1
|
Baptista HS, Portela LMF, Fioretto MN, Mattos R, Ribeiro IT, Lorente ABL, Oliveira JIN, Justulin LA. Influence of aging and maternal protein restriction on PIWI-interacting RNA expression in the offspring rat ventral prostate. Sci Rep 2024; 14:30372. [PMID: 39639045 PMCID: PMC11621812 DOI: 10.1038/s41598-024-77901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/27/2024] [Indexed: 12/07/2024] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept explores the link between exposure to adverse conditions during fetal and early childhood development and the onset of chronic non-communicable diseases, such as prostate cancer (PCa). Changes in epigenetics that control gene expression have been identified as potential contributors to the developmental origin of PCa. Piwi-interacting RNAs (piRNAs), for example, control transposable elements (TEs) and maintain genome integrity in germ cells. However, stress-induced deregulation of TEs warrants investigating the role of piRNAs in the prostate gland from the DOHaD perspective, which remains underexplored. This study aimed to detect and characterize piRNA expression in the ventral prostate (VP) of Sprague Dawley rat offspring at 21 postnatal days (PND21) and PND540. The rats were subjected to maternal protein restriction during pregnancy and lactation to understand its impact on prostate development and aging. Histological analyses showed that the gestational and lactation low-protein diet (GLLP) group experienced a delay in prostate gland development, with increased stromal and epithelial compartments and decreased luminal compartments during early life. Aging in this group resulted in decreased luminal compartments and increased stromal areas. Epithelial atrophy was observed in both groups, with an increased incidence of carcinoma in situ in the GLLP group. Small RNA sequencing from control and restricted groups (at PND21 and PND540) identified piRNA clusters in both young and aged animals. We also detected the expression of PIWI genes (Riwi, Rili, Rili2) in the prostate. Our data highlight the key role of maternal malnutrition in modulating piRNA expression in the offspring's VP, with the potential to influence prostate developmental biology and the risk of prostatic disorders with aging.
Collapse
Affiliation(s)
- Hecttor S Baptista
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Luiz M Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Isabelle T Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ana B Leite Lorente
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | | | - Luis A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
2
|
Perera BPU, Wang K, Wang D, Chen K, Dewald A, Sriram S, Goodrich JM, Svoboda LK, Sartor MA, Dolinoy DC. Sex and tissue-specificity of piRNA regulation in adult mice following perinatal lead (Pb) exposure. Epigenetics 2024; 19:2426952. [PMID: 39536059 PMCID: PMC11562917 DOI: 10.1080/15592294.2024.2426952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Lead (Pb) is a neurotoxicant with early life exposure linked to long-term health effects. Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that associate with PIWIL proteins to induce DNA methylation. It remains unknown whether Pb exposure influences piRNA expression. This study evaluated how perinatal Pb exposure (32 ppm in drinking water) impacts piRNA expression in adult mice and assessed piRNA dysregulation as a potential mechanism for Pb-induced toxicity. Pb exposure effects on piRNA expression and associated gene repression in the germline (testis/ovary) and soma (liver and brain) were evaluated. Small RNA sequencing was used to determine differentially expressed piRNAs, RT-qPCR to examine piRNA target expression, and whole genome bisulfite sequencing to evaluate target DNA methylation status. Three piRNAs (mmpiR-1500602, mmpiR-0201406, and mmpiR-0200026) were significant after multiple testing correction (all downregulated in the male Pb-exposed brain in comparison to control; FDR < 0.05). Within piOxiDB, TAO Kinase 3 was identified as a downstream mRNA target for one of the three Pb-sensitive piRNA. The Pb-exposed male brain exhibited increased Taok3 expression (p < 0.05) and decreased DNA methylation (FDR < 0.01). The results demonstrate that perinatal Pb exposure stably influences longitudinal piRNA expression in a tissue- and sex-specific manner, potentially via DNA methylation-directed mechanisms.
