1
|
Karthikeyan D, Kumar S, Jayaprakash NS. A comprehensive review of recent developments in the gram-negative bacterial UDP-2,3-diacylglucosamine hydrolase (LpxH) enzyme. Int J Biol Macromol 2024; 267:131327. [PMID: 38574903 DOI: 10.1016/j.ijbiomac.2024.131327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
The emergence of multidrug resistance has provided a great challenge to treat nosocomial infections, which have become a major health threat around the globe. Lipid A (an active endotoxin component), the final product of the Raetz lipid A metabolism pathway, is a membrane anchor of lipopolysaccharide (LPS) of the gram-negative bacterial outer membrane. It shields bacterial cells and serves as a protective barrier from antibiotics, thereby eliciting host response and making it difficult to destroy. UDP-2,3-diacylglucosamine pyrophosphate hydrolase (LpxH), a crucial peripheral membrane enzyme of the Raetz pathway, turned out to be the potential target to inhibit the production of Lipid A. This review provides a comprehensive compilation of information regarding the structural and functional aspects of LpxH, as well as its analogous LpxI and LpxG. In addition, apart from by providing a broader understanding of the enzyme-inhibitor mechanism, this review facilitates the development of novel drug candidates that can inhibit the pathogenicity of the lethal bacterium.
Collapse
Affiliation(s)
- Divyapriya Karthikeyan
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Sanjit Kumar
- Department of Biotechnology, School of Interdisciplinary Education and Research, Guru Ghasidas Vishwavidyalaya, Bilaspur (A Central University), Chhattisgarh 495009, India
| | - N S Jayaprakash
- Centre for Bioseparation Technology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
2
|
Cai Y, Dong J, Huang J, He J, Hu Y, Sui Z, Tang P. The cyclic AMP (cAMP) phosphodiesterase CpdA required for growth, biofilm formation, motility and pathogenicity of Edwardsiella piscicida. Microb Pathog 2024; 188:106545. [PMID: 38244636 DOI: 10.1016/j.micpath.2024.106545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Edwardsiella piscicida is a severe fish pathogen with wide host range, causing the huge economic losses in the aquaculture industry. Cyclic adenosine monophosphate (cAMP) as an important second messenger regulates the physiological and behavioral responses to environmental cues in eukaryotic and prokaryotic. The intracellular level of cAMP for effective activity is tightly controlled by the synthesis of adenylate cyclase, excretion and degradation of phosphodiesterase. In this study, we identified and characterized a class III cAMP phosphodiesterase, named as CpdA, in the E. piscicida. To investigate the role of CpdA in the physiology and pathogenicity, we constructed the in-frame deletion mutant of cpdA of E. piscicida, TX01ΔcpdA. The results showed that TX01ΔcpdA accumulated the higher intracellular cAMP concentration than TX01, indicating that CpdA exerted the hydrolysis of cAMP. In addition, compared to the TX01, the TX01ΔcpdA slowed growth rate, diminished biofilm formation and lost motility. More importantly, pathogenicity analysis confirmed that TX01ΔcpdA significantly impaired the ability of invading the epithelial cells, reproduction in macrophages, tissues dissemination and lethality for healthy tilapias. The most of lost properties of TX01ΔcpdA were restored partially or fully by the introduction of cpdA gene. These results suggest that cpdA is required for regulation of the physiology and virulence of E. piscicida.
Collapse
Affiliation(s)
- Yidong Cai
- School of Life and Health, Hainan University, Haikou, 570228, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Jinggang Dong
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Jianqiang Huang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jiaojiao He
- School of Life and Health, Hainan University, Haikou, 570228, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China
| | - Yonghua Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, 571101, China; Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Zhihai Sui
- School of Life Science, Linyi University, Linyi, 276000, China.
| | - Ping Tang
- State Key Laboratory of Conservation and Utilization of Biologícal Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
3
|
Chen J, Calderone LA, Pan L, Quist T, Pandelia ME. The Fe and Zn cofactor dilemma. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140931. [PMID: 37353133 DOI: 10.1016/j.bbapap.2023.140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Fe and Zn ions are essential enzymatic cofactors across all domains of life. Fe is an electron donor/acceptor in redox enzymes, while Zn is typically a structural element or catalytic component in hydrolases. Interestingly, the presence of Zn in oxidoreductases and Fe in hydrolases challenge this apparent functional dichotomy. In hydrolases, Fe either substitutes for Zn or specifically catalyzes certain reactions. On the other hand, Zn can replace divalent Fe and substitute for more complex Fe assemblies, known as Fe-S clusters. Although many zinc-binding proteins interchangeably harbor Zn and Fe-S clusters, these cofactors are only sometimes functional proxies.
