1
|
Palacios-Alonso P, Shams MM, Ozel-Okcu S, Sanz-de Diego E, Teran FJ, Delgado-Buscalioni R. Fast and accurate characterization of bioconjugated particles and solvent properties by a general nonlinear analytical relationship for the AC magnetic hysteresis area. NANOSCALE 2025; 17:12963-12980. [PMID: 40337790 DOI: 10.1039/d5nr00602c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Brownian magnetic nanoparticles present a large sensitivity to AC fields, opening new routes to bio-sensing using bio-functionalized nanoparticles. The integration of theory and experiment permits the transduction of any magnetic response (via susceptibility, harmonics or hysteresis area) to extract relevant system's parameters (such as particle size, solvent viscosity, and temperature). Parameter estimators based on linear response theory are easy to implement, but their sensitivity and resolution are limited by construction. Nonlinear responses allow for much higher sensitivities, but demand a significant cost in complex simulations to fit the experiments, because no analytical relationship is available. Here we have solved this dilemma by deriving an empirical analytical relationship for the magnetic hysteresis area which is valid under the arbitrary field intensity and frequency, thus avoiding the need for calibration. This universal relationship matches within 1% of the outcome of the nonlinear Fokker-Planck equation and has been validated against detailed Brownian dynamic simulations and controlled experiments. Using this nonlinear magnetic hysteresis area relationship, we have built an extremely fast automated searching algorithm that simultaneously estimates several system parameters by fitting experimental data for the area (at varying intensities and frequencies). The searching scheme starts with a robust and flexible stochastic method (parallel tempering Monte Carlo) followed by an accurate deterministic multi-variable minimization (Gauss-Newton) to match experimental areas within ∼1% deviation. This integrated approach upgrades AC-magnetometry into a stand-alone technique able to determine, with outstanding accuracy, particle size, polydispersity, concentration, and magnetic moment, as well as solvent viscosity and temperature. We validated this method in biosensing protocols by determining nanometer-size variations in bio-functionalized nanoparticles upon protein target recognition.
Collapse
Affiliation(s)
- Pablo Palacios-Alonso
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Mohamed M Shams
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Sedef Ozel-Okcu
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Nanotech Solutions S.L., Carretera. Madrid 23, 40150 Villacastin, Spain
| | | | - F J Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Rafael Delgado-Buscalioni
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
- Condensed Matter Institute, IFIMAC, Madrid, 28049, Spain
| |
Collapse
|
2
|
Sanz-de Diego E, Aires A, Palacios-Alonso P, Cabrera D, Silvestri N, Vequi-Suplicy CC, Artés-Ibáñez EJ, Requejo-Isidro J, Delgado-Buscalioni R, Pellegrino T, Cortajarena AL, Terán FJ. Multiparametric modulation of magnetic transduction for biomolecular sensing in liquids. NANOSCALE 2024; 16:4082-4094. [PMID: 38348700 DOI: 10.1039/d3nr06489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The recent COVID19 pandemic has remarkably boosted the research on in vitro diagnosis assays to detect biomarkers in biological fluids. Specificity and sensitivity are mandatory for diagnostic kits aiming to reach clinical stages. Whilst the modulation of sensitivity can significantly improve the detection of biomarkers in liquids, this has been scarcely explored. Here, we report on the proof of concept and parametrization of a novel biosensing methodology based on the changes of AC magnetic hysteresis areas observed for magnetic nanoparticles following biomolecular recognition in liquids. Several parameters are shown to significantly modulate the transducing capacity of magnetic nanoparticles to detect analytes dispersed in saline buffer at concentrations of clinical relevance. Magnetic nanoparticles were bio-conjugated with an engineered recognition peptide as a receptor. Analytes are engineered tetratricopeptide binding domains fused to the fluorescent protein whose dimerization state allows mono- or divalent variants. Our results unveil that the number of receptors per particle, analyte valency and concentration, nanoparticle composition and concentration, and field conditions play a key role in the formation of assemblies driven by biomolecular recognition. Consequently, all these parameters modulate the nanoparticle transduction capacity. Our study provides essential insights into the potential of AC magnetometry for customizing biomarker detection in liquids.
