1
|
Sanches K, Wai DCC, Norton RS. Conformational dynamics in peptide toxins: Implications for receptor interactions and molecular design. Toxicon 2021; 201:127-140. [PMID: 34454969 DOI: 10.1016/j.toxicon.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Peptide toxins are potent and often exquisitely selective probes of the structure and function of ion channels and receptors, and are therefore of significant interest to the pharmaceutical and biotech industries as both pharmacological tools and therapeutic leads. The three-dimensional structures of peptide toxins are essential as a basis for understanding their structure-activity relationships and their binding to target receptors, as well as in guiding the design of analogues with modified potency and/or selectivity for key targets. NMR spectroscopy has played a key role in elucidating the structures of peptide toxins and probing their structure-function relationships. In this article, we highlight the additional important contribution of NMR to characterising the dynamics of peptide toxins. We also compare the information available from NMR measurements with that afforded by molecular dynamics simulations. We describe several examples of the importance of dynamics measurements over a range of timescales for understanding the structure-function relationships of peptide toxins and their receptor engagement. Peptide toxins that inhibit the voltage-gated potassium channel KV1.3 with pM affinities display different degrees of conformational flexibility, even though they contain multiple disulfide bonds, and this flexibility can affect the relative orientation of residues that have been shown to be critical for channel binding. Information on the dynamic properties of peptide toxins is important in the design of analogues or mimetics where receptor-bound structures are not available.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
2
|
Paul George AA, Heimer P, Maaß A, Hamaekers J, Hofmann-Apitius M, Biswas A, Imhof D. Insights into the Folding of Disulfide-Rich μ-Conotoxins. ACS OMEGA 2018; 3:12330-12340. [PMID: 30411002 PMCID: PMC6217517 DOI: 10.1021/acsomega.8b01465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The study of protein conformations using molecular dynamics (MD) simulations has been in place for decades. A major contribution to the structural stability and native conformation of a protein is made by the primary sequence and disulfide bonds formed during the folding process. Here, we investigated μ-conotoxins GIIIA, KIIIA, PIIIA, SIIIA, and SmIIIA as model peptides possessing three disulfide bonds. Their NMR structures were used for MD simulations in a novel approach studying the conformations between the folded and the unfolded states by systematically breaking the distinct disulfide bonds and monitoring the conformational stability of the peptides. As an outcome, the use of a combination of the existing knowledge and results from the simulations to classify the studied peptides within the extreme models of disulfide folding pathways, namely the bovine pancreatic trypsin inhibitor pathway and the hirudin pathway, is demonstrated. Recommendations for the design and synthesis of cysteine-rich peptides with a reduced number of disulfide bonds conclude the study.
Collapse
Affiliation(s)
- Ajay Abisheck Paul George
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Pascal Heimer
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Astrid Maaß
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Jan Hamaekers
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department
of Virtual Material Design and Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific
Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
- Bonn-Aachen
International Center for Information Technology, University of Bonn, Endenicher Allee 19 C, D-53115 Bonn, Germany
| | - Arijit Biswas
- Institute
for Experimental Hematology, University
Hospital Bonn, Sigmund-Freud-Straße
25, D-53127 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical
Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
3
|
Castro J, Grundy L, Deiteren A, Harrington AM, O'Donnell T, Maddern J, Moore J, Garcia-Caraballo S, Rychkov GY, Yu R, Kaas Q, Craik DJ, Adams DJ, Brierley SM. Cyclic analogues of α-conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. Br J Pharmacol 2018; 175:2384-2398. [PMID: 29194563 DOI: 10.1111/bph.14115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with irritable bowel syndrome suffer from chronic visceral pain (CVP) and limited analgesic therapeutic options are currently available. We have shown that α-conotoxin Vc1.1 induced activation of GABAB receptors on the peripheral endings of colonic afferents and reduced nociceptive signalling from the viscera. However, the analgesic efficacy of more stable, cyclized versions of Vc1.1 on CVP remains to be determined. EXPERIMENTAL APPROACH Using ex vivo colonic afferent preparations from mice, we determined the inhibitory actions of cyclized Vc1.1 (cVc1.1) and two cVc1.1 analogues on mouse colonic nociceptors in healthy and chronic visceral hypersensitivity (CVH) states. Using whole-cell patch clamp recordings, we also assessed the inhibitory actions of these peptides on the neuronal excitability of colonic innervating dorsal root ganglion