Collapse
Affiliation(s)
- Bambarendage P. U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Palmer Commons, Ann Arbor, MI, USA
| | - Dongyue Wang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen Chen
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alisa Dewald
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Swati Sriram
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Palmer Commons, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Ahmadi Asouri S, Aghadavood E, Mirzaei H, Abaspour A, Esmaeil Shahaboddin M. PIWI-interacting RNAs (PiRNAs) as emerging biomarkers and therapeutic targets in biliary tract cancers: A comprehensive review. Heliyon 2024; 10:e33767. [PMID: 39040379 PMCID: PMC11261894 DOI: 10.1016/j.heliyon.2024.e33767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Cancers affecting the biliary tract, such as gallbladder cancer and cholangiocarcinoma, make up a small percentage of adult gastrointestinal malignancies, but their incidence is on the rise. Due to the lack of dependable molecular biomarkers for diagnosis and prognosis, these cancers are often not detected until later stages and have limited treatment options. Piwi-interacting RNAs (piRNAs) are a type of small noncoding RNA that interacts with Piwi proteins and has been linked to various diseases, especially cancer. Manipulation of piRNA expression has the potential to serve as an important biomarker and target for therapy. This review uncovers the relationship between PIWI-interacting RNA (piRNA) and a variety of gastrointestinal cancers, including biliary tract cancer (BTC). It is evident that piRNAs have the ability to impact gene expression and regulate key genes and pathways related to the advancement of digestive cancers. Abnormal expression of piRNAs plays a significant role in the development and progression of digestive-related malignancies. The potential of piRNAs as potential biomarkers for diagnosis and prognosis, as well as therapeutic targets in BTC, is noteworthy. Nevertheless, there are obstacles and limitations that require further exploration to fully comprehend piRNAs' role in BTC and to devise effective diagnostic and therapeutic approaches using piRNAs. In summary, this review underscores the value of piRNAs as valuable biomarkers and promising targets for treating BTC, as we delve into the association between piRNAs and various gastrointestinal cancers, including BTC, and how piRNAs can impact gene expression and control essential pathways for digestive cancer advancement. The present research consists of a thorough evaluation presented in a storytelling style. The databases utilized to locate original sources were PubMed, MEDLINE, and Google Scholar, and the search was conducted using the designated keywords.
Collapse
Affiliation(s)
- Sahar Ahmadi Asouri
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavood
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Abaspour
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Gupta P, Das G, Chattopadhyay T, Ghosh Z, Mallick B. TarpiD, a database of putative and validated targets of piRNAs. Mol Omics 2023; 19:706-713. [PMID: 37427797 DOI: 10.1039/d3mo00098b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel class of 18-36 nts long small non-coding single-stranded RNAs that play crucial roles in a wide array of critical biological activities besides maintaining genome integrity by transposon silencing. piRNAs influence biological processes and pathways by regulating gene expression at transcriptional and post-transcriptional level. Studies have reported that piRNAs silence various endogenous genes post-transcriptionally by binding to respective mRNAs through interaction with the PIWI proteins. Several thousands of piRNAs have been discovered in animals, but their functions remain largely undiscovered owing to a lack of proper guiding principles of piRNA targeting or diversity in targeting patterns amongst piRNAs from the same or different species. Identification of piRNA targets is essential for deciphering their functions. There are a few tools and databases on piRNAs, but there are no systematic and exclusive repositories to obtain information on target genes regulated by piRNAs and other related information. Hence, we developed a user-friendly database named TarpiD (Targets of piRNA Database) that offers comprehensive information on piRNA and its targets, including their expression, methodologies (high-throughput or low-throughput) for target identification/validation, cells/tissue types, diseases, target gene regulation types, target binding regions, and key functions driven by piRNAs through target gene interactions. The contents of TarpiD are curated from the published literature and enable users to search and download the targets of a particular piRNA or the piRNAs that target a specific gene for use in their research. This database harbours 28 682 entries of piRNA-target interactions supported by 15 methodologies reported in hundreds of cell types/tissues from 9 species. TarpiD will be a valuable resource for a better understanding of the functions and gene-regulatory mechanisms mediated by piRNAs. TarpiD is freely accessible for academic use at https://tarpid.nitrkl.ac.in/tarpid_db/.