Collapse
Affiliation(s)
- Elena Sanz-de Diego
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
| | - Antonio Aires
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
| | | | - David Cabrera
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thurnburrow Drive, ST4 7QB, Stoke on Trent, UK
| | | | | | - Emilio J Artés-Ibáñez
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanotech Solutions, 40150 Villacastín, Spain
| | - José Requejo-Isidro
- Centro Nacional de Biotecnologia (CSIC), 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | | | | | - Aitziber L Cortajarena
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco J Terán
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
3
|
Palacios-Alonso P, Sanz-de-Diego E, Peláez RP, Cortajarena AL, Teran FJ, Delgado-Buscalioni R. Predicting the size and morphology of nanoparticle clusters driven by biomolecular recognition. SOFT MATTER 2023; 19:8929-8944. [PMID: 37530392 DOI: 10.1039/d3sm00536d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nanoparticle aggregation is a driving principle of innovative materials and biosensing methodologies, improving transduction capabilities displayed by optical, electrical or magnetic measurements. This aggregation can be driven by the biomolecular recognition between target biomolecules (analytes) and receptors bound onto nanoparticle surface. Despite theoretical advances on modelling the entropic interaction in similar systems, predictions of the fractal morphologies of the nanoclusters of bioconjugated nanoparticles are lacking. The morphology of resulting nanoclusters is sensitive to the location, size, flexibility, average number of receptors per particle f̄, and the analyte-particle concentration ratio. Here we considered bioconjugated iron oxide nanoparticles (IONPs) where bonds are mediated by a divalent protein that binds two receptors attached onto different IONPs. We developed a protocol combining analytical expressions for receptors and linker distributions, and Brownian dynamics simulations for bond formation, and validated it against experiments. As more bonds become available (e.g., by adding analytes), the aggregation deviates from the ideal Bethe's lattice scenario due to multivalence, loop formation, and steric hindrance. Generalizing Bethe's lattice theory with a (not-integer) effective functionality feff leads to analytical expressions for the cluster size distributions in excellent agreement with simulations. At high analyte concentration steric impediment imposes an accessible limit value facc to feff, which is bounded by facc < feff < f̄. A transition to gel phase, is correctly captured by the derived theory. Our findings offer new insights into quantifying analyte amounts by assessing nanocluster size, and predicting nanoassembly morphologies accurately is a first step towards understanding variations of physical properties in clusters formed after biomolecular recognition.
Collapse
Affiliation(s)
- Pablo Palacios-Alonso
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center, IFIMAC, Spain
| | | | - Raúl P Peláez
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - A L Cortajarena
- CIC biomaGUNE-BRTA, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - F J Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Rafael Delgado-Buscalioni
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center, IFIMAC, Spain
| |
Collapse
|
4
|
Madden SK, Itzhaki LS. Exploring the binding of rationally engineered tandem-repeat proteins to E3 ubiquitin ligase Keap1. Protein Eng Des Sel 2021; 34:gzab027. [PMID: 34882773 PMCID: PMC8660007 DOI: 10.1093/protein/gzab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 11/12/2022] Open
Abstract
The process of displaying functional peptides by 'grafting' them onto loops of a stable protein scaffold can be used to impart binding affinity for a target, but it can be difficult to predict the affinity of the grafted peptide and the effect of grafting on scaffold stability. In this study, we show that a series of peptides that bind to the E3 ubiquitin ligase Keap1 can be grafted into the inter-repeat loop of a consensus-designed tetratricopeptide repeat (CTPR) protein resulting in proteins with high stability. We found that these CTPR-grafted peptides had similar affinities to their free peptide counterparts and achieved a low nanomolar range. This result is likely due to a good structural match between the inter-repeat loop of the CTPR and the Keap1-binding peptide. The grafting process led to the discovery of a new Keap1-binding peptide, Ac-LDPETGELL-NH2, with low nanomolar affinity for Keap1, highlighting the potential of the repeat-protein class for application in peptide display.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
5
|
Barik S. Protein Tetratricopeptide Repeat and the Companion Non-tetratricopeptide Repeat Helices: Bioinformatic Analysis of Interhelical Interactions. Bioinform Biol Insights 2019; 13:1177932219863363. [PMID: 31579101 PMCID: PMC6759711 DOI: 10.1177/1177932219863363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/22/2019] [Indexed: 12/28/2022] Open
Abstract
The tetratricopeptide repeat (TPR) of proteins consists of a 34-amino acid, alpha-helical motif that comprises a pattern of small and large hydrophobic residues, leading to a recognizable signature sequence. Structural and functional studies have documented that tandem TPRs form a superhelix that interacts with client molecules through strategically placed amino acids. Interestingly, most of the known TPRs are flanked by alpha-helices that lack the TPR signature but often appear as a continuation of the TPR superhelix. The exact role and specificity of these TPR-accompanying non-TPR helices have remained a mystery. Here, starting with TPR proteins of known structure, bioinformatic analyses were conducted on these helices, which revealed that they are diverse in sequence, lacking a clear consensus. However, they display significant atomic contacts with the nearest TPR helix and, to some extent, with the next TPR helix over. The majority of these contacts do not use the signature residues of the TPR helix but rather involve hydrophobic side chains on the facing sides. Thus, compared with the TPR helices, these companion helices are generic in nature, and seem to serve as relatively passive gatekeepers, leaving the terminal TPR helices to encode the signature residues that interact with cognate clients.