neurons. In vivo, the analgesic efficacy of these analogues was assessed by determining the visceromotor response to colorectal distension in healthy and CVH mice. KEY RESULTS cVc1.1 and the cVc1.1 analogues, [C2H,C8F]cVc1.1 and [N9W]cVc1.1, all caused concentration-dependent inhibition of colonic nociceptors from healthy mice. Inhibition by these peptides was greater than those evoked by linear Vc1.1 and was substantially greater in colonic nociceptors from CVH mice. cVc1.1 also reduced excitability of colonic dorsal root ganglion neurons, with greater effect in CVH neurons. CVH mice treated with cVc1.1 intra-colonically displayed reduced pain responses to noxious colorectal distension compared with vehicle-treated CVH mice. CONCLUSIONS AND IMPLICATIONS Cyclic versions of Vc1.1 evoked significant anti-nociceptive actions in CVH states, suggesting that they could be novel candidates for treatment of CVP. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Tracey O'Donnell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jessi Moore
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Grigori Y Rychkov
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Rilei Yu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
4
|
Gell AL, Groysbeck N, Becker CFW, Conibear AC. A comparative study of synthetic and semisynthetic approaches for ligating the epidermal growth factor to a bivalent scaffold. J Pept Sci 2017; 23:871-879. [DOI: 10.1002/psc.3051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Lena Gell
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Nadja Groysbeck
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Christian F. W. Becker
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| | - Anne C. Conibear
- Faculty of Chemistry, Institute of Biological Chemistry; University of Vienna; Währinger Straße 38 1090 Vienna Austria
| |
Collapse
|
5
|
Alqudah M, Qandeel H, Al-Zoubi N, Alqudah A, Bani-Ahmad M, Alzoubi A. Changes of serum growth factors profiles in patients with venous thromboembolism. Scandinavian Journal of Clinical and Laboratory Investigation 2017; 77:595-600. [DOI: 10.1080/00365513.2017.1379607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Alqudah
- Department of Pathology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Haitham Qandeel
- Department of General Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nabil Al-Zoubi
- Department of General Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Mohammad Bani-Ahmad
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Abdallah Alzoubi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Yazici O, Sendur MAN, Ozdemir N, Aksoy S. Targeted therapies in gastric cancer and future perspectives. World J Gastroenterol 2016; 22:471-89. [PMID: 26811601 PMCID: PMC4716053 DOI: 10.3748/wjg.v22.i2.471] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/05/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Advanced gastric cancer (AGC) is associated with a high mortality rate and, despite multiple new chemotherapy options, the survival rates of patients with AGC remains poor. After the discovery of targeted therapies, research has focused on the new treatment options for AGC. In the last two decades, many targeted molecules were developed against AGC. Currently, two targeted therapy molecules have been approved for patients with AGC. In 2010, trastuzumab was the first molecule shown to improve survival in patients with HER2-positive AGC as part of a first-line combination regimen. In 2014, ramucirumab was the second targeted molecule to improve survival rates and was suggested as treatment for patients with AGC who had progressed after first-line platinum plus fluoropyrimidine with or without anthracycline chemotherapy. Ramucirumab was the first targeted therapy acting as a single agent in patients with advanced gastroesophageal cancers. Although these two molecules were introduced into clinical use, many other promising molecules have been tested in phase I-II trials. It is obvious that in the near future many different targeted therapies will be in use for treatment of AGC. In this review, the current status of targeted therapies in the treatment of AGC and gastroesophageal junction tumors, including HER (2-3) inhibitors, epidermal growth factor receptor inhibitors, tyrosine kinase inhibitors, antiangiogenic agents, c-MET inhibitors, mammalian target of rapamycin inhibitors, agents against other molecular pathways fibroblast growth factor, Claudins, insulin-like growth factor, heat shock proteins, and immunotherapy, will be discussed.
Collapse
Affiliation(s)
- Ozan Yazici
- Department of Medical Oncology, Ankara Numune Education and Research Hospital, Ankara 06100, Turkey
| | - M Ali Nahit Sendur
- Department of Medical Oncology, Yildirim Beyazit University, Ankara 06100, Turkey
| | - Nuriye Ozdemir
- Department of Medical Oncology, Ankara Numune Education and Research Hospital, Ankara 06100, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06100, Turkey
| |
Collapse
|
7
|
Saksena R, Gao C, Wicox M, de Mel A. Tubular organ epithelialisation. J Tissue Eng 2016; 7:2041731416683950. [PMID: 28228931 PMCID: PMC5308438 DOI: 10.1177/2041731416683950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell-scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts.