Collapse
Affiliation(s)
- Pooja Gupta
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Gourab Das
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Trisha Chattopadhyay
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology, Rourkela-769008, Odisha, India.
| |
Collapse
|
5
|
Zhang K, Li Y, Huang Y, Sun K. PiRNA in Cardiovascular Disease: Focus on Cardiac Remodeling and Cardiac Protection. J Cardiovasc Transl Res 2023; 16:768-777. [PMID: 37407865 DOI: 10.1007/s12265-023-10353-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/08/2023] [Indexed: 07/07/2023]
Abstract
Cardiovascular diseases (CVDs) are common causes of death, which take about 18.6 million lives worldwide every year. Currently, exploring strategies that delay ventricular remodeling, reduce cardiomyocyte death, and promote cardiomyocyte regeneration has been the hotspot and difficulty of the ischemic heart disease (IHD) research field. Previous studies indicate that piwi-interacting RNA (piRNA) plays a vital role in the occurrence and development of cardiac remodeling and may offer novel therapeutic strategies for cardiac repair. The best-known biological function of piRNA is to silence transposons in cells. In the cardiovascular system, piRNA is known to participate in cardiac progenitor cell proliferation, AKT pathway regulation, and cardiac remodeling and decompensation. In this review, we systematically discuss the research progress on piRNA in CVDs, especially the mechanism of cardiac remodeling and the potential functions in cardiac protection, which provides new insights for the progress and treatment of cardiovascular diseases. Piwi-interacting RNA (piRNA) is one of the noncoding RNAs, with the best -known biological function to silence transposons in cells. Now piRNA is found to participate in cardiac progenitor cell proliferation, AKT pathway regulation, cardiac remodeling and decompensation, which implies the potential of piRNA in the diagnosis and treatment of cardiovascular diseases. Over expression of piRNA could promote cardiac apoptosis and cardiac hypertrophy, thus targeted therapy which inhibits expression of associated piRNA may reduce cardiac remodeling and reduce inflammation caused by necrotic cardiomyocytes. PiRNA is also speculated to participate in the proliferation of cardiac progenitor cells, implying the potential to induce cardiac regeneration th erapy, which provides new insights for treatment of cardiovascular diseases. At present, the treatment strategy of cardiac remodeling emphasizes the control of risk factors, prevention of disease progression and individualized treatment. With further studies in mechanism of piRNA, potential therapies above may come true and more therapies in cardiovascular diseases may be found.
Collapse
Affiliation(s)
- Kaiyu Zhang
- Department of Cardiology, Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Yafei Li
- Department of Cardiology, Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Ying Huang
- Central Laboratory, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Kangyun Sun
- Department of Cardiology, Gusu School, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
6
|
Tang Y, Yi X, Zhang X, Liu B, Lu Y, Pan Z, Yu T, Feng W. Microcystin‑leucine arginine promotes colorectal cancer cell proliferation by activating the PI3K/Akt/Wnt/β‑catenin pathway. Oncol Rep 2023; 49:18. [PMID: 36453240 PMCID: PMC9773010 DOI: 10.3892/or.2022.8455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
Microcystin‑leucine arginine (MC‑LR) is an environmental toxin produced by cyanobacteria and is considered to be a potent carcinogen. However, to the best of our knowledge, the effect of MC‑LR on colorectal cancer (CRC) cell proliferation has never been studied. The aim of the present study was to investigate the effect of MC‑LR on CRC cell proliferation and the underlying mechanisms. Firstly, a Cell Counting Kit‑8 (CCK‑8) assay was conducted to determine cell viability at different concentrations, and 50 nM MC‑LR was chosen for further study. Subsequently, a longer CCK‑8 assay and a cell colony formation assay showed that MC‑LR promoted SW620 and HT29 cell proliferation. Furthermore, western blotting analysis showed that MC‑LR significantly upregulated protein expression of PI3K, p‑Akt (Ser473), p‑GSK3β (Ser9), β‑catenin, c‑myc and cyclin D1, suggesting that MC‑LR activated the PI3K/Akt and Wnt/β‑catenin pathways in SW620 and HT29 cells. Finally, the pathway inhibitors LY294002 and ICG001 were used to validate the role of the PI3K/Akt and Wnt/β‑catenin pathways in MC‑LR‑accelerated cell proliferation. The results revealed that MC‑LR activated Wnt/β‑catenin through the PI3K/Akt pathway to promote cell proliferation. Taken together, these data showed that MC‑LR promoted CRC cell proliferation by activating the PI3K/Akt/Wnt/β‑catenin pathway. The present study provided a novel insight into the toxicological mechanism of MC‑LR.