Collapse
Affiliation(s)
- Sailen Barik
- Sailen Barik, 3780 Pelham Drive, Mobile, AL 36619, USA.
| |
Collapse
|
6
|
Madden SK, Perez‐Riba A, Itzhaki LS. Exploring new strategies for grafting binding peptides onto protein loops using a consensus-designed tetratricopeptide repeat scaffold. Protein Sci 2019; 28:738-745. [PMID: 30746804 PMCID: PMC6423998 DOI: 10.1002/pro.3586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
Peptide display approaches, in which peptide epitopes of known binding activities are grafted onto stable protein scaffolds, have been developed to constrain the peptide in its bioactive conformation and to enhance its stability. However, peptide grafting can be a lengthy process requiring extensive computational modeling and/or optimisation by directed evolution techniques. In this study, we show that ultra-stable consensus-designed tetratricopeptide repeat (CTPR) proteins are amenable to the grafting of peptides that bind the Kelch-like ECH-associated protein 1 (Keap1) onto the loop between adjacent repeats. We explore simple strategies to optimize the grafting process and show that modest improvements in Keap1-binding affinity can be obtained by changing the composition of the linker sequence flanking either side of the binding peptide.
Collapse
Affiliation(s)
- Sarah K. Madden
- Department of PharmacologyUniversity of CambridgeCambridgeUnited Kingdom
| | - Albert Perez‐Riba
- Department of PharmacologyUniversity of CambridgeCambridgeUnited Kingdom
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Laura S. Itzhaki
- Department of PharmacologyUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
7
|
Harvey JA, Itzhaki LS, Main ERG. Programmed Protein Self-Assembly Driven by Genetically Encoded Intein-Mediated Native Chemical Ligation. ACS Synth Biol 2018; 7:1067-1074. [PMID: 29474065 DOI: 10.1021/acssynbio.7b00447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Harnessing and controlling self-assembly is an important step in developing proteins as novel biomaterials. With this goal, here we report the design of a general genetically programmed system that covalently concatenates multiple distinct protein domains into specific assembled arrays. It is driven by iterative intein-mediated native chemical ligation (NCL) under mild native conditions. The system uses a series of initially inert recombinant protein fusions that sandwich the protein modules to be ligated between one of a number of different affinity tags and an intein protein domain. Orthogonal activation at opposite termini of compatible protein fusions, via protease and intein cleavage, coupled with sequential mixing directs an irreversible and traceless stepwise assembly process. This gives total control over the composition and arrangement of component proteins within the final product, enabled the limits of the system-reaction efficiency and yield-to be investigated, and led to the production of "functional" assemblies.
Collapse
Affiliation(s)
- Joseph A. Harvey
- School of Biological and Chemical Sciences Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Ewan R. G. Main
- School of Biological and Chemical Sciences Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
8
|
Lapelosa M. Free Energy of Binding and Mechanism of Interaction for the MEEVD-TPR2A Peptide-Protein Complex. J Chem Theory Comput 2017; 13:4514-4523. [PMID: 28723223 DOI: 10.1021/acs.jctc.7b00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The association between the MEEVD C-terminal peptide from the heat shock protein 90 (Hsp90) and tetratricopeptide repeat A (TPR2A) domain of the heat shock organizing protein (Hop) is a useful prototype to study the fundamental molecular details about the Hop-Hsp90 interaction. We study here the mechanism of binding/unbinding and compute the standard binding free energy and potential of mean force for the association of the MEEVD peptide to the TPR2A domain using the Adaptive Biasing Force (ABF) methodology. We observe conformational changes of the peptide and the protein receptor induced by binding. We measure the binding free energy of -8.4 kcal/mol, which is consistent with experimental estimates. The simulations achieve multiple unbinding and rebinding events along a consistent pathway connecting the binding site to solvent. The MEEVD peptide slowly dissociates disrupting the hydrogen bonds first, then tilting on the side while preserving the interaction with the side chain of residue Asp 5 of the peptide. After this initial displacement, the peptide completely dissociates and moves into the solvent. Rebinding of the MEEVD peptide from the solvent to the receptor binding site occurs slowly through the portal of entry. Unbinding and rebinding go through intermediate states characterized by the peptide interacting with a lateral helix, helix A1, of the receptor with mainly Asp 5, Val 4, and Glu 3 of the peptide. This newly discovered intermediate structure is characterized by numerous contacts with the receptor which lead to complete formation of the bound complex. The structure of the bound complex obtained after rebinding is structurally very similar to the crystal structure of the complex (0.48 Å root-mean square deviation). The residues Asp 5, Val 4, and Glu 3 adopt conformations and intermolecular contacts with excellent structural similarity with the native ones. Finally, the dissociation and reassociation of MEEVD induce hydration/dehydration transitions, which provide insights on the role of desolvation and solvation processes in protein-peptide binding.