Collapse
Affiliation(s)
- Jiahua Chen
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Logan A Calderone
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Luying Pan
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | - Trent Quist
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| | | |
Collapse
|
4
|
Thomson M, Liu Y, Nunta K, Cheyne A, Fernandes N, Williams R, Garza-Garcia A, Larrouy-Maumus G. Expression of a novel mycobacterial phosphodiesterase successfully lowers cAMP levels resulting in reduced tolerance to cell wall-targeting antimicrobials. J Biol Chem 2022; 298:102151. [PMID: 35718063 PMCID: PMC9293780 DOI: 10.1016/j.jbc.2022.102151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/09/2023] Open
Abstract
cAMP and antimicrobial susceptibility in mycobacteriaAntimicrobial tolerance, the ability to survive exposure to antimicrobials via transient nonspecific means, promotes the development of antimicrobial resistance (AMR). The study of the molecular mechanisms that result in antimicrobial tolerance is therefore essential for the understanding of AMR. In gram-negative bacteria, the second messenger molecule 3'',5''-cAMP has been previously shown to be involved in AMR. In mycobacteria, however, the role of cAMP in antimicrobial tolerance has been difficult to probe due to its particular complexity. In order to address this difficulty, here, through unbiased biochemical approaches consisting in the fractionation of clear protein lysate from a mycobacterial strain deleted for the known cAMP phosphodiesterase (Rv0805c) combined with mass spectrometry techniques, we identified a novel cyclic nucleotide-degrading phosphodiesterase enzyme (Rv1339) and developed a system to significantly decrease intracellular cAMP levels through plasmid expression of Rv1339 using the constitutive expression system, pVV16. In Mycobacterium smegmatis mc2155, we demonstrate that recombinant expression of Rv1339 reduced cAMP levels threefold and resulted in altered gene expression, impaired bioenergetics, and a disruption in peptidoglycan biosynthesis leading to decreased tolerance to antimicrobials that target cell wall synthesis such as ethambutol, D-cycloserine, and vancomycin. This work increases our understanding of the role of cAMP in mycobacterial antimicrobial tolerance, and our observations suggest that nucleotide signaling may represent a new target for the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Michael Thomson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Kanokkan Nunta
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Ashleigh Cheyne
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Nadia Fernandes
- Imperial BRC Genomics Facility, Imperial College London, London, United Kingdom
| | - Richard Williams
- Imperial BRC Genomics Facility, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
Hobbs SJ, Wein T, Lu A, Morehouse BR, Schnabel J, Leavitt A, Yirmiya E, Sorek R, Kranzusch PJ. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature 2022; 605:522-526. [PMID: 35395152 PMCID: PMC9117128 DOI: 10.1038/s41586-022-04716-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation1,2. Phages use several strategies to defeat host CRISPR and restriction-modification systems3-10, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity. Using a biochemical screen of 57 phages in Escherichia coli and Bacillus subtilis, we discover Acb1 from phage T4 and Apyc1 from phage SBSphiJ as founding members of distinct families of immune evasion proteins. Crystal structures of Acb1 in complex with 3'3'-cyclic GMP-AMP define a mechanism of metal-independent hydrolysis 3' of adenosine bases, enabling broad recognition and degradation of cyclic dinucleotide and trinucleotide CBASS signals. Structures of Apyc1 reveal a metal-dependent cyclic NMP phosphodiesterase that uses relaxed specificity to target Pycsar cyclic pyrimidine mononucleotide signals. We show that Acb1 and Apyc1 block downstream effector activation and protect from CBASS and Pycsar defence in vivo. Active Acb1 and Apyc1 enzymes are conserved in phylogenetically diverse phages, demonstrating that cleavage of host cyclic nucleotide signals is a key strategy of immune evasion in phage biology.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Allen Lu
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Benjamin R Morehouse
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Julia Schnabel
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
6
|
Distribution of adenylyl cyclase/cAMP phosphodiesterase gene, CAPE, in streptophytes reproducing via motile sperm. Sci Rep 2021; 11:10054. [PMID: 33980894 PMCID: PMC8115329 DOI: 10.1038/s41598-021-89539-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
We recently isolated a novel adenylyl cyclase/cAMP phosphodiesterase gene from the liverwort, Marchantia polymorpha. The protein encoded by this gene has a class III adenylyl cyclase (AC) in the C-terminal domain and class I phosphodiesterase (PDE) in the N-terminal domain; therefore, we named it CAPE (COMBINED AC with PDE). CAPE protein is likely involved in spermatogenesis and sperm motility due to its tissue-specific expression pattern in M. polymorpha and the distribution of CAPE genes in streptophytes. However, little is known about the distribution of CAPE in gymnosperms that use motile sperm for fertilization, such as cycads and ginkgo. The present study aimed to isolate CAPE genes from the cycad, Cycas revoluta, the ginkgo, Ginkgo biloba, and the hornwort, Anthoceros agerestis. Sequences with high homology to CAPE were obtained from these species. Our analyses revealed that all plant taxonomic groups reproducing via motile sperm possessed CAPE, whereas those that do not produce motile sperm did not possess CAPE, with one exception in gymnosperm Cupressales. The phylogenic distribution of CAPE almost corresponds to the evolutionary history of motile sperm production and further suggests that CAPE may be involved in sexual reproduction process using motile sperm in streptophytes.
Collapse
|
7
|
Forrellad MA, Blanco FC, Marrero Diaz de Villegas R, Vázquez CL, Yaneff A, García EA, Gutierrez MG, Durán R, Villarino A, Bigi F. Rv2577 of Mycobacterium tuberculosis Is a Virulence Factor With Dual Phosphatase and Phosphodiesterase Functions. Front Microbiol 2020; 11:570794. [PMID: 33193164 PMCID: PMC7642983 DOI: 10.3389/fmicb.2020.570794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide affecting mainly developing countries. Mtb can persist and survive inside infected cells through modulation of host antibacterial attack, i.e., by avoiding the maturation of phagosome containing mycobacteria to more acidic endosomal compartment. In addition, bacterial phosphatases play a central role in the interplay between host cells and Mtb. In this study, we characterized the Rv2577 of Mtb as a potential alkaline phosphatase/phosphodiesterase enzyme. By an in vitro kinetic assay, we demonstrated that purified Rv2577 expressed in Mycobacterium smegmatis displays both enzyme activities, as evidenced by using the artificial substrates p-NPP and bis-(p-NPP). In addition, a three-dimensional model of Rv2577 allowed us to define the catalytic amino acid residues of the active site, which were confirmed by site-directed mutagenesis and enzyme activity analysis, being characteristic of a member of the metallophosphatase superfamily. Finally, a mutation introduced in Rv2577 reduced the replication of Mtb in mouse organs and impaired the arrest of phagosomes containing mycobacteria in early endosomes; which indicates Rv2577 plays a role in Mtb virulence.