Collapse
Affiliation(s)
- Rhea Saksena
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Chuanyu Gao
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mathew Wicox
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Achala de Mel
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
8
|
Yu R, Seymour VAL, Berecki G, Jia X, Akcan M, Adams DJ, Kaas Q, Craik DJ. Less is More: Design of a Highly Stable Disulfide-Deleted Mutant of Analgesic Cyclic α-Conotoxin Vc1.1. Sci Rep 2015; 5:13264. [PMID: 26290113 PMCID: PMC4542547 DOI: 10.1038/srep13264] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclic α-conotoxin Vc1.1 (cVc1.1) is an orally active peptide with analgesic activity in rat models of neuropathic pain. It has two disulfide bonds, which can have three different connectivities, one of which is the native and active form. In this study we used computational modeling and nuclear magnetic resonance to design a disulfide-deleted mutant of cVc1.1, [C2H,C8F]cVc1.1, which has a larger hydrophobic core than cVc1.1 and, potentially, additional surface salt bridge interactions. The new variant, hcVc1.1, has similar structure and serum stability to cVc1.1 and is highly stable at a wide range of pH and temperatures. Remarkably, hcVc1.1 also has similar selectivity to cVc1.1, as it inhibited recombinant human α9α10 nicotinic acetylcholine receptor-mediated currents with an IC50 of 13 μM and rat N-type (Cav2.2) and recombinant human Cav2.3 calcium channels via GABAB receptor activation, with an IC50 of ~900 pM. Compared to cVc1.1, the potency of hcVc1.1 is reduced three-fold at both analgesic targets, whereas previous attempts to replace Vc1.1 disulfide bonds by non-reducible dicarba linkages resulted in at least 30-fold decreased activity. Because it has only one disulfide bond, hcVc1.1 is not subject to disulfide bond shuffling and does not form multiple isomers during peptide synthesis.
Collapse
Affiliation(s)
- Rilei Yu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Victoria A L Seymour
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Géza Berecki
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Xinying Jia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Muharrem Akcan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Adams
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria, 3083, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
9
|
Furman JL, Chiu M, Hunter MJ. Early engineering approaches to improve peptide developability and manufacturability. AAPS JOURNAL 2014; 17:111-20. [PMID: 25338742 DOI: 10.1208/s12248-014-9681-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 02/08/2023]
Abstract
Downstream success in Pharmaceutical Development requires thoughtful molecule design early in the lifetime of any potential therapeutic. Most therapeutic monoclonal antibodies are quite similar with respect to their developability properties. However, the properties of therapeutic peptides tend to be as diverse as the molecules themselves. Analysis of the primary sequence reveals sites of potential adverse posttranslational modifications including asparagine deamidation, aspartic acid isomerization, methionine, tryptophan, and cysteine oxidation and, potentially, chemical and proteolytic degradation liabilities that can impact the developability and manufacturability of a potential therapeutic peptide. Assessing these liabilities, both biophysically and functionally, early in a molecule's lifetime can drive a more effective path forward in the drug discovery process. In addition to these potential liabilities, more complex peptides that contain multiple disulfide bonds can pose particular challenges with respect to production and manufacturability. Approaches to reducing the disulfide bond complexity of these peptides are often explored with mixed success. Proteolytic degradation is a major contributor to decreased half-life and efficacy. Addressing this aspect of peptide stability early in the discovery process increases downstream success. We will address aspects of peptide sequence analysis, molecule complexity, developability analysis, and manufacturing routes that drive the decision making processes during peptide therapeutic development.
Collapse
Affiliation(s)
- Jennifer L Furman
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, California, 92121, USA
| | | | | |
Collapse
|
10
|
Cidon EU, Ellis SG, Inam Y, Adeleke S, Zarif S, Geldart T. Molecular targeted agents for gastric cancer: a step forward towards personalized therapy. Cancers (Basel) 2013; 5:64-91. [PMID: 24216699 PMCID: PMC3730303 DOI: 10.3390/cancers5010064] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/01/2013] [Accepted: 01/14/2013] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) represents a major cancer burden worldwide, and remains the second leading cause of cancer-related death. Due to its insidious nature, presentation is usually late and often carries a poor prognosis. Despite having improved treatment modalities over the last decade, for most patients only modest improvements have been seen in overall survival. Recent progress in understanding the molecular biology of GC and its signaling pathways, offers the hope of clinically significant promising advances for selected groups of patients. Patients with Her-2 overexpression or amplification have experienced benefit from the integration of monoclonal antibodies such as trastuzumab to the standard chemotherapy. Additionally, drugs targeting angiogenesis (bevacizumab, sorafenib, sunitinib) are under investigation and other targeted agents such as mTOR inhibitors, anti c-MET, polo-like kinase 1 inhibitors are in preclinical or early clinical development. Patient selection and the development of reliable biomarkers to accurately select patients most likely to benefit from these tailored therapies is now key. Future trials should focus on these advances to optimize the treatment for GC patients. This article will review recent progress and current status of targeted agents in GC.