Collapse
Affiliation(s)
- Mauro Lapelosa
- Department of Drug Discovery and Development, Italian Institute of Technology , Via Morego 30, Genova 16163, Italy
| |
Collapse
|
9
|
Abstract
Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class: tetratricopeptide repeat (TPR) proteins. In previous work, we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena (2011) Prot. Sci. 20: , 1042-1047; Main (2003) Structure 11: , 497-508]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena (2009) ACS Chem. Biol. 5: , 545-552; Cortajarena (2008) ACS Chem. Biol. 3: , 161-166; Jackrel (2009) Prot. Sci. 18: , 762-774; Kajander (2007) Acta Crystallogr. D Biol. Crystallogr. 63: , 800-811]. Here we focus on the development of one such TPR-peptide interaction for a practical application, affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications.
Collapse
|
10
|
Hansen S, Tremmel D, Madhurantakam C, Reichen C, Mittl PRE, Plückthun A. Structure and Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity. J Am Chem Soc 2016; 138:3526-32. [DOI: 10.1021/jacs.6b00099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Hansen
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Dirk Tremmel
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chaithanya Madhurantakam
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Reichen
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
11
|
Assimon VA, Southworth DR, Gestwicki JE. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation. Biochemistry 2015; 54:7120-31. [PMID: 26565746 PMCID: PMC4714923 DOI: 10.1021/acs.biochem.5b00801] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.
Collapse
Affiliation(s)
| | | | - Jason E. Gestwicki
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158
| |
Collapse
|
12
|
Speltz EB, Nathan A, Regan L. Design of Protein-Peptide Interaction Modules for Assembling Supramolecular Structures in Vivo and in Vitro. ACS Chem Biol 2015; 10:2108-15. [PMID: 26131725 DOI: 10.1021/acschembio.5b00415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Synthetic biology and protein origami both require protein building blocks that behave in a reliable, predictable fashion. In particular, we require protein interaction modules with known specificity and affinity. Here, we describe three designed TRAP (Tetratricopeptide Repeat Affinity Protein)-peptide interaction pairs that are functional in vivo. We show that each TRAP binds to its cognate peptide and exhibits low cross-reactivity with the peptides bound by the other TRAPs. In addition, we demonstrate that the TRAP-peptide interactions are functional in many cellular contexts. In extensions of these designs, we show that the binding affinity of a TRAP-peptide pair can be systematically varied. The TRAP-peptide pairs we present thus represent a powerful set of new building blocks that are suitable for a variety of applications.
Collapse
Affiliation(s)
- Elizabeth B. Speltz
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Aparna Nathan
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Lynne Regan
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Integrated Graduate Program in Physical and Engineering Biology, New Haven, Connecticut 06511, United States
| |
Collapse
|
13
|
Wang H, Heilshorn SC. Adaptable hydrogel networks with reversible linkages for tissue engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:3717-36. [PMID: 25989348 PMCID: PMC4528979 DOI: 10.1002/adma.201501558] [Citation(s) in RCA: 460] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/18/2015] [Indexed: 05/19/2023]
Abstract
Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-formation of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, an overview of adaptable-hydrogel design considerations and linkage selections is presented, with a focus on various cell-compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Parker R, Mercedes-Camacho A, Grove TZ. Consensus design of a NOD receptor leucine rich repeat domain with binding affinity for a muramyl dipeptide, a bacterial cell wall fragment. Protein Sci 2014; 23:790-800. [PMID: 24659515 DOI: 10.1002/pro.2461] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 12/19/2022]
Abstract
Repeat proteins have recently emerged as especially well-suited alternative binding scaffolds due to their modular architecture and biophysical properties. Here we present the design of a scaffold based on the consensus sequence of the leucine rich repeat (LRR) domain of the NOD family of cytoplasmic innate immune system receptors. Consensus sequence design has emerged as a protein design tool to create de novo proteins that capture sequence-structure relationships and interactions present in nature. The multiple sequence alignment of 311 individual LRRs, which are the putative ligand-recognition domain in NOD proteins, resulted in a consensus sequence protein containing two internal and N- and C-capping repeats named CLRR2. CLRR2 protein is a stable, monomeric, and cysteine free scaffold that without any affinity maturation displays micromolar binding to muramyl dipeptide, a bacterial cell wall fragment. To our knowledge, this is the first report of direct interaction of a NOD LRR with a physiologically relevant ligand.