Collapse
Affiliation(s)
- Marina Andrea Forrellad
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Federico Carlos Blanco
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Rubén Marrero Diaz de Villegas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Cristina Lourdes Vázquez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (CONICET-UBA), Cuidad Autónoma de Buenos Aires, Argentina
| | - Elizabeth Andrea García
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| | | | - Rosario Durán
- Unidad de Bioquímica y Proteómica Analítica (UBYPA), Instituto de Investigaciones Biológicas Clemente Estable & Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Fabiana Bigi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria-Consejo Nacional de Investigaciones Científicas y Técnicas (INTA-CONICET), INTA, Buenos Aires, Argentina
| |
Collapse
|
8
|
Wolf N, Bussmann M, Koch-Koerfges A, Katcharava N, Schulte J, Polen T, Hartl J, Vorholt JA, Baumgart M, Bott M. Molecular Basis of Growth Inhibition by Acetate of an Adenylate Cyclase-Deficient Mutant of Corynebacterium glutamicum. Front Microbiol 2020; 11:87. [PMID: 32117117 PMCID: PMC7026483 DOI: 10.3389/fmicb.2020.00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/15/2020] [Indexed: 01/02/2023] Open
Abstract
In Corynebacterium glutamicum, cyclic adenosine monophosphate (cAMP) serves as an effector of the global transcriptional regulator GlxR. Synthesis of cAMP is catalyzed by the membrane-bound adenylate cyclase CyaB. In this study, we investigated the consequences of decreased intracellular cAMP levels in a ΔcyaB mutant. While no growth defect of the ΔcyaB strain was observed on glucose, fructose, sucrose, or gluconate alone, the addition of acetate to these growth media resulted in a severe growth inhibition, which could be reversed by plasmid-based cyaB expression or by supplementation of the medium with cAMP. The effect was concentration- and pH-dependent, suggesting a link to the uncoupling activity of acetate. In agreement, the ΔcyaB mutant had an increased sensitivity to the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The increased uncoupler sensitivity correlated with a lowered membrane potential of acetate-grown ΔcyaB cells compared to wild-type cells. A reduced membrane potential affects major cellular processes, such as ATP synthesis by F1F O -ATP synthase and numerous transport processes. The impaired membrane potential of the ΔcyaB mutant could be due to a decreased expression of the cytochrome bc 1-aa 3 supercomplex, which is the major contributor of proton-motive force in C. glutamicum. Expression of the supercomplex genes was previously reported to be activated by GlxR-cAMP. A suppressor mutant of the ΔcyaB strain with improved growth on acetate was isolated, which carried a single mutation in the genome leading to an Ala131Thr exchange in GlxR. Introduction of this point mutation into the original ΔcyaB mutant restored the growth defect on acetate. This supported the importance of GlxR for the phenotype of the ΔcyaB mutant and, more generally, of the cAMP-GlxR system for the control of energy metabolism in C. glutamicum.
Collapse
Affiliation(s)
- Natalie Wolf
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bussmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Abigail Koch-Koerfges
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Nino Katcharava
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Johannes Hartl
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | | | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
9
|
Microevolution in response to transient heme-iron restriction enhances intracellular bacterial community development and persistence. PLoS Pathog 2018; 14:e1007355. [PMID: 30332468 PMCID: PMC6205647 DOI: 10.1371/journal.ppat.1007355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/29/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Bacterial pathogens must sense, respond and adapt to a myriad of dynamic microenvironmental stressors to survive. Adaptation is key for colonization and long-term ability to endure fluctuations in nutrient availability and inflammatory processes. We hypothesize that strains adapted to survive nutrient deprivation are more adept for colonization and establishment of chronic infection. In this study, we detected microevolution in response to transient nutrient limitation through mutation of icc. The mutation results in decreased 3',5'-cyclic adenosine monophosphate phosphodiesterase activity in nontypeable Haemophilus influenzae (NTHI). In a preclinical model of NTHI-induced otitis media (OM), we observed a significant decrease in the recovery of effusion from ears infected with the icc mutant strain. Clinically, resolution of OM coincides with the clearance of middle ear fluid. In contrast to this clinical paradigm, we observed that the icc mutant strain formed significantly more intracellular bacterial communities (IBCs) than the parental strain early during experimental OM. Although the number of IBCs formed by the parental strain was low at early stages of OM, we observed a significant increase at later stages that coincided with absence of recoverable effusion, suggesting the presence of a mucosal reservoir following resolution of clinical disease. These data provide the first insight into NTHI microevolution during nutritional limitation and provide the first demonstration of IBCs in a preclinical model of chronic OM. Nontypeable Haemophilus influenzae (NTHI) inhabits diverse niches in the host. The ability to adapt to new microenvironments is consistent with the predominance of NTHI as a causative agent of otitis media (OM) in children. We evaluated the microevolution of NTHI associated with adaptation and persistence in response to nutrient limitation. We identified a naturally occurring mutation that enhances NTHI persistence and formation of intracellular bacterial communities (IBCs) in a pre-clinical model of OM. The presence of IBCs during OM provides the first opportunity to evaluate the role of intracellular populations in chronicity and quiescence as a new paradigm for recurrent OM. This model provides a new platform to identify novel therapeutics for this highly prevalent and costly infectious disease.
Collapse
|
10
|
Synthesis and degradation of cAMP in Giardia lamblia: possible role and characterization of a nucleotidyl cyclase with a single cyclase homology domain. Biochem J 2017; 474:4001-4017. [PMID: 29054977 DOI: 10.1042/bcj20170590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 01/25/2023]
Abstract
Despite its importance in the regulation of growth and differentiation processes of a variety of organisms, the mechanism of synthesis and degradation of cAMP (cyclic AMP) has not yet been described in Giardia lamblia In this work, we measured significant quantities of cAMP in trophozoites of G. lamblia incubated in vitro and later detected how it increases during the first hours of encystation, and how it then returns to basal levels at 24 h. Through an analysis of the genome of G. lamblia, we found sequences of three putative enzymes - one phosphodiesterase (gPDE) and two nucleotidyl cyclases (gNC1 and gNC2) - that should be responsible for the regulation of cAMP in G. lamblia Later, an RT-PCR assay confirmed that these three genes are expressed in trophozoites. The bioinformatic analysis indicated that gPDE is a transmembrane protein of 154 kDa, with a single catalytic domain in the C-terminal end; gNC1 is predicted to be a transmembrane protein of 74 kDa, with only one class III cyclase homology domain (CHD) at the C-terminal end; and gNC2 should be a transmembrane protein of 246 kDa, with two class III CHDs. Finally, we cloned and enriched the catalytic domain of gNC1 (gNC1cd) from bacteria. After that, we confirmed that gNC1cd has adenylyl cyclase (AC) activity. This enzymatic activity depends on the presence of Mn2+ and Ca2+, but no significant activity was displayed in the presence of Mg2+ Additionally, the AC activity of gNC1cd is competitively inhibited with GTP, so it is highly possible that gNC1 has guanylyl cyclase activity as well.