Collapse
Affiliation(s)
- Yaqi Tang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaoyu Yi
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xinyu Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Baojie Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yongzheng Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhifang Pan
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Tao Yu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiguo Feng
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
7
|
Gu S, Jiang M, Zhang B. Microcystin-LR in Primary Liver Cancers: An Overview. Toxins (Basel) 2022; 14:toxins14100715. [PMID: 36287983 PMCID: PMC9611980 DOI: 10.3390/toxins14100715] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
The cyanobacterial blooms produced by eutrophic water bodies have become a serious environmental issue around the world. After cellular lysing or algaecide treatment, microcystins (MCs), which are regarded as the most frequently encountered cyanobacterial toxins in fresh water, are released into water. Among all the variants of MCs, MC-LR has been widely studied due to its severe hepatotoxicity. Since 1992, various studies have identified the important roles of MC-LR in the origin and progression of primary liver cancers (PLCs), although few reviews have focused on it. Therefore, this review aims to summarize the major achievements and shortcomings observed in the past few years. Based on the available literature, the mechanisms of how MC-LR induces or promotes PLCs are elucidated in this review. This review aims to enhance our understanding of the role that MC-LR plays in PLCs and provides a rational approach for future applications.
Collapse
Affiliation(s)
- Shen Gu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Correspondence: ; Tel.: +86-0571-56007664
| | - Mingxuemei Jiang
- Institute of Scientific and Technical Information of Zhejiang Province, Hangzhou 310001, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
8
|
Zhang S, Wu W, Peng Y, Liu L, Zhang Y, Wang R, Chen Z, Chu L, Zhang X, Bu Q, Jiang D, Wang J, Wang Y, Wang L. Chronic exposure to microcystin-leucine-arginine induces epithelial hyperplasia and inflammation in the mouse bladder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114033. [PMID: 36075121 DOI: 10.1016/j.ecoenv.2022.114033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) is a cyclic heptapeptide compound produced by cyanobacteria with strong cytotoxicity. Previous studies have confirmed that MC-LR could exert toxic effects on the genitourinary system, but there are few reports about its toxicity to the bladder. In this study, we investigated the effects of MC-LR on mouse bladder and human bladder epithelial cells (SV-HUC-1 cells). We observed that the bladder weight and the number of bladder epithelial cells were markedly increased in mice following chronic low-dose exposure to MC-LR. Further investigation showed that MC-LR activates AKT/NF-kB signaling pathway to induce the production of proinflammatory cytokines TNF-α and IL-6. In addition, the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in bladder tissue was increased and the relative migration and invasion capacities of SV-HUC-1 cells were enhanced upon exposure to MC-LR. In conclusion, these results suggest that chronic exposure to MC-LR induced epithelial hyperplasia and inflammation, upregulated the expression of matrix metalloproteinases (MMPs) and promoted the migration and invasion of bladder epithelial cells, which provides a basis for further exploring the potential mechanism by which environmental factors increasing the risk of bladder cancer.