Collapse
Affiliation(s)
- Rachael Parker
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, 24060
| | | | | |
Collapse
|
15
|
Abstract
Protein engineering is at an exciting stage because designed protein-protein interactions are being used in many applications. For instance, three designed proteins are now in clinical trials. Although there have been many successes over the last decade, protein engineering still faces numerous challenges. Often, designs do not work as anticipated and they still require substantial redesign. The present review focuses on the successes, the challenges and the limitations of rational protein design today.
Collapse
|
16
|
Guellouz A, Valerio-Lepiniec M, Urvoas A, Chevrel A, Graille M, Fourati-Kammoun Z, Desmadril M, van Tilbeurgh H, Minard P. Selection of specific protein binders for pre-defined targets from an optimized library of artificial helicoidal repeat proteins (alphaRep). PLoS One 2013; 8:e71512. [PMID: 24014183 PMCID: PMC3754942 DOI: 10.1371/journal.pone.0071512] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022] Open
Abstract
We previously designed a new family of artificial proteins named αRep based on a subgroup of thermostable helicoidal HEAT-like repeats. We have now assembled a large optimized αRep library. In this library, the side chains at each variable position are not fully randomized but instead encoded by a distribution of codons based on the natural frequency of side chains of the natural repeats family. The library construction is based on a polymerization of micro-genes and therefore results in a distribution of proteins with a variable number of repeats. We improved the library construction process using a “filtration” procedure to retain only fully coding modules that were recombined to recreate sequence diversity. The final library named Lib2.1 contains 1.7×109 independent clones. Here, we used phage display to select, from the previously described library or from the new library, new specific αRep proteins binding to four different non-related predefined protein targets. Specific binders were selected in each case. The results show that binders with various sizes are selected including relatively long sequences, with up to 7 repeats. ITC-measured affinities vary with Kd values ranging from micromolar to nanomolar ranges. The formation of complexes is associated with a significant thermal stabilization of the bound target protein. The crystal structures of two complexes between αRep and their cognate targets were solved and show that the new interfaces are established by the variable surfaces of the repeated modules, as well by the variable N-cap residues. These results suggest that αRep library is a new and versatile source of tight and specific binding proteins with favorable biophysical properties.
Collapse
Affiliation(s)
- Asma Guellouz
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Marie Valerio-Lepiniec
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Agathe Urvoas
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Anne Chevrel
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Marc Graille
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Zaineb Fourati-Kammoun
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Michel Desmadril
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Herman van Tilbeurgh
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
| | - Philippe Minard
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France
- Unité Mixte de Recherche 8619, Centre National de Recherche Scientifique, Orsay, France
- * E-mail:
| |
Collapse
|
17
|
Parashar V, Jeffrey PD, Neiditch MB. Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors. PLoS Biol 2013; 11:e1001512. [PMID: 23526881 PMCID: PMC3601965 DOI: 10.1371/journal.pbio.1001512] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
The large family of Gram-positive quorum-sensing receptors known as the RNPP proteins consists of receptors homologous to the Rap, NprR, PlcR, and PrgX proteins that are regulated by imported oligopeptide autoinducers. Rap proteins are phosphatases and transcriptional anti-activators, and NprR, PlcR, and PrgX proteins are DNA binding transcription factors. Despite their obvious importance, the mechanistic basis of oligopeptide receptor regulation is largely unknown. Here, we report the X-ray crystal structure of the Bacillus subtilis quorum-sensing receptor RapJ in complex with the centrally important oligopeptide autoinducer competence and sporulation factor (CSF, also termed PhrC), a member of the Phr family of quorum-sensing signals. Furthermore, we present the crystal structure of RapI. Comparison of the RapJ-PhrC, RapI, RapH-Spo0F, and RapF-ComA(C) crystal structures reveals the mechanistic basis of Phr activity. More specifically, when complexed with target proteins, Rap proteins consist of a C-terminal tetratricopeptide repeat (TPR) domain connected by a flexible helix-containing linker to an N-terminal 3-helix bundle. In the absence of a target protein or regulatory peptide, the Rap protein 3-helix bundle adopts different conformations. However, in the peptide-bound conformation, the Rap protein N-terminal 3-helix bundle and linker undergo a radical conformational change, form TPR-like folds, and merge with the existing C-terminal TPR domain. To our knowledge, this is the first example of conformational change-induced repeat domain expansion. Furthermore, upon Phr binding, the entire Rap protein is compressed along the TPR superhelical axis, generating new intramolecular contacts that lock the Rap protein in an inactive state. The fact that Rap proteins are conformationally flexible is surprising considering that it is accepted dogma that TPR proteins do not undergo large conformational changes. Repeat proteins are widely used as scaffolds for the development of designed affinity reagents, and we propose that Rap proteins could be used as scaffolds for engineering novel ligand-switchable affinity reagents.