Collapse
|
11
|
The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target. PLoS Negl Trop Dis 2017; 11:e0005891. [PMID: 28915270 PMCID: PMC5617230 DOI: 10.1371/journal.pntd.0005891] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 09/27/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023] Open
Abstract
Background Giardiasis is an intestinal infection correlated with poverty and poor drinking water quality, and treatment options are limited. According to the Center for Disease Control and Prevention, Giardia infections afflict nearly 33% of people in developing countries, and 2% of the adult population in the developed world. This study describes the single cyclic nucleotide-specific phosphodiesterase (PDE) of G. lamblia and assesses PDE inhibitors as a new generation of anti-giardial drugs. Methods An extensive search of the Giardia genome database identified a single gene coding for a class I PDE, GlPDE. The predicted protein sequence was analyzed in-silico to characterize its domain structure and catalytic domain. Enzymatic activity of GlPDE was established by complementation of a PDE-deficient Saccharomyces cerevisiae strain, and enzyme kinetics were characterized in soluble yeast lysates. The potency of known PDE inhibitors was tested against the activity of recombinant GlPDE expressed in yeast and against proliferating Giardia trophozoites. Finally, the localization of epitope-tagged and ectopically expressed GlPDE in Giardia cells was investigated. Results Giardia encodes a class I PDE. Catalytically important residues are fully conserved between GlPDE and human PDEs, but sequence differences between their catalytic domains suggest that designing Giardia-specific inhibitors is feasible. Recombinant GlPDE hydrolyzes cAMP with a Km of 408 μM, and cGMP is not accepted as a substrate. A number of drugs exhibit a high degree of correlation between their potency against the recombinant enzyme and their inhibition of trophozoite proliferation in culture. Epitope-tagged GlPDE localizes as dots in a pattern reminiscent of mitosomes and to the perinuclear region in Giardia. Conclusions Our data strongly suggest that inhibition of G. lamblia PDE activity leads to a profound inhibition of parasite proliferation and that GlPDE is a promising target for developing novel anti-giardial drugs. Cellular signaling by the cyclic nucleotides cAMP and cGMP is ubiquitously found in organisms from human to unicellular parasites. Cyclic nucleotide-specific phosphodiesterases (PDEs) are pivotal regulators of these signaling processes and these enzymes represent important drug targets for a variety of diseases. Eleven PDE families are distinguished in humans and selective inhibition of a single human PDE family without targeting others is feasible. In parasites, interference in the signaling mechanism by PDE inhibition may be fatal. The diarrhea-causing parasite Giardia lamblia contains only one single PDE, named GlPDE. GlPDE activity is highly impaired by a range of PDE inhibitors, which also suppress parasite proliferation in vitro. Thus, there is a good agreement between PDE inhibition and parasite drug susceptibility. We demonstrate molecular differences between human PDEs and GlPDE that can be exploited for the development of GlPDE-selective inhibitors. Finally, our data may suggest localization of GlPDE to mitosome organelles, which are absent in human cells and thus are in the focus as possible targets for the treatment of giardiasis. This may add to the notion that GlPDE represents a potential target for the development of novel anti-giardial drugs.
Collapse
|
12
|
An atypical phosphodiesterase capable of degrading haloalkyl phosphate diesters from Sphingobium sp. strain TCM1. Sci Rep 2017; 7:2842. [PMID: 28588250 PMCID: PMC5460133 DOI: 10.1038/s41598-017-03142-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022] Open
Abstract
Sphingobium sp. strain TCM1 can degrade tris(2-chloroethyl) phosphate (TCEP) to inorganic phosphate and 2-chloroethanol. A phosphotriesterase (PTE), phosphodiesterase (PDE) and phosphomonoesterase (PME) are believed to be involved in the degradation of TCEP. The PTE and PME that respectively catalyze the first and third steps of TCEP degradation in TCM1 have been identified. However, no information has been reported on a PDE catalyzing the second step. In this study, we identified, purified, and characterized a PDE capable of hydrolyzing haloalkyl phosphate diesters. The final preparation of the enzyme had a specific activity of 29 µmol min−1 mg−1 with bis(p-nitrophenyl) phosphate (BpNPP) as the substrate. It also possessed low PME activity with p-nitrophenyl phosphate (pNPP) as substrate. The catalytic efficiency (kcat/Km) with BpNPP was significantly higher than that with pNPP, indicating that the enzyme prefers the organophosphorus diester to the monoester. The enzyme degraded bis(2,3-dibromopropyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate and bis(2-chloroethyl) phosphate, suggesting that it is involved in the metabolism of haloalkyl organophosphorus triesters. The primary structure of the PDE from TCM1 is distinct from those of typical PDE family members and the enzyme belongs to the polymerase and histidinol phosphatase superfamily.
