1
|
Wang L, Jiang J, Yin H, Wang X, Li Q, Li H, Wu J, Lu Q. Solute carrier family 15 member 4, an emerging therapeutic target for systemic lupus erythematosus. Int Rev Immunol 2025:1-15. [PMID: 40255205 DOI: 10.1080/08830185.2025.2491644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/28/2024] [Accepted: 03/31/2025] [Indexed: 04/22/2025]
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by excessive production of type I interferons (IFNs) and autoantibodies with limited effective clinical treatments. Solute carrier family 15 member 4 (SLC15A4), a proton-coupled oligopeptide transporter, facilitates the transmembrane transport of L-histidine and some di- and tripeptides from the lysosome to the cytosol. A growing body of evidence has elucidated the critical role of SLC15A4 in pathogenesis and disease progression of SLE. Genome-wide association studies have identified SLC15A4 as a new susceptibility locus of SLE. Further mechanistical studies have demonstrated that SLC15A4 involves in the production of type I IFNs in plasmacytoid dendritic cells (pDCs) and its necessity in B cells for autoantibody production in lupus models. These studies strongly support the potential of SLC15A4 as a promising therapeutic target for SLE. This review aims to summarize recent advances in understanding the role of SLC15A4 in disease progression of SLE and the development of SLC15A4-targeted inhibitors as well as discuss its potential as a target for SLE treatment.
Collapse
Affiliation(s)
- Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xiaoke Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Junhui Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
2
|
Dong M, Li P, Luo J, Chen B, Jiang H. Oligopeptide/Histidine Transporter PHT1 and PHT2 - Function, Regulation, and Pathophysiological Implications Specifically in Immunoregulation. Pharm Res 2023; 40:2585-2596. [PMID: 37610621 DOI: 10.1007/s11095-023-03589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
The oligopeptide/histidine transporters PHT1 and PHT2, two mammalian solute carrier family 15A proteins, mediate the transmembrane transport of histidine and some di/tripeptides via proton gradient. PHT1 and PHT2 are distributed in a variety of tissues but are preferentially expressed in immune cells and localize to the lysosome-related organelles. Studies have reported the relationships between PHT1/PHT2 and immune diseases. PHT1 and PHT2 participate in the regulation of lysosomal homeostasis and lysosome-associated signaling pathways through their transport and nontransport functions, playing important roles in inflammatory diseases. In this review, we summarize recent research on PHT1 and PHT2, aiming to provide reference for their further biological research and as targets for drug design.
Collapse
Affiliation(s)
- Minlei Dong
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- Department of Clinical Pharmacy, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Luo
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Wang C, Chu C, Ji X, Luo G, Xu C, He H, Yao J, Wu J, Hu J, Jin Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 2022; 11:cells11182874. [PMID: 36139448 PMCID: PMC9497230 DOI: 10.3390/cells11182874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide transporter 2 (PepT2) in mammals plays essential roles in the reabsorption and conservation of peptide-bound amino acids in the kidney and in maintaining neuropeptide homeostasis in the brain. It is also of significant medical and pharmacological significance in the absorption and disposing of peptide-like drugs, including angiotensin-converting enzyme inhibitors, β-lactam antibiotics and antiviral prodrugs. Understanding the structure, function and regulation of PepT2 is of emerging interest in nutrition, medical and pharmacological research. In this review, we provide a comprehensive overview of the structure, substrate preferences and localization of PepT2 in mammals. As PepT2 is expressed in various organs, its function in the liver, kidney, brain, heart, lung and mammary gland has also been addressed. Finally, the regulatory factors that affect the expression and function of PepT2, such as transcriptional activation and posttranslational modification, are also discussed.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guoliang Luo
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Chunling Xu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jian Wu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
- Correspondence: (J.H.); (Y.J.)
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence: (J.H.); (Y.J.)
| |
Collapse
|
4
|
Wang Y, Wang J, Yang L, Qiu L, Hua Y, Wu S, Zeng S, Yu L, Zheng X. Epigenetic regulation of intestinal peptide transporter PEPT1 as a potential strategy for colorectal cancer sensitization. Cell Death Dis 2021; 12:532. [PMID: 34031358 PMCID: PMC8144210 DOI: 10.1038/s41419-021-03814-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Human intestinal peptide transporter PEPT1 is commonly repressed in human colorectal cancer (CRC), yet its relationship with sensitivity to the common CRC treatment ubenimex has not previously been elucidated. In this study, we confirmed PEPT1 suppression in CRC using real-time quantitative polymerase chain reaction and western blotting and then investigated the underlying epigenetic pathways involved using bisulfite sequencing, chromatin immunoprecipitation, siRNA knockdown, and reporter gene assays. We found that PEPT1 transcriptional repression was due to both DNMT1-mediated DNA methylation of the proximal promoter region and HDAC1-mediated histone deacetylation, which blocked P300-mediated H3K18/27Ac at the PEPT1 distal promoter. Finally, the effects of the epigenetic activation of PEPT1 on the CRC response to ubenimex were evaluated using sequential combination therapy of decitabine and ubenimex both in vitro and in xenografts. In conclusion, epigenetic silencing of PEPT1 due to increased DNMT1 and HDAC1 expression plays a vital role in the poor response of CRC to ubenimex.