Collapse
Affiliation(s)
- Vijay Parashar
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Matthew B. Neiditch
- Department of Microbiology and Molecular Genetics, UMDNJ–New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sawyer N, Chen J, Regan L. All repeats are not equal: a module-based approach to guide repeat protein design. J Mol Biol 2013; 425:1826-1838. [PMID: 23434848 DOI: 10.1016/j.jmb.2013.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/30/2022]
Abstract
Repeat proteins composed of tandem arrays of a short structural motif often mediate protein-protein interactions. Past efforts to design repeat protein-based molecular recognition tools have focused on the creation of templates from the consensus of individual repeats, regardless of their natural context. Such an approach assumes that all repeats are essentially equivalent. In this study, we present the results of a "module-based" approach in which modules composed of tandem repeats are aligned to identify repeat-specific features. Using this approach to analyze tetratricopeptide repeat modules that contain three tandem repeats (3TPRs), we identify two classes of 3TPR modules with distinct structural signatures that are correlated with different sets of functional residues. Our analyses also reveal a high degree of correlation between positions across the entire ligand-binding surface, indicative of a coordinated, coevolving binding surface. Extension of our analyses to different repeat protein modules reveals more examples of repeat-specific features, especially in armadillo repeat modules. In summary, the module-based analyses that we present effectively capture key repeat-specific features that will be important to include in future repeat protein design templates.
Collapse
Affiliation(s)
- Nicholas Sawyer
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Jieming Chen
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| | - Lynne Regan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Program in Computational Biology and Bioinformatics, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA.,Department of Chemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
19
|
Kinetics and thermodynamics of phenotype: unwinding and rewinding the nucleosome. J Mol Biol 2012; 423:687-701. [PMID: 22944905 DOI: 10.1016/j.jmb.2012.08.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 02/01/2023]
Abstract
Chromatin "remodeling" is widely accepted as the mechanism that permits access to DNA by the transcription machinery. To date, however, there has been no experimental measurement of the changes in the kinetics and thermodynamics of the DNA-histone octamer association that are required to remodel chromatin so that transcription may occur. Here, we present the results of optical tweezer measurements that compare the kinetic and thermodynamic properties of nucleosomes composed of unmodified histones with those of nucleosomes that contain a mutant histone H4 (H4-R45H), which has been shown to allow SWI/SNF remodeling factor-independent transcription from the yeast HO promoter in vivo. Our measurements, carried out in a force-clamp mode, determine the force-dependent unwinding and rewinding rates of the nucleosome inner turn. At each force studied, nucleosomes containing H4-R45H unwind more rapidly and rewind more slowly than nucleosomes containing unmodified H4, indicating that the latter are the more stable. Extrapolation to forces at which the winding and unwinding rates are equal determines the absolute free energy of the nucleosome inner turn to be -32k(B)T for nucleosomes containing unmodified H4 and -27k(B)T for nucleosomes containing H4-R45H. Thus, the "loosening" or "remodeling" caused by this point mutation, which is demonstrated to be sufficient to allow transcriptional machinery access to the HO promoter (in the absence of other remodeling factors), is 5k(B)T. The correlation between the free energy of the nucleosome inner turn and the sin (SWI/SNF-independent) transcription suggests that, beyond partial unwinding, complete histone unwinding may play a role in transcriptional activation.