Collapse
Affiliation(s)
- Shaoru Zhang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China; State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Weidong Wu
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Yi Peng
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Lingyi Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaling Zhang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Rong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Zhenshi Chen
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Lei Chu
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Xiajun Zhang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Qiang Bu
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China
| | - Dongfang Jiang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China.
| | - Jian Wang
- The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang 212300, China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| | - Lihui Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
9
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Xu G, Luo Y, Xu D, Ma Y, Chen Y, Han X. Male reproductive toxicity induced by Microcystin-leucine-arginine (MC-LR). Toxicon 2022; 210:78-88. [DOI: 10.1016/j.toxicon.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
|
11
|
Hanusek K, Poletajew S, Kryst P, Piekiełko-Witkowska A, Bogusławska J. piRNAs and PIWI Proteins as Diagnostic and Prognostic Markers of Genitourinary Cancers. Biomolecules 2022; 12:biom12020186. [PMID: 35204687 PMCID: PMC8869487 DOI: 10.3390/biom12020186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
piRNAs (PIWI-interacting RNAs) are small non-coding RNAs capable of regulation of transposon and gene expression. piRNAs utilise multiple mechanisms to affect gene expression, which makes them potentially more powerful regulators than microRNAs. The mechanisms by which piRNAs regulate transposon and gene expression include DNA methylation, histone modifications, and mRNA degradation. Genitourinary cancers (GC) are a large group of neoplasms that differ by their incidence, clinical course, biology, and prognosis for patients. Regardless of the GC type, metastatic disease remains a key therapeutic challenge, largely affecting patients’ survival rates. Recent studies indicate that piRNAs could serve as potentially useful biomarkers allowing for early cancer detection and therapeutic interventions at the stage of non-advanced tumour, improving patient’s outcomes. Furthermore, studies in prostate cancer show that piRNAs contribute to cancer progression by affecting key oncogenic pathways such as PI3K/AKT. Here, we discuss recent findings on biogenesis, mechanisms of action and the role of piRNAs and the associated PIWI proteins in GC. We also present tools that may be useful for studies on the functioning of piRNAs in cancers.
Collapse
Affiliation(s)
- Karolina Hanusek
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
| | - Sławomir Poletajew
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Piotr Kryst
- Centre of Postgraduate Medical Education, II Department of Urology, 01-813 Warsaw, Poland; (S.P.); (P.K.)
| | - Agnieszka Piekiełko-Witkowska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| | - Joanna Bogusławska
- Centre of Postgraduate Medical Education, Department of Biochemistry and Molecular Biology, 01-813 Warsaw, Poland;
- Correspondence: (A.P.-W.); (J.B.)
| |
Collapse
|
12
|
Zhang S, Du X, Liu H, Losiewic MD, Chen X, Ma Y, Wang R, Tian Z, Shi L, Guo H, Zhang H. The latest advances in the reproductive toxicity of microcystin-LR. ENVIRONMENTAL RESEARCH 2021; 192:110254. [PMID: 32991922 DOI: 10.1016/j.envres.2020.110254] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Michael D Losiewic
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Qi T, Cao H, Sun H, Feng H, Li N, Wang C, Wang L. piR-19166 inhibits migration and metastasis through CTTN/MMPs pathway in prostate carcinoma. Aging (Albany NY) 2020; 12:18209-18220. [PMID: 32881713 PMCID: PMC7585067 DOI: 10.18632/aging.103677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
Tumor metastasis is one of death causes for patients of prostate carcinoma. PIWI-interacting RNAs (piRNAs) are a subtype of noncoding protein RNAs that are involved in tumorigenesis, but the effect of piRNAs in prostate carcinoma (PCa) remains unclear. This article showed the identification of piRNAs was performed using a piRNA microarray screen in PCa tissues and several piRNAs were identified as dysregulated. The two up-regulated piRNAs (piR-19004 and piR-2878) and one down-regulated piR-19166 have been validated in the tissues and cell lines of PCa using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Further studies showed that piR-19166 is transfected into PCa cells to suppress its migration and metastasis. Mechanistically, cortactin (CTTN) 3' untranslated region (UTR) was complementary combined with piR-19166 by bioinformatic prediction and identified as a direct target of piR-19166 through dual-luciferase reporter assay. Over-expression and knockdown of CTTN could respectively rescue and simulate the effects induced by piR-19166. Finally, piR-19166 suppresses migration and metastasis by the CTTN/matrix metalloproteinases (MMPs) pathway in PCa cells. Thus, these findings suggested that piR-19166 targets the CTTN of prostate cancer cells to inhibit migration and distant metastasis, and may represent a new marker of diagnosis and treatment for PCa patients in early stages.