Collapse
|
13
|
Schulte J, Baumgart M, Bott M. Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum. Mol Microbiol 2016; 103:534-552. [PMID: 27862445 DOI: 10.1111/mmi.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 02/03/2023]
Abstract
The second messenger cyclic AMP (cAMP) plays an important role in the metabolism of Corynebacterium glutamicum, as the global transcriptional regulator GlxR requires complex formation with cAMP to become active. Whereas a membrane-bound adenylate cyclase, CyaB, was shown to be involved in cAMP synthesis, enzymes catalyzing cAMP degradation have not been described yet. In this study we identified a class II cAMP phosphodiesterase named CpdA (Cg2761), homologs of which are present in many Actinobacteria. The purified enzyme has a Kmapp value of 2.5 ± 0.3 mM for cAMP and a Vmaxapp of 33.6 ± 4.3 µmol min-1 mg-1 . A ΔcpdA mutant showed a twofold increased cAMP level on glucose and reduced growth rates on all carbon sources tested. A transcriptome comparison revealed 247 genes with a more than twofold altered mRNA level in the ΔcpdA mutant, 82 of which are known GlxR targets. Expression of cpdA was positively regulated by GlxR, thereby creating a negative feedback loop allowing to counteract high cAMP levels. The results show that CpdA plays a key role in the control of the cellular cAMP concentration and GlxR activity and is crucial for optimal metabolism and growth of C. glutamicum.
Collapse
Affiliation(s)
- Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
14
|
Okada C, Wakabayashi H, Kobayashi M, Shinoda A, Tanaka I, Yao M. Crystal structures of the UDP-diacylglucosamine pyrophosphohydrase LpxH from Pseudomonas aeruginosa. Sci Rep 2016; 6:32822. [PMID: 27609419 PMCID: PMC5016852 DOI: 10.1038/srep32822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 01/01/2023] Open
Abstract
Lipid A (also known as endotoxin) is the hydrophobic portion of lipopolysaccharides. It is an essential membrane component required for the viability of gram-negative bacteria. The enzymes involved in its biosynthesis are attractive targets for the development of novel antibiotics. LpxH catalyzes the fourth step of the lipid A biosynthesis pathway and cleaves the pyrophosphate bond of UDP-2,3-diacylglucosamine to yield 2,3-diacylglucosamine 1-phosphate (lipid X) and UMP. Here we present the structures of LpxH from Pseudomonas aeruginosa (PaLpxH). PaLpxH consists of two domains: a catalytic domain that is homologous to the metallophosphoesterases and a helical insertion domain. Lipid X was captured in the crevice between these two domains, with its phosphate group facing the dinuclear metal (Mn2+) center and two acyl chains buried in the hydrophobic cavity. The structures reveal that a large conformational change occurs at the lipid X binding site surface upon the binding/release of the product molecule. Based on these observations, we propose a novel model for lipid X embedding, which involves the scissor-like movement of helix α6, resulting in the release of lipid X into the lipid bilayer.
Collapse
Affiliation(s)
- Chiaki Okada
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroko Wakabayashi
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Momoko Kobayashi
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Shinoda
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan.,Department of Pharmacology, Basic Medical College of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
Gao J, Tao J, Liang W, Jiang Z. Cyclic (di)nucleotides: the common language shared by microbe and host. Curr Opin Microbiol 2016; 30:79-87. [PMID: 26871480 DOI: 10.1016/j.mib.2015.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 12/24/2022]
Abstract
Fluency in a common language allows individuals to convey information and carry out complex activities that otherwise would be difficult or even impossible without the benefit of shared communication. Cyclic (di)nucleotides have recently been recognized as such an accessible language understood by both microbe and the host, ever since remarkable progresses have revealed the molecular details of these nucleotide second messengers used in cellular communication systems. Though undergoing separate evolutionary pathways in prokaryotes and eukaryotes, cyclic (di)nucleotides enable microbes to influence host cells immediately and fiercely by modulating a variety of cellular activities. Here we highlight recent insights in cyclic (di)nucleotides and focus on the balancing of these indispensable signaling molecules by synthases and phosphodiesterases.
Collapse
Affiliation(s)
- Juyi Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Jianli Tao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Weili Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing 102206, China
| | - Zhengfan Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| |
Collapse
|
16
|
Abstract
All cells must adapt to changing conditions, and many use cyclic AMP (cAMP) as a second messenger to sense and respond to fluctuations in their environment. cAMP is made by adenylyl cyclases (ACs), and mycobacteria have an unusually large number of biochemically distinct ACs. cAMP is important for gene regulation in mycobacteria, and the ability to secrete cAMP into host macrophages during infection contributes to Mycobacterium tuberculosis pathogenesis. This article discusses the many roles of cAMP in mycobacteria and reviews what is known about the factors that contribute to production, destruction, and utilization of this important signal molecule. Special emphasis is placed on cAMP signaling in M. tuberculosis complex bacteria and its importance to M. tuberculosis during host infection.
Collapse
|
17
|
Gross I, Durner J. In Search of Enzymes with a Role in 3', 5'-Cyclic Guanosine Monophosphate Metabolism in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:576. [PMID: 27200049 PMCID: PMC4858519 DOI: 10.3389/fpls.2016.00576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/14/2016] [Indexed: 05/07/2023]
Abstract
In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3', 5'-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5'-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants.
Collapse
Affiliation(s)
- Inonge Gross
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- *Correspondence: Inonge Gross,
| | - Jörg Durner
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- Chair of Biochemical Plant Pathology, Technische Universität München, FreisingGermany
| |
Collapse
|
18
|
Matange N. Revisiting bacterial cyclic nucleotide phosphodiesterases: cyclic AMP hydrolysis and beyond. FEMS Microbiol Lett 2015; 362:fnv183. [PMID: 26424768 DOI: 10.1093/femsle/fnv183] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2015] [Indexed: 12/15/2022] Open
Abstract
Cyclic-3',5'-adenosine monophosphate (cAMP) is a universal second messenger that regulates vital activities in bacteria and eukaryotes. Enzymes that hydrolyze cAMP, called phosphodiesterases (PDEs), negatively regulate the levels of this messenger molecule and are therefore crucial for signal 'termination'. In this minireview, I shall summarize the available literature on bacterial cAMP-PDEs, with particular emphasis on enzymes belonging to the ubiquitously encoded Class III PDE family exemplified by CpdA from Escherichia coli and Rv0805 from Mycobacterium tuberculosis. Using available biochemical, structural and biological information, I shall make a case for re-examining the functions of these enzymes as merely regulators of intrabacterial cAMP levels and suggest that some members of this class may have evolved cAMP-independent functions as well. Finally, I shall highlight the major lacunae in our understanding of these enzymes and present unanswered questions in the area.