Collapse
|
20
|
Morin A, Kaufmann KW, Fortenberry C, Harp JM, Mizoue LS, Meiler J. Computational design of an endo-1,4-beta-xylanase ligand binding site. Protein Eng Des Sel 2011; 24:503-16. [PMID: 21349882 DOI: 10.1093/protein/gzr006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The field of computational protein design has experienced important recent success. However, the de novo computational design of high-affinity protein-ligand interfaces is still largely an open challenge. Using the Rosetta program, we attempted the in silico design of a high-affinity protein interface to a small peptide ligand. We chose the thermophilic endo-1,4-β-xylanase from Nonomuraea flexuosa as the protein scaffold on which to perform our designs. Over the course of the study, 12 proteins derived from this scaffold were produced and assayed for binding to the target ligand. Unfortunately, none of the designed proteins displayed evidence of high-affinity binding. Structural characterization of four designed proteins revealed that although the predicted structure of the protein model was highly accurate, this structural accuracy did not translate into accurate prediction of binding affinity. Crystallographic analyses indicate that the lack of binding affinity is possibly due to unaccounted for protein dynamics in the 'thumb' region of our design scaffold intrinsic to the family 11 β-xylanase fold. Further computational analysis revealed two specific, single amino acid substitutions responsible for an observed change in backbone conformation, and decreased dynamic stability of the catalytic cleft. These findings offer new insight into the dynamic and structural determinants of the β-xylanase proteins.
Collapse
Affiliation(s)
- Andrew Morin
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
21
|
Grove TZ, Osuji CO, Forster JD, Dufresne ER, Regan L. Stimuli-responsive smart gels realized via modular protein design. J Am Chem Soc 2011; 132:14024-6. [PMID: 20860358 DOI: 10.1021/ja106619w] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Smart gels have a variety of applications, including tissue engineering and controlled drug delivery. Here we present a modular, bottom-up approach that permits the creation of protein-based smart gels with encoded morphology, functionality, and responsiveness to external stimuli. The properties of these gels are encoded by the proteins from which they are synthesized. In particular, the strength and density of the network of intermolecular cross-links are specified by the interactions of the gels' constituent protein modules with their cognate peptide ligands. Thus, these gels exhibit stimuli-responsive assembly and disassembly, dissolving (or gelling) under conditions that weaken (or strengthen) the protein-peptide interaction. We further demonstrate that such gels can encapsulate and release both proteins and small molecules and that their rheological properties are well suited for biomedical applications.
Collapse
Affiliation(s)
- Tijana Z Grove
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | | | | | | | | |
Collapse
|
22
|
Culpepper DJ, Maddox MK, Caldwell AB, McFarland BJ. Systematic mutation and thermodynamic analysis of central tyrosine pairs in polyspecific NKG2D receptor interactions. Mol Immunol 2010; 48:516-23. [PMID: 21074271 DOI: 10.1016/j.molimm.2010.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/14/2010] [Indexed: 11/25/2022]
Abstract
The homodimeric, activating natural killer cell receptor NKG2D interacts with multiple monomeric ligands polyspecifically, yet without central conformational flexibility. Crystal structures of multiple NKG2D-ligand interactions have identified the NKG2D tyrosine pair Tyr 152 and Tyr 199 as forming multiple specific but diverse interactions with MICA and related proteins. Here we systematically altered each tyrosine to tryptophan, phenylalanine, isoleucine, leucine, valine, serine, and alanine to measure the effect of mutation on affinity and thermodynamics for binding a range of similar ligands: MICA, the higher-affinity ligand MICB, and MICdesign, a high-affinity version of MICA that shares all NKG2D contact residues with MICA. Affinity and residue size were related: tryptophan could often substitute for tyrosine without loss of affinity; loss of the tyrosine hydroxyl through mutation to phenylalanine was tolerated more at position 152 than 199; and the smallest residues coincide with lowest affinities in general. NKG2D mutant van't Hoff binding thermodynamics generally show that substitution of other residues for tyrosine causes a moderate positive or flat van't Hoff slope consistent with moderate loss of binding enthalpy. One set of NKG2D mutations caused MICA to adopt a positive van't Hoff slope corresponding to absorption of heat, and another set caused MICB to adopt a negative slope of greater heat release than wild-type. MICdesign shared one example of the first set with MICA and one of the second set with MICB. When the NKG2D mutation affinities were arranged according to change in nonpolar surface area and compared to results from specific antibody-antigen and protein-peptide interactions, it was found that hydrophobic surface loss in NKG2D reduced binding affinity less than reported in the other contexts. The hydrophobic effect at the center of the NKG2D binding appears more similar to that at the periphery of an antibody-antigen binding site than at its center. Therefore the polyspecific NKG2D binding site is more tolerant of structural alteration in general than either an antibody-antigen or protein-peptide binding site, and this tolerance may adapt NKG2D to a broad range of protein surfaces with micromolar affinity.
