteins. The results apply to proteins in general, not necessarily just to disulphide bonded proteins, since cysteine residues are used here merely as reporter groups.
Collapse
Affiliation(s)
- K Zdanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5A, Warszawa, 02-106, Poland
| | | |
Collapse
|
32
|
Tillett ML, Horsfield MA, Lian LY, Norwood TJ. Protein-ligand interactions measured by 15N-filtered diffusion experiments. JOURNAL OF BIOMOLECULAR NMR 1999; 13:223-232. [PMID: 10328664 DOI: 10.1023/a:1008301324954] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
NMR diffusion coefficient measurements have been shown to be sensitive to the conformational and oligomeric states of proteins. Recently, heteronuclear-filtered diffusion experiments have been proposed [Dingley et al. (1997) J. Biomol. NMR, 10, 1-8]. Several new heteronuclear-filtered diffusion pulse sequences are proposed which are shown to have superior sensitivity to those previously proposed. One of these new heteronuclear-filtered diffusion experiments has been used to study the binding of an SH3 domain to a peptide. Using this system, we show that it is possible to measure binding constants from diffusion coefficient measurements.
Collapse
Affiliation(s)
- M L Tillett
- Biological NMR Centre, Leicester University, U.K
| | | | | | | |
Collapse
|
33
|
Callihan DE, Logan TM. Conformations of peptide fragments from the FK506 binding protein: comparison with the native and urea-unfolded states. J Mol Biol 1999; 285:2161-75. [PMID: 9925792 DOI: 10.1006/jmbi.1998.2440] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The helix-forming tendency of seven peptide fragments corresponding with the entire sequence of the FK506 binding protein (FKBP) has been investigated in aqueous buffer and in 2,2,2-trifluoroethanol (TFE) using CD and NMR spectroscopy. All fragments exhibited random coil conformations in aqueous buffer, whereas the amount of helix induced in the peptide fragments by TFE varied. The fragment with the highest degree of helicity in TFE corresponded with the single (alpha-helix in native FKBP. Fragments corresponding with beta-strands 2 and 3 also exhibited strong propensity towards helix formation. In contrast, the fragment corresponding with beta-strand 1 did not form helix in TFE. The inherent helix-forming tendencies are interpreted in light of the native structure to suggest possible folding nucleation sites. Conformational sampling in each peptide fragment was also compared with that observed in urea-denatured FKBP. With the exception of the fragment corresponding with beta-strand 2, the formation of helical structures in the peptide fragments in TFE was correlated with the observation of turn and/or helix conformers in urea-unfolded FKBP. Surprisingly, peptide fragments in aqueous solution were less structured than the corresponding regions in urea-denatured FKBP. The conformational differences between the peptide fragments and unfolded FKBP were not due to the urea buffer or to differences in their rotational correlation times. We conclude that local amino acid interactions are not generally sufficient to account for the formation of non-random conformations in unfolded FKBP. Formation of non-random structures in unfolded FKBP may require stabilization of incipient turn or helical conformations through transient contact with non-local non-polar residues.
Collapse
Affiliation(s)
- D E Callihan
- Department of Chemistry and Program in Structural Biology, Florida State University, Tallahassee, FL, 32306-4380, USA
| | | |
Collapse
|
34
|
Kazmirski SL, Daggett V. Simulations of the structural and dynamical properties of denatured proteins: the "molten coil" state of bovine pancreatic trypsin inhibitor. J Mol Biol 1998; 277:487-506. [PMID: 9514766 DOI: 10.1006/jmbi.1998.1634] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dynamic nature of denatured, unfolded proteins makes it difficult to characterize their structures experimentally. To complement experiment and to obtain more detailed information about the structure and dynamic behavior of the denatured state, we have performed eleven 2.5 ns molecular dynamics simulations of reduced bovine pancreatic trypsin inhibitor (BPTI) at high temperature in water and a control simulation at 298 K, for a total of 30 ns of simulation time. In a neutral pH environment (acidic residues ionized), the unfolded protein structures were compact with an average radius of gyration 9% greater than the native state. The compact conformations resulted from the transient formation of non-native hydrophobic clusters, turns and salt bridges. However, when the acidic residues were protonated, the protein periodically expanded to a radius of gyration of 18 to 20 A. The early steps in unfolding were similar in the different simulations until passing through the major transition state of unfolding. Afterwards, unfolding proceeded through one of two general pathways with respect to secondary structure: loss of the C-terminal helix followed by loss of beta-structure or the opposite. To determine whether the protein preferentially sampled particular conformational substates in the denatured state, pairwise Calpha root-mean-square deviations were measured between all structures, but similar structures were found between only two trajectories. Yet, similar composite properties (secondary structure content, side-chain and water contacts, solvent accessible surface area, etc.) were observed for the structures that unfolded through different pathways. Somewhat surprisingly, the unfolded structures are in agreement with both past experiments suggesting that reduced BPTI is a random coil and more recent experiments providing evidence for non-random structure, demonstrating how ensembles of fluctuating structures can give rise to experimental observables that are seemingly at odds.
Collapse
Affiliation(s)
- S L Kazmirski
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195-7610, USA
| | | |
Collapse
|