Collapse
Affiliation(s)
- Nishad Matange
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
19
|
Abstract
Calcineurin-like metallophosphoesterases (MPEs) form a large superfamily of binuclear metal-ion-centre-containing enzymes that hydrolyse phosphomono-, phosphodi- or phosphotri-esters in a metal-dependent manner. The MPE domain is found in Mre11/SbcD DNA-repair enzymes, mammalian phosphoprotein phosphatases, acid sphingomyelinases, purple acid phosphatases, nucleotidases and bacterial cyclic nucleotide phosphodiesterases. Despite this functional diversity, MPEs show a remarkably similar structural fold and active-site architecture. In the present review, we summarize the available structural, biochemical and functional information on these proteins. We also describe how diversification and specialization of the core MPE fold in various MPEs is achieved by amino acid substitution in their active sites, metal ions and regulatory effects of accessory domains. Finally, we discuss emerging roles of these proteins as non-catalytic protein-interaction scaffolds. Thus we view the MPE superfamily as a set of proteins with a highly conserved structural core that allows embellishment to result in dramatic and niche-specific diversification of function.
Collapse
|
20
|
Cabezas A, Ribeiro JM, Rodrigues JR, López-Villamizar I, Fernández A, Canales J, Pinto RM, Costas MJ, Cameselle JC. Molecular bases of catalysis and ADP-ribose preference of human Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase and conversion by mutagenesis to a preferential cyclic ADP-ribose phosphohydrolase. PLoS One 2015; 10:e0118680. [PMID: 25692488 PMCID: PMC4334965 DOI: 10.1371/journal.pone.0118680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
Among metallo-dependent phosphatases, ADP-ribose/CDP-alcohol diphosphatases form a protein family (ADPRibase-Mn-like) mainly restricted, in eukaryotes, to vertebrates and plants, with preferential expression, at least in rodents, in immune cells. Rat and zebrafish ADPRibase-Mn, the only biochemically studied, are phosphohydrolases of ADP-ribose and, somewhat less efficiently, of CDP-alcohols and 2´,3´-cAMP. Furthermore, the rat but not the zebrafish enzyme displays a unique phosphohydrolytic activity on cyclic ADP-ribose. The molecular basis of such specificity is unknown. Human ADPRibase-Mn showed similar activities, including cyclic ADP-ribose phosphohydrolase, which seems thus common to mammalian ADPRibase-Mn. Substrate docking on a homology model of human ADPRibase-Mn suggested possible interactions of ADP-ribose with seven residues located, with one exception (Cys253), either within the metallo-dependent phosphatases signature (Gln27, Asn110, His111), or in unique structural regions of the ADPRibase-Mn family: s2s3 (Phe37 and Arg43) and h7h8 (Phe210), around the active site entrance. Mutants were constructed, and kinetic parameters for ADP-ribose, CDP-choline, 2´,3´-cAMP and cyclic ADP-ribose were determined. Phe37 was needed for ADP-ribose preference without catalytic effect, as indicated by the increased ADP-ribose Km and unchanged kcat of F37A-ADPRibase-Mn, while the Km values for the other substrates were little affected. Arg43 was essential for catalysis as indicated by the drastic efficiency loss shown by R43A-ADPRibase-Mn. Unexpectedly, Cys253 was hindering for cADPR phosphohydrolase, as indicated by the specific tenfold gain of efficiency of C253A-ADPRibase-Mn with cyclic ADP-ribose. This allowed the design of a triple mutant (F37A+L196F+C253A) for which cyclic ADP-ribose was the best substrate, with a catalytic efficiency of 3.5´104 M-1s-1 versus 4´103 M-1s-1 of the wild type.
Collapse
Affiliation(s)
- Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Joaquim Rui Rodrigues
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal
| | - Iralis López-Villamizar
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Ascensión Fernández
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Rosa María Pinto
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- * E-mail:
| |
Collapse
|
21
|
Singh DN, Gupta A, Singh VS, Mishra R, Kateriya S, Tripathi AK. Identification and characterization of a novel phosphodiesterase from the metagenome of an Indian coalbed. PLoS One 2015; 10:e0118075. [PMID: 25658120 PMCID: PMC4320098 DOI: 10.1371/journal.pone.0118075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/05/2015] [Indexed: 11/21/2022] Open
Abstract
Phosphoesterases are involved in the degradation of organophosphorus compounds. Although phosphomonoesterases and phosphotriesterases have been studied in detail, studies on phosphodiesterases are rather limited. In our search to find novel phosphodiesterases using metagenomic approach, we cloned a gene encoding a putative phosphodiesterase (PdeM) from the metagenome of the formation water collected from an Indian coal bed. Bioinformatic analysis showed that PdeM sequence possessed the characteristic signature motifs of the class III phosphodiesterases and phylogenetic study of PdeM enabled us to identify three distinct subclasses (A, B, and C) within class III phosphodiesterases, PdeM clustering in new subclass IIIB. Bioinformatic, biochemical and biophysical characterization of PdeM further revealed some of the characteristic features of the phosphodiesterases belonging to newly described subclass IIIB. PdeM is a monomer of 29.3 kDa, which exhibits optimum activity at 25°C and pH 8.5, but low affinity for bis(pNPP) as well as pNPPP. The recombinant PdeM possessed phosphodiesterase, phosphonate-ester hydrolase and nuclease activity. It lacked phosphomonoesterase, phosphotriesterase, and RNAse activities. Overexpression of PdeM in E.coli neither affected catabolite respression nor did the recombinant protein hydrolyzed cAMP in vitro, indicating its inability to hydrolyze cAMP. Although Mn2+ was required for the activity of PdeM, but addition of metals (Mn2+ or Fe3+) did not induce oligomerization. Further increase in concentration of Mn2+ upto 3 mM, increased α-helical content as well as the phosphodiesterase activity. Structural comparison of PdeM with its homologs showed that it lacked critical residues required for dimerization, cAMP hydrolysis, and for the high affinity binding of bis(pNPP). PdeM, thus, is a novel representative of new subclass of class III phosphodiesterases.