Collapse
Affiliation(s)
- Esther Una Cidon
- Medical Oncology Department, The Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, Castle Lane East, BH7 7DW Bournemouth, Dorset, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Bager R, Kristensen TK, Jensen JK, Szczur A, Christensen A, Andersen LM, Johansen JS, Larsen N, Baatrup E, Huang M, Ploug M, Andreasen PA. Urokinase-type plasminogen activator-like proteases in teleosts lack genuine receptor-binding epidermal growth factor-like domains. J Biol Chem 2012; 287:27526-36. [PMID: 22733817 DOI: 10.1074/jbc.m112.369207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activation catalyzed by urokinase-type plasminogen activator (uPA) plays an important role in normal and pathological tissue remodeling processes. Since its discovery in the mid-1980s, the cell membrane-anchored urokinase-type plasminogen activator receptor (uPAR) has been believed to be central to the functions of uPA, as uPA-catalyzed plasminogen activation activity appeared to be confined to cell surfaces through the binding of uPA to uPAR. However, a functional uPAR has so far only been identified in mammals. We have now cloned, recombinantly produced, and characterized two zebrafish proteases, zfuPA-a and zfuPA-b, which by several criteria are the fish orthologs of mammalian uPA. Thus, both proteases catalyze the activation of fish plasminogen efficiently and both proteases are inhibited rapidly by plasminogen activator inhibitor-1 (PAI-1). But zfuPA-a differs from mammalian uPA by lacking the exon encoding the uPAR-binding epidermal growth factor-like domain; zfuPA-b differs from mammalian uPA by lacking two cysteines of the epidermal growth factor-like domain and a uPAR-binding sequence comparable with that found in mammalian uPA. Accordingly, no zfuPA-b binding activity could be found in fish white blood cells or fish cell lines. We therefore propose that the current consensus of uPA-catalyzed plasminogen activation taking place on cell surfaces, derived from observations with mammals, is too narrow. Fish uPAs appear incapable of receptor binding in the manner known from mammals and uPA-catalyzed plasminogen activation in fish may occur mainly in solution. Studies with nonmammalian vertebrate species are needed to obtain a comprehensive understanding of the mechanism of plasminogen activation.
Collapse
Affiliation(s)
- René Bager
- Department of Molecular Biology and Genetics, Aarhus University, 10 Gustav Wieds Vej, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chang JY. Diverse pathways of oxidative folding of disulfide proteins: underlying causes and folding models. Biochemistry 2011; 50:3414-31. [PMID: 21410235 DOI: 10.1021/bi200131j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathway of oxidative folding of disulfide proteins exhibits a high degree of diversity, which is manifested mainly by distinct structural heterogeneity and diverse rearrangement pathways of folding intermediates. During the past two decades, the scope of this diversity has widened through studies of more than 30 disulfide-rich proteins by various laboratories. A more comprehensive landscape of the mechanism of protein oxidative folding has emerged. This review will cover three themes. (1) Elaboration of the scope of diversity of disulfide folding pathways, including the two opposite extreme models, represented by bovine pancreatic trypsin inhibitor (BPTI) and hirudin. (2) Demonstration of experimental evidence accounting for the underlying mechanism of the folding diversity. (3) Discussion of the convergence between the extreme models of oxidative folding and models of conventional conformational folding (framework model, hydrophobic collapse model).
Collapse
Affiliation(s)
- Jui-Yoa Chang
- Research Center for Protein Chemistry, Institute of Molecular Medicine, Department of Biochemistry and Molecular Biology, Medical School, The University of Texas, Houston, 77030, USA.
| |
Collapse
|
13
|
Jiang N, Ma J. Influence of Disulfide Connectivity, Electrostatics, and Hydrophobicity on the Conformational Variations of α-Conotoxin GI Single-Disulfide Analogues: Simulations with Polarizable Force Field. J Phys Chem B 2010; 114:11241-50. [DOI: 10.1021/jp102844h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, 210093, People’s Republic of China
| |
Collapse
|
14
|
Laflamme C, Curt S, Rouabhia M. Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch Oral Biol 2010; 55:689-701. [PMID: 20627196 DOI: 10.1016/j.archoralbio.2010.06.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 06/04/2010] [Accepted: 06/21/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the in vitro osteogenic activity of EGF in association with bone morphogenetic proteins BMP2 and BMP7. METHODS SaOS-2 (osteoblast-like cell line from human osteosarcoma) were cultured in the presence of EGF and BMPs for various culture periods to assess (a) cell proliferation by MTT assay, (b) Runx2, alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression using quantitative RT-PCR and ELISA, and (c) bone tissue mineralization using Alizarin Red staining. RESULTS EGF alone was able to stimulate osteoblast growth in a time-dependent manner. When mixed with BMP2, BMP7, and their combination, EGF greatly promoted osteoblast growth, compared to the BMP- and EGF-stimulated cells, suggesting a possible synergistic effect between EGF and BMPs on osteoblast growth. Stimulation with EGF, EGF/BMP2, and EGF/BMP2/BMP7 for 7 days upregulated Runx2 mRNA expression by the osteoblasts. EGF downregulated ALP mRNA expression, which was recovered when the BMP2/BMP7 combination was added to the osteoblast culture. Tested on OC mRNA expression, EGF had no effect and inhibited the enhancing effect of BMP2 and BMP7 on osteocalcin expression. The bone mineralization assay showed that EGF reduced both the number and size of the bone nodules. This reducing effect was observable even in the presence of BMP2 and BMP7. CONCLUSION This study demonstrated that EGF may act in the early phase to promote osteoblast growth and specific marker expression rather than the late phase involving cell differentiation/mineralization.