Collapse
Affiliation(s)
- Yanhong Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiaqi Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lingrong Yang
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Liqing Qiu
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Yuhui Hua
- Department of Pharmacy, Hangzhou Cancer Hospital, 310002, Hangzhou, China
| | - Shixiu Wu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Xiaoli Zheng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518116, Shenzhen, China.
| |
Collapse
|
5
|
Recapitulation of prostate tissue cell type-specific transcriptomes by an in vivo primary prostate tissue xenograft model. PLoS One 2020; 15:e0233899. [PMID: 32584883 PMCID: PMC7316257 DOI: 10.1371/journal.pone.0233899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Studies of the normal functions and diseases of the prostate request in vivo models that maintain the tissue architecture and the multiple-cell type compartments of human origin in order to recapitulate reliably the interactions of different cell types. Cell type-specific transcriptomes are critical to reveal the roles of each cell type in the functions and diseases of the prostate. A primary prostate tissue xenograft model was developed using fresh human prostate tissue specimens transplanted onto male mice that were castrated surgically and implanted with a device to maintain circulating testosterone levels comparable to adult human males. Endothelial cells and epithelial cells were isolated from 7 fresh human prostate tissue specimens and from primary tissue xenografts established from 9 fresh human prostate tissue specimens, using antibody-conjugated magnetic beads specific to human CD31 and human EpCAM, respectively. Transcriptomes of endothelial, epithelial and stromal cell fractions were obtained using RNA-Seq. Global and function-specific gene expression profiles were compared in inter-cell type and inter-tissue type manners. Gene expression profiles in the individual cell types isolated from xenografts were similar to those of cells isolated from fresh tissue, demonstrating the value of the primary tissue xenograft model for studies of the inter-relationships between prostatic cell types and the role of such inter-relationships in organ development, disease progression, and response to drug treatments.
Collapse
|
6
|
The Solute Carrier Transporter SLC15A3 Participates in Antiviral Innate Immune Responses against Herpes Simplex Virus-1. J Immunol Res 2018; 2018:5214187. [PMID: 30069489 PMCID: PMC6057324 DOI: 10.1155/2018/5214187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 01/28/2023] Open
Abstract
The innate immune response is the first line defense against viral infections. Novel genes involved in this system are continuing to emerge. SLC15A3, a proton-coupled histidine and di-tripeptide transporter that was previously found in lysosomes, has been reported to inhibit chikungunya viral replication in host cells. In this study, we found that SLC15A3 was significantly induced by DNA virus herpes simplex virus-1(HSV-1) in monocytes from human peripheral blood mononuclear cells. Aside from monocytes, it can also be induced by HSV-1 in 293T, HeLa cells, and HaCaT cells. Overexpression of SLC15A3 in 293T cells inhibits HSV-1 replication and enhances type I and type III interferon (IFN) responses, while silencing SLC15A3 leads to enhanced HSV-1 replication with reduced IFN production. Moreover, we found that SLC15A3 interacted with MAVS and STING and potentiated MAVS- and STING-mediated IFN production. These results demonstrate that SLC15A3 participates in anti-HSV-1 innate immune responses by regulating MAVS- and STING-mediated signaling pathways.