Collapse
Affiliation(s)
- Durgesh Narain Singh
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi—221005, Uttar Pradesh, India
| | - Ankush Gupta
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi—221005, Uttar Pradesh, India
| | - Vijay Shankar Singh
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi—221005, Uttar Pradesh, India
| | - Rajeev Mishra
- Bioinformatics programme, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi—221005, Uttar Pradesh, India
| | - Suneel Kateriya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | - Anil Kumar Tripathi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi—221005, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
22
|
Matange N, Podobnik M, Visweswariah SS. The non-catalytic "cap domain" of a mycobacterial metallophosphoesterase regulates its expression and localization in the cell. J Biol Chem 2014; 289:22470-81. [PMID: 24970891 DOI: 10.1074/jbc.m114.578328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called "cap domains" are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro. We show here that this C-terminal extension (CTE) mediates in vivo localization of the protein to the cell membrane and cell wall as well as modulates expression levels of Rv0805 in mycobacteria. We also demonstrate that Rv0805 interacts with the cell wall of mycobacteria, possibly with the mycolyl-arabinogalactan-peptidoglycan complex, by virtue of its C terminus, a hitherto unknown property of this MPE. Using a panel of mutant proteins, we identify interactions between active site residues of Rv0805 and the CTE that determine its association with the cell wall. Finally, we show that Rv0805 and a truncated mutant devoid of the CTE produce different phenotypic effects when expressed in mycobacteria. Our study thus provides a detailed dissection of the functions of the cap domain of an MPE and suggests that the repertoire of cellular functions of MPEs cannot be understood without exploring the modulatory effects of these subdomains.
Collapse
Affiliation(s)
- Nishad Matange
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India 560012 and
| | - Marjetka Podobnik
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sandhya S Visweswariah
- From the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore, India 560012 and
| |
Collapse
|
23
|
Stella NA, Shanks RMQ. Cyclic-AMP inhibition of fimbriae and prodigiosin production by Serratia marcescens is strain-dependent. Arch Microbiol 2014; 196:323-30. [PMID: 24619531 DOI: 10.1007/s00203-014-0970-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/07/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
The cyclic-nucleotide 3',5'-cyclic AMP (cAMP) is an ancient and widespread regulatory molecule. Previous studies have shown that fimbria production and secondary metabolite production are inhibited by cAMP in the prokaryote Serratia marcescens. This study used genetic manipulations to test the strain specificity of cAMP-cyclic-AMP receptor protein regulation of fimbria production and of the red pigment, prodigiosin. A surprising amount of variation was observed, as multicopy expression of the cAMP-phosphodiesterase gene, cpdS, conferred either an increase or decrease in fimbriae-dependent yeast agglutination and prodigiosin production depending upon the strain background. Mutation of crp, the gene coding for the cAMP-receptor protein, similarly conferred strain-dependent phenotypes. This study shows that three distinct biological properties, modulated by a conserved genetic regulatory molecule, can vary significantly among strains. Such variation can complicate the functional analysis of bacterial phenotypic properties which are dependent upon global genetic regulators such as cAMP.
Collapse
Affiliation(s)
- Nicholas A Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA,
| | | |
Collapse
|
24
|
Diethmaier C, Newman JA, Kovács ÁT, Kaever V, Herzberg C, Rodrigues C, Boonstra M, Kuipers OP, Lewis RJ, Stülke J. The YmdB phosphodiesterase is a global regulator of late adaptive responses in Bacillus subtilis. J Bacteriol 2014; 196:265-75. [PMID: 24163345 PMCID: PMC3911264 DOI: 10.1128/jb.00826-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/23/2013] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis mutants lacking ymdB are unable to form biofilms, exhibit a strong overexpression of the flagellin gene hag, and are deficient in SlrR, a SinR antagonist. Here, we report the functional and structural characterization of YmdB, and we find that YmdB is a phosphodiesterase with activity against 2',3'- and 3',5'-cyclic nucleotide monophosphates. The structure of YmdB reveals that the enzyme adopts a conserved phosphodiesterase fold with a binuclear metal center. Mutagenesis of a catalytically crucial residue demonstrates that the enzymatic activity of YmdB is essential for biofilm formation. The deletion of ymdB affects the expression of more than 800 genes; the levels of the σ(D)-dependent motility regulon and several sporulation genes are increased, and the levels of the SinR-repressed biofilm genes are decreased, confirming the role of YmdB in regulating late adaptive responses of B. subtilis.