Collapse
Affiliation(s)
- Claude Laflamme
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Pavillon de médecine dentaire, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
15
|
Yan C, Pattani V, Tunnell JW, Ren P. Temperature-induced unfolding of epidermal growth factor (EGF): insight from molecular dynamics simulation. J Mol Graph Model 2010; 29:2-12. [PMID: 20466569 DOI: 10.1016/j.jmgm.2010.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 03/15/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
Thermal disruption of protein structure and function is a potentially powerful therapeutic vehicle. With the emerging nanoparticle-targeting and femtosecond laser technology, it is possible to deliver heating locally to specific molecules. It is therefore important to understand how fast a protein can unfold or lose its function at high temperatures, such as near the water boiling point. In this study, the thermal damage of EGF was investigated by combining the replica exchange (136 replicas) and conventional molecular dynamics simulations. The REMD simulation was employed to rigorously explore the free-energy landscape of EGF unfolding. Interestingly, besides the native and unfolded states, we also observed a distinct molten globule (MG) state that retained substantial amount of native contacts. Based on the understanding that which the unfolding of EGF is a three-state process, we have examined the unfolding kinetics of EGF (N-->MG and MG-->D) with multiple 20-ns conventional MD simulations. The Arrhenius prefactors and activation energy barriers determined from the simulation are within the range of previously studied proteins. In contrast to the thermal damage of cells and tissues which take place on the time scale of seconds to hours at relatively low temperatures, the denaturation of proteins occur in nanoseconds when the temperature of heat bath approaches the boiling point.
Collapse
Affiliation(s)
- Chunli Yan
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
16
|
McMellen ME, Wakeman D, Longshore SW, McDuffie LA, Warner BW. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg 2010; 19:35-43. [PMID: 20123272 PMCID: PMC2891767 DOI: 10.1053/j.sempedsurg.2009.11.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural and functional changes during intestinal adaptation are necessary to compensate for the sudden loss of digestive and absorptive capacity after massive intestinal resection. When the adaptive response is inadequate, short bowel syndrome (SBS) ensues and patients are left with the requirement for parenteral nutrition and its associated morbidities. Several hormones have been studied as potential enhancers of the adaptation process. The effects of growth hormone, insulin-like growth factor-1, epidermal growth factor, and glucagon-like peptide 2 on adaptation have been studied extensively in animal models. In addition, growth hormone and glucagon-like peptide 2 have shown promise for the treatment of SBS in clinical trials in human beings. Several lesser studied hormones, including leptin, corticosteroids, thyroxine, testosterone, and estradiol, are also discussed.
Collapse
Affiliation(s)
- Mark E. McMellen
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek Wakeman
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon W. Longshore
- Department of Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Lucas A. McDuffie
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Brad W. Warner
- Division of Pediatric Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA,Correspondence: Brad W. Warner, MD Division of Pediatric Surgery St. Louis Children's Hospital, One Children's Place Suite 5S40, St. Louis, MO 63110 Tel.: 1 314 454 6022 Fax: 1 314 454 2442
| |
Collapse
|
17
|
Khoo KK, Feng ZP, Smith BJ, Zhang MM, Yoshikami D, Olivera BM, Bulaj G, Norton RS. Structure of the analgesic mu-conotoxin KIIIA and effects on the structure and function of disulfide deletion. Biochemistry 2009; 48:1210-9. [PMID: 19170536 DOI: 10.1021/bi801998a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mu-conotoxin mu-KIIIA, from Conus kinoshitai, blocks mammalian neuronal voltage-gated sodium channels (VGSCs) and is a potent analgesic following systemic administration in mice. We have determined its solution structure using NMR spectroscopy. Key residues identified previously as being important for activity against VGSCs (Lys7, Trp8, Arg10, Asp11, His12, and Arg14) all reside on an alpha-helix with the exception of Arg14. To further probe structure-activity relationships of this toxin against VGSC subtypes, we have characterized the analogue mu-KIIIA[C1A,C9A], in which the Cys residues involved in one of the three disulfides in mu-KIIIA were replaced with Ala. Its structure is quite similar to that of mu-KIIIA, indicating that the Cys1-Cys9 disulfide bond could be removed without any significant distortion of the alpha-helix bearing the key residues. Consistent with this, mu-KIIIA[C1A,C9A] retained activity against VGSCs, with its rank order of potency being essentially the same as that of mu-KIIIA, namely, Na(V)1.2 > Na(V)1.4 > Na(V)1.7 >or= Na(V)1.1 > Na(V)1.3 > Na(V)1.5. Kinetics of block were obtained for Na(V)1.2, Na(V)1.4, and Na(V)1.7, and in each case, both k(on) and k(off) values of mu-KIIIA[C1A,C9A] were larger than those of mu-KIIIA. Our results show that the key residues for VGSC binding lie mostly on an alpha-helix and that the first disulfide bond can be removed without significantly affecting the structure of this helix, although the modification accelerates the on and off rates of the peptide against all tested VGSC subtypes. These findings lay the groundwork for the design of minimized peptides and helical mimetics as novel analgesics.