Collapse
|
7
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
8
|
Gong Y, Zhang J, Wu X, Wang T, Zhao J, Yao Z, Zhang Q, Liu X, Jian X. Specific expression of proton-coupled oligopeptide transporter 1 in primary hepatocarcinoma-a novel strategy for tumor-targeted therapy. Oncol Lett 2017; 14:4158-4166. [PMID: 28943923 PMCID: PMC5592876 DOI: 10.3892/ol.2017.6724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Proton-coupled oligopeptide transporter 1 (PEPT1) is a membrane protein which expressed predominantly in intestine and recognized as the target of dietary nutrients (di/tripeptide) or peptidomimetic drug for delivery. The information on the existence of PEPT1 in carcinomas were limited. Our study aimed to investigate the expression profile and transport activity of PEPT1 both in human hepatocarcinoma tissues and cell lines. Western blotting and an immunofluorescence assay revealed the high level of PEPT1 protein expression in hepatocarcinoma Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cell lines. Quantitative real time PCR showed the mRNA expression of PEPT1 in Bel-7402, SMMC-7721, HepG2, HEP3B, SK-HEP-1 cells. High level PEPT1 expression in hepatocarcinoma patient samples were observed by Immunohistology and showed a significant correlation between protein level and pathological grade. Functional activities were also studied using D-Ala-Lys-AMCA (a substrate of peptide transporter) in above five hepatocarcinoma cell lines. The uptake tests performed by fluorescent microscopy suggested that PEPT1 can transport both D-Ala-Lys-AMCA into the hepatocarcinoma cells and the uptake can be competitively inhibited by three PEPT1 substrates (Gly-sar, Gly-gln and Glyglygly). In conclusion, our findings provided the novel information on the expression and function of PEPT1 in human hepatocarcinoma and expanded the potential values for tumor specific drug delivery.
Collapse
Affiliation(s)
- Yanxia Gong
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.,Department of Gastroenterology, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jie Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xiang Wu
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tao Wang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Zhao
- Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhi Yao
- Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Qingyu Zhang
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xi Liu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xu Jian
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
9
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
10
|
Wang Y, Sun D, Song F, Hu Y, Smith DE, Jiang H. Expression and regulation of the proton-coupled oligopeptide transporter PhT2 by LPS in macrophages and mouse spleen. Mol Pharm 2014; 11:1880-8. [PMID: 24754256 PMCID: PMC4051248 DOI: 10.1021/mp500014r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane transporter PhT2 (SLC15A3), which belongs to the proton-coupled oligopeptide transporter family, mediates the transport of di/tripeptides and histidine utilizing an inwardly directed proton gradient and negative membrane potential. The aim of this study was to elucidate the molecular expression of PhT2 in macrophages and mouse tissues and to explore the regulation of PhT2 by lipopolysaccharide (LPS). The results showed relatively high expression of PhT2 in J774A.1 and THP-1 macrophage cells, mouse spleen, and lung. Using an LPS-induced inflammatory cell model, we found that hPhT2 mRNA expression was up-regulated in THP-1 cells and that the up-regulation was suppressed by pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB. Similar results were observed in mouse spleen during LPS-induced acute inflammation. Using dual-labeling immunofluorescence and confocal laser scanning microscopy, we confirmed that mPhT2 was colocalizing with lysosome-associated membrane protein 1 in transfected HEK293 cells. These results suggested that PhT2, a lysosomal membrane transporter, was up-regulated by LPS via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yuqing Wang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang 310058, P. R. China
| | | | | | | | | | | |
Collapse
|
11
|
Sun D, Wang Y, Tan F, Fang D, Hu Y, Smith DE, Jiang H. Functional and molecular expression of the proton-coupled oligopeptide transporters in spleen and macrophages from mouse and human. Mol Pharm 2013; 10:1409-16. [PMID: 23442152 DOI: 10.1021/mp300700p] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of this study was to determine the expression and function of proton-coupled oligopeptide transporters (POTs) in spleen and macrophages and their contribution to innate immune response induced by bacterial peptidomimetics γ-iE-DAP and MDP. Quantitative real-time PCR (qRT-PCR) and Western blot results revealed the mRNA and protein expression of PepT2, PhT1, and PhT2, but not PepT1, in the spleen of mice and humans. In comparison to lymphocytes of the spleen, macrophages had higher transcript levels of PepT2 and PhT2. The cellular uptake of Ala-Lys-AMCA in mouse splenic macrophages was pH-dependent with maximum uptake at pH 6.0, and the kinetic parameters were K(m) = 75.5 ± 14.3 μM and V(max) = 25.4 ± 2.1 pmol/min per mg protein. The uptake of Ala-Lys-AMCA by mouse splenic macrophages was not inhibited by histidine but was significantly inhibited by glycyl-sarcosine (GlySar) and carnosine (P < 0.01), and by bacterial peptidomimetics γ-iE-DAP and MDP, ligands of nucleotide-binding oligomerization domain (NOD)-containing proteins. Carnosine and GlySar, but not histidine, attenuated the inflammatory response induced by γ-iE-DAP and MDP in mouse splenic macrophages. Functional expression of POTs was also demonstrated in THP-1 cells, and dipeptides reduced the immune response induced by γ-iE-DAP. In conclusion, our findings are novel by providing important information on the molecular and functional expression of POTs in the spleen. Moreover, it appears that the PepT2-mediated uptake of γ-iE-DAP and MDP in macrophages further contributes to the innate immune response.
Collapse
Affiliation(s)
- Dongli Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | | | | | | | | | | | | |
Collapse
|