Collapse
Affiliation(s)
- Christine Diethmaier
- Department of General Microbiology, Georg August University Göttingen, Göttingen, Germany
| | - Joseph A. Newman
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ákos T. Kovács
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Volkhard Kaever
- Research Core Unit for Mass Spectrometry-Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Christina Herzberg
- Department of General Microbiology, Georg August University Göttingen, Göttingen, Germany
| | - Cecilia Rodrigues
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mirjam Boonstra
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Groningen, The Netherlands
| | - Richard J. Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jörg Stülke
- Department of General Microbiology, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Biochemical and functional characterization of SpdA, a 2', 3'cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti. BMC Microbiol 2013; 13:268. [PMID: 24279347 PMCID: PMC4222275 DOI: 10.1186/1471-2180-13-268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023] Open
Abstract
Background 3′, 5′cAMP signaling in Sinorhizobium meliloti was recently shown to contribute to the autoregulation of legume infection. In planta, three adenylate cyclases CyaD1, CyaD2 and CyaK, synthesizing 3′, 5′cAMP, together with the Crp-like transcriptional regulator Clr and smc02178, a gene of unknown function, are involved in controlling plant infection. Results Here we report on the characterization of a gene (smc02179, spdA) at the cyaD1 locus that we predicted to encode a class III cytoplasmic phosphodiesterase. First, we have shown that spdA had a similar pattern of expression as smc02178 in planta but did not require clr nor 3′, 5′cAMP for expression. Second, biochemical characterization of the purified SpdA protein showed that, contrary to expectation, it had no detectable activity against 3′, 5′cAMP and, instead, high activity against the positional isomers 2′, 3′cAMP and 2′, 3′cGMP. Third, we provide direct experimental evidence that the purified Clr protein was able to bind both 2′, 3′cAMP and 3′, 5′cAMP in vitro at high concentration. We further showed that Clr is a 3′, 5′cAMP-dependent DNA-binding protein and identified a DNA-binding motif to which Clr binds. In contrast, 2′, 3′cAMP was unable to promote Clr specific-binding to DNA and activate smc02178 target gene expression ex planta. Fourth, we have shown a negative impact of exogenous 2′, 3′cAMP on 3′, 5′cAMP-mediated signaling in vivo. A spdA null mutant was also partially affected in 3′, 5′cAMP signaling. Conclusions SpdA is a nodule-expressed 2′, 3′ specific phosphodiesterase whose biological function remains elusive. Circumstantial evidence suggests that SpdA may contribute insulating 3′, 5′cAMP-based signaling from 2′, 3′ cyclic nucleotides of metabolic origin.
Collapse
|
26
|
Kalivoda EJ, Brothers KM, Stella NA, Schmitt MJ, Shanks RMQ. Bacterial cyclic AMP-phosphodiesterase activity coordinates biofilm formation. PLoS One 2013; 8:e71267. [PMID: 23923059 PMCID: PMC3726613 DOI: 10.1371/journal.pone.0071267] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/27/2013] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related infections are a major contributor to human disease, and the capacity for surface attachment and biofilm formation are key attributes for the pathogenesis of microbes. Serratia marcescens type I fimbriae-dependent biofilms are coordinated by the adenylate cyclase, CyaA, and the cyclic 3′,5′-adenosine monophosphate (cAMP)-cAMP receptor protein (CRP) complex. This study uses S. marcescens as a model system to test the role of cAMP-phosphodiesterase activity in controlling biofilm formation. Herein we describe the characterization of a putative S. marcescens cAMP-phosphodiesterase gene (SMA3506), designated as cpdS, and demonstrated to be a functional cAMP-phosphodiesterase both in vitro and in vivo. Deletion of cpdS resulted in defective biofilm formation and reduced type I fimbriae production, whereas multicopy expression of cpdS conferred a type I fimbriae-dependent hyper-biofilm. Together, these results support a model in which bacterial cAMP-phosphodiesterase activity modulates biofilm formation.
Collapse
Affiliation(s)
- Eric J. Kalivoda
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Matthew J. Schmitt
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, Unites States of America
- * E-mail:
| |
Collapse
|
27
|
Zheng Z, Zhu M, He Y, Li N, Guo T, Chen Y, Wu J, Ying H, Xie J. Gene cloning, expression, and characterization of a cyclic nucleotide phosphodiesterase from Arthrobacter sp. CGMCC 3584. Appl Biochem Biotechnol 2013; 169:2442-56. [PMID: 23456275 DOI: 10.1007/s12010-013-0136-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/08/2013] [Indexed: 11/26/2022]
Abstract
Based on thermal asymmetric interlaced polymerase chain reaction, the arpde gene encoding a cyclic nucleotide-specific phosphodiesterase was cloned from Arthrobacter sp. CGMCC 3584 for the first time. The 930-bp region encoded a 309-amino-acid protein with a molecular weight of 33.6 kDa. The recombinant ArPDE was able to hydrolyze 3',5'-cAMP, 3',5'-cGMP, and 2',3'-cAMP. The K m values of ArPDE for 3',5'-cAMP and 3',5'-cGMP were 6.82 and 12.82 mM, respectively. ArPDE was thermostable and displayed optimal activity at 45 °C and pH 7.5. The enzyme did not require any metal cofactors, although its activity was stimulated by 2 mM Co(2+) and inhibited by Zn(2+). Nucleotides, reducing agents, and sulfhydryl reagents had different inhibitory effects on the activity of ArPDE. NaF, the actual compound used to improve the industrial yield of cAMP, exhibited 62 % inhibitions at concentrations of 10 mM.
Collapse
Affiliation(s)
- Zhifang Zheng
- College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
29
|
LOMOZIK L, GASOWSKA A, BASINSKI K, BREGIER-JARZEBOWSKA R, JASTRZAB R. Potentiometric and spectral studies of complex formation in the Cu(II), 3′,5′-cyclic adenosine monophosphate, and tetramine systems. J COORD CHEM 2013. [DOI: 10.1080/00958972.2012.754019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- L. LOMOZIK
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
- b Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences , Bydgoszcz , Poland
| | - A. GASOWSKA
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| | - K. BASINSKI
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| | | | - R. JASTRZAB
- a Faculty of Chemistry, Adam Mickiewicz University , Poznan , Poland
| |
Collapse
|
30
|
Nolan LM, Beatson SA, Croft L, Jones PM, George AM, Mattick JS, Turnbull L, Whitchurch CB. Extragenic suppressor mutations that restore twitching motility to fimL mutants of Pseudomonas aeruginosa are associated with elevated intracellular cyclic AMP levels. Microbiologyopen 2012; 1:490-501. [PMID: 23233287 PMCID: PMC3535393 DOI: 10.1002/mbo3.49] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/21/2012] [Accepted: 11/01/2012] [Indexed: 01/19/2023] Open
Abstract
Cyclic AMP (cAMP) is a signaling molecule that is involved in the regulation of multiple