Collapse
Affiliation(s)
- David J Culpepper
- Department of Chemistry and Biochemistry, 3307 Third Avenue West, Seattle Pacific University, Seattle, WA 98119, USA
| | | | | | | |
Collapse
|
23
|
Cortajarena AL, Liu TY, Hochstrasser M, Regan L. Designed proteins to modulate cellular networks. ACS Chem Biol 2010; 5:545-52. [PMID: 20020775 DOI: 10.1021/cb9002464] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major challenge of protein design is to create useful new proteins that interact specifically with biological targets in living cells. Such binding modules have many potential applications, including the targeted perturbation of protein networks. As a general approach to create such modules, we designed a library with approximately 10(9) different binding specificities based on a small 3-tetratricopeptide repeat (TPR) motif framework. We employed a novel strategy, based on split GFP reassembly, to screen the library for modules with the desired binding specificity. Using this approach, we identified modules that bind tightly and specifically to Dss1, a small human protein that interacts with the tumor suppressor protein BRCA2. We showed that these modules also bind the yeast homologue of Dss1, Sem1. Furthermore, we demonstrated that these modules inhibit Sem1 activity in yeast. This strategy will be generally applicable to make novel genetically encoded tools for systems/synthetic biology applications.
Collapse
Affiliation(s)
| | - Tina Y. Liu
- Department of Molecular Biophysics & Biochemistry
| | | | - Lynne Regan
- Department of Molecular Biophysics & Biochemistry
- Department of Chemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520
| |
Collapse
|
24
|
Grove TZ, Hands M, Regan L. Creating novel proteins by combining design and selection. Protein Eng Des Sel 2010; 23:449-55. [PMID: 20304973 PMCID: PMC2865361 DOI: 10.1093/protein/gzq015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 02/15/2010] [Accepted: 02/20/2010] [Indexed: 11/13/2022] Open
Abstract
We present the results of combining design and selection to remodel a protein-peptide binding interface, using the peptide PTIEEVD and the TPR1 module interaction as our test case. We initially used the program Rosetta to interrogate possible TPR1 sequences compatible with binding the peptide PTIEEVD. Based on these results, we screened a small library of TPR1 variants, using a split GFP fluorescent assay to identify proteins that are able to bind to the PTIEEVD peptide. We discuss the similarities and differences between the modeling and selection results at each position. We show that a new 'consensus' TPR1, created based on the results of the sequences identified in the screen, indeed binds to the PTIEEVD peptide. These results demonstrate the utility of combining design and selection in a synergistic fashion to remodel protein recognition interfaces.
Collapse
Affiliation(s)
- Tijana Z. Grove
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven 06511, USA
| | - Michael Hands
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven 06511, USA
| | - Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven 06511, USA
- Department of Chemistry, Yale University, New Haven 06511, USA
| |
Collapse
|
25
|
Ilagan RP, Rhoades E, Gruber DF, Kao HT, Pieribone VA, Regan L. A new bright green-emitting fluorescent protein--engineered monomeric and dimeric forms. FEBS J 2010; 277:1967-78. [PMID: 20345907 PMCID: PMC2855763 DOI: 10.1111/j.1742-4658.2010.07618.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent proteins have become essential tools in molecular and biological applications. Here, we present a novel fluorescent protein isolated from warm water coral, Cyphastrea microphthalma. The protein, which we named vivid Verde fluorescent protein (VFP), matures readily at 37 degrees C and emits bright green light. Further characterizations revealed that VFP has a tendency to form dimers. By creating a homology model of VFP, based on the structure of the red fluorescent protein, DsRed, we were able to make mutations that alter the protein's oligomerization state. We present two proteins, mVFP and mVFP1, that are both exclusively monomeric, and one protein, dVFP, which is dimeric. We characterized the spectroscopic properties of VFP and its variants in comparison with enhanced green fluorescent protein (EGFP), a widely used variant of GFP. All the VFP variants are at least twice as bright as EGFP. Finally, we demonstrated the effectiveness of the VFP variants in both in vitro and in vivo detection applications.
Collapse
Affiliation(s)
- Robielyn P. Ilagan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - David F. Gruber
- Department of Natural Sciences, Baruch College and The Graduate Center, City University of New York, New York, NY 10010
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Brown University, Providence, RI
| | | | - Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|