Collapse
Affiliation(s)
- Tingyue Qi
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Haiyan Cao
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Hongguang Sun
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Hao Feng
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Nianfeng Li
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Chenghai Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| | - Lei Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Zeng Q, Wan H, Zhao S, Xu H, Tang T, Oware KA, Qu S. Role of
PIWI
‐interacting
RNAs
on cell survival: Proliferation, apoptosis, and cycle. IUBMB Life 2020; 72:1870-1878. [DOI: 10.1002/iub.2332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Qian Zeng
- Pathophysiology DepartmentInstitute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, University of South China Hengyang China
| | - Hengquan Wan
- Pathophysiology DepartmentInstitute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, University of South China Hengyang China
| | - Simin Zhao
- Pathophysiology DepartmentInstitute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, University of South China Hengyang China
| | - Haiqiang Xu
- Pathophysiology DepartmentInstitute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, University of South China Hengyang China
| | - Tingting Tang
- Pathophysiology DepartmentInstitute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, University of South China Hengyang China
| | - Kwabena Agyare Oware
- Pathophysiology DepartmentInstitute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, University of South China Hengyang China
- International College, Hengyang Medical SchoolUniversity of South China Hengyang China
| | - Shunlin Qu
- Pathophysiology DepartmentInstitute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic disease, University of South China Hengyang China
| |
Collapse
|
15
|
Shorning BY, Dass MS, Smalley MJ, Pearson HB. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci 2020; 21:E4507. [PMID: 32630372 PMCID: PMC7350257 DOI: 10.3390/ijms21124507] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Oncogenic activation of the phosphatidylinositol-3-kinase (PI3K), protein kinase B (PKB/AKT), and mammalian target of rapamycin (mTOR) pathway is a frequent event in prostate cancer that facilitates tumor formation, disease progression and therapeutic resistance. Recent discoveries indicate that the complex crosstalk between the PI3K-AKT-mTOR pathway and multiple interacting cell signaling cascades can further promote prostate cancer progression and influence the sensitivity of prostate cancer cells to PI3K-AKT-mTOR-targeted therapies being explored in the clinic, as well as standard treatment approaches such as androgen-deprivation therapy (ADT). However, the full extent of the PI3K-AKT-mTOR signaling network during prostate tumorigenesis, invasive progression and disease recurrence remains to be determined. In this review, we outline the emerging diversity of the genetic alterations that lead to activated PI3K-AKT-mTOR signaling in prostate cancer, and discuss new mechanistic insights into the interplay between the PI3K-AKT-mTOR pathway and several key interacting oncogenic signaling cascades that can cooperate to facilitate prostate cancer growth and drug-resistance, specifically the androgen receptor (AR), mitogen-activated protein kinase (MAPK), and WNT signaling cascades. Ultimately, deepening our understanding of the broader PI3K-AKT-mTOR signaling network is crucial to aid patient stratification for PI3K-AKT-mTOR pathway-directed therapies, and to discover new therapeutic approaches for prostate cancer that improve patient outcome.
Collapse
Affiliation(s)
| | | | | | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, Wales, UK; (B.Y.S.); (M.S.D.); (M.J.S.)
| |
Collapse
|