Collapse
Affiliation(s)
- Keith K Khoo
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach. Biochem Biophys Res Commun 2008; 375:506-11. [PMID: 18725202 DOI: 10.1016/j.bbrc.2008.08.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 08/03/2008] [Indexed: 11/21/2022]
Abstract
A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser(108/121), HB-EGF-Cys/Ser(116/132), and HB-EGF-Cys/Ser(134/143)) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M(r) of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser(108/121) and HB-EGF-Cys/Ser(116/132) stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF(134/143) proteins competed with 125I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser(108/121) and HB-EGF-Cys/Ser(116/132) failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser(134/143) antagonizes EGFRs.
Collapse
|
19
|
Cheek S, Krishna SS, Grishin NV. Structural classification of small, disulfide-rich protein domains. J Mol Biol 2006; 359:215-37. [PMID: 16618491 DOI: 10.1016/j.jmb.2006.03.017] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 03/05/2006] [Accepted: 03/09/2006] [Indexed: 11/23/2022]
Abstract
Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.
Collapse
Affiliation(s)
- Sara Cheek
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
20
|
Alewood D, Nielsen K, Alewood PF, Craik DJ, Andrews P, Nerrie M, White S, Domagala T, Walker F, Rothacker J, Burgess AW, Nice EC. The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF). Growth Factors 2005; 23:97-110. [PMID: 16019431 DOI: 10.1080/08977190500096061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A systematic study using solid phase peptide synthesis has been undertaken to examine the role of the disulfide bonds in the structure and function of mEGF. A combination of one, two and three native disulfide pair analogues of an active truncated (4-48) form of mEGF have been synthesised by replacing specific cysteine residues with isosteric a-amino-n-butyric acid (Abu). Oxidation of the peptides was performed using either conventional aerobic oxidation at basic pH, in DMSO under acidic conditions or via selective disulfide formation using orthogonal protection of the cysteine pairs. The contribution of individual, or pairs of, disulfide bonds to EGF structure was evaluated by CD and (1)H-NMR spectroscopy. The mitogenic activity of each analogue was determined using Balb/c 3T3 mouse fibroblastsAs we have reported previously (Barnham et al. 1998), the disulfide bond between residues 6 and 20 can be removed with significant retention of biological activity (EC50 20-50 nM). The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. We now show that removal of any other disulfide bond, either singly or in pairs, results in a major disruption of the tertiary structure, and a large loss of activity (EC50>900 nM). Remarkably, the linear analogue appears to have greater activity (EC50 580 nM) than most one and two disulfide bond analogues although it does not have a definable tertiary structure.
Collapse
Affiliation(s)
- Dianne Alewood
- The Institute for Molecular Bioscience, The University of Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zanuttin F, Guarnaccia C, Pintar A, Pongor S. Folding of epidermal growth factor-like repeats from human tenascin studied through a sequence frame-shift approach. ACTA ACUST UNITED AC 2004; 271:4229-40. [PMID: 15511229 DOI: 10.1111/j.1432-1033.2004.04363.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In order to investigate the factors that determine the correct folding of epidermal growth factor-like (EGF) repeats within a multidomain protein, we prepared a series of six peptides that, taken together, span the sequence of two EGF repeats of human tenascin, a large protein from the extracellular matrix. The peptides were selected by sliding a window of the average length of tenascin EGF repeats over the sequence of EGF repeats 13 and 14. We thus obtained six peptides, EGF-f1 to EGF-f6, that are 33 residues long, contain six cysteines each, and bear a partial overlap in the sequence. While EGF-f1 corresponds to the native EGF-14 repeat, the others are frame-shifted EGF repeats. We carried out the oxidative folding of these peptides in vitro, analyzed the reaction mixtures by acid trapping followed by LC-MS, and isolated some of the resulting products. The oxidative folding of the native EGF-14 peptide is fast, produces a single three-disulfide species with an EGF-like disulfide topology and a marked difference in the RP-HPLC retention time compared with the starting product. On the contrary, frame-shifted peptides fold more slowly and give mixtures of three-disulfide species displaying RP-HPLC retention times that are closer to those of the reduced peptides. In contrast to the native EGF-14, the three-disulfide products that could be isolated are mainly unstructured, as determined by CD and NMR spectroscopy. We conclude that both kinetics and thermodynamics drive the correct pairing of cysteines, and speculate about how cysteine mispairing could trigger disulfide reshuffling in vivo.
Collapse
Affiliation(s)
- Francesco Zanuttin
- International Centre for Genetic Engineering and Biotechnology, Protein Structure and Bioinformatics Group, Trieste, Italy
| | | | | | | |
Collapse
|
22
|
Garrett TPJ, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, Jorissen RN, Nice EC, Burgess AW, Ward CW. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 2002; 110:763-73. [PMID: 12297049 DOI: 10.1016/s0092-8674(02)00940-6] [Citation(s) in RCA: 570] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the crystal structure, at 2.5 A resolution, of a truncated human EGFR ectodomain bound to TGFalpha. TGFalpha interacts with both L1 and L2 domains of EGFR, making many main chain contacts with L1 and interacting with L2 via key conserved residues. The results indicate how EGFR family members can bind a family of highly variable ligands. In the 2:2 TGFalpha:sEGFR501 complex, each ligand interacts with only one receptor molecule. There are two types of dimers in the asymmetric unit: a head-to-head dimer involving contacts between the L1 and L2 domains and a back-to-back dimer dominated by interactions between the CR1 domains of each receptor. Based on sequence conservation, buried surface area, and mutagenesis experiments, the back-to-back dimer is favored to be biologically relevant.
Collapse
Affiliation(s)
- Thomas P J Garrett
- Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Parkville, 3050, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pannequin J, Barnham KJ, Hollande F, Shulkes A, Norton RS, Baldwin GS. Ferric ions are essential for the biological activity of the hormone glycine-extended gastrin. J Biol Chem 2002; 277:48602-9. [PMID: 12270941 DOI: 10.1074/jbc.m208440200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Amidated and nonamidated gastrins elicit different biological effects via distinct receptors in different tissues. Amidated gastrin 17 stimulates gastric acid secretion and the development of gastric carcinoids, whereas glycine-extended gastrin 17 stimulates proliferation of the colonic mucosa and the development of colorectal cancers. Because glycine-extended gastrin 17 binds two ferric ions with high affinity (Baldwin, G. S., Curtain, C. C., and Sawyer, W. H. (2001) Biochemistry 40, 10741-10746), we have investigated the identity of the iron ligands and the role of ferric ions in biological activity. Here we report the solution structure of glycine-extended gastrin 17, determined by NMR spectroscopy. The spectral changes observed upon the addition of ferric ions revealed that Glu(7) acted as a ligand at the first ferric binding site, and that Glu(8) and Glu(9) acted as ligands at the second ferric ion binding site. Fluorescence quenching experiments confirmed that a GglyE7A mutant bound only one ferric ion. The inability of this mutant to stimulate proliferation or migration in the IMGE-5 cell line and the observation that the iron chelator desferrioxamine selectively blocked the effects of glycine-extended gastrin 17 indicated that binding of a ferric ion to Glu(7) was essential for biological activity. This is the first report of an essential role for a metal ion in the action of a hormone.
Collapse
Affiliation(s)
- Julie Pannequin
- University of Melbourne Department of Surgery, Austin Campus, ARMC, Heidelberg, Victoria 3084, Australia
| | | | | | | | | | | |
Collapse
|
24
|
Gorman JJ, McKimm-Breschkin JL, Norton RS, Barnham KJ. Antiviral activity and structural characteristics of the nonglycosylated central subdomain of human respiratory syncytial virus attachment (G) glycoprotein. J Biol Chem 2001; 276:38988-94. [PMID: 11487583 DOI: 10.1074/jbc.m106288200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Segments of the cystine noose-containing nonglycosylated central subdomain, residues 149-197, of the attachment (G) glycoprotein of human respiratory syncytial virus (HRSV) have been assessed for impact on the cytopathic effect (CPE) of respiratory syncytial virus (RSV). Nalpha-acetyl residues 149-197-amide (G149-197), G149-189, and G149-177 of the A2 strain of HRSV protected 50% of human epithelial HEp-2 cells from the CPE of the A2 strain at concentrations (IC(50)) between 5 and 80 microm. Cystine noose-containing peptides G171-197 and G173-197 did not inhibit the CPE even at concentrations above 150 microm. Systematic C- and N-terminal truncations from G149-189 and G149-177 and alanine substitutions within G154-177 demonstrated that residues 166-170 (EVFNF), within a sequence that is conserved in HRSV strains, were critical for inhibition. Concordantly, G154-177 of bovine RSV and of an antibody escape mutant of HRSV with residues 166-170 of QTLPY and EVSNP, respectively, were not inhibitory. Surprisingly, a variant of G154-177 with an E166A substitution had an IC(50) of 750 nm. NMR analysis demonstrated that G149-177 adopted a well-defined conformation in solution, clustered around F168 and F170. G154-170, particularly EVFNF, may be important in binding of RSV to host cells. These findings constitute a promising platform for the development of antiviral agents for RSV.
Collapse
Affiliation(s)
- J J Gorman
- Biomolecular Research Institute, 343 Royal Parade, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
25
|
Thompson AJ, Barnham KJ, Norton RS, Barrow CJ. The Val-210-Ile pathogenic Creutzfeldt-Jakob disease mutation increases both the helical and aggregation propensities of a sequence corresponding to helix-3 of PrP(C). BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:242-54. [PMID: 11341933 DOI: 10.1016/s0167-4838(00)00225-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A peptide corresponding to the third helical region within the PrP(C) protein, from residues 198 to 218 (helix-3), was synthesised with and without the familial 210-Val to Ile Creutzfeldt-Jakob disease mutation. The NMR structure of PrP(C) predicts no global variation in stability for this mutation, indicating that local sequence rather than global structural factors are involved in the pathological effects of this mutation. 1H NMR analysis of peptides with and without this mutation indicated that it had no significant effect on local helical structure. Temperature denaturation studies monitored by CD showed that the mutation increased the helical content within this region (helical propensity), but did not stabilise the helix toward denaturation (helical stability). Aggregation data indicated that, in addition to increasing helical propensity, this mutation increased the aggregation propensity of this sequence. CD and NMR data indicate that helical interactions, stabilised by the Val-210-Ile mutation, may precede the formation of beta-sheet aggregates in this peptide sequence. Therefore, this pathological mutation probably does not facilitate PrP(C) to PrP(Sc) conversion by directly destabilising the helical structure of PrP(C), but may preferentially stabilise PrP(Sc) by facilitating beta-sheet formation within this sequence region of PrP. In addition, helical interactions between helix-3 in two or more PrP(C) molecules may promote conversion to PrP(Sc).
Collapse
Affiliation(s)
- A J Thompson
- School of Chemistry, The University of Melbourne, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
26
|
Flinn JP, Pallaghy PK, Lew MJ, Murphy R, Angus JA, Norton RS. Role of disulfide bridges in the folding, structure and biological activity of omega-conotoxin GVIA. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:177-90. [PMID: 10556572 DOI: 10.1016/s0167-4838(99)00165-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Omega-Conotoxin GVIA (GVIA), an N-type calcium channel blocker from the cone shell Conus geographus, is a 27 residue polypeptide cross-linked by three disulfide bonds. Here, we report the synthesis, structural analysis by (1)H NMR and bioassay of analogues of GVIA with disulfide bridge deletions and N- and C-terminal truncations. Two analogues that retain the crucial Lys-2 and Tyr-13 residues in loops constrained by two native disulfide bridges were synthesised using orthogonal protection of cysteine residues. In the first analogue, the Cys-15-Cys-26 disulfide bridge was deleted (by replacing the appropriate Cys residues with Ser), while in the second, this disulfide bridge and the eight C-terminal residues were deleted. No activity was detected for either analogue in a rat vas deferens assay, which measures N-type calcium channel activity in sympathetic nerve, and NMR studies showed that this was due to a gross loss of secondary and tertiary structure. Five inactive analogues that were synthesised without orthogonal protection of Cys residues as part of a previous study (Flinn et al. (1995) J. Pept. Sci. 1, 379-384) were also investigated. Three had single disulfide deletions (via Ser substitutions) and two had N- or C-terminal deletions in addition to the disulfide deletion. Peptide mapping and NMR analyses demonstrated that at least four of these analogues had non-native disulfide pairings, which presumably accounts for their lack of activity. The NMR studies also showed that all five analogues had substantially altered tertiary structures, although the backbone chemical shifts and nuclear Overhauser enhancements (NOEs) implied that native-like turn structures persisted in some of these analogues despite the non-native disulfide pairings. This work demonstrates the importance of the disulfides in omega-conotoxin folding and shows that the Cys-15-Cys-26 disulfide is essential for activity in GVIA. The NMR analyses also emphasise that backbone chemical shifts and short- and medium-range NOEs are dictated largely by local secondary structure elements and are not necessarily reliable monitors of the tertiary fold.
Collapse
Affiliation(s)
- J P Flinn
- Biomolecular Research Institute, 343 Royal Parade, Parkville, Vic., Australia
| | | | | | | | | | | |
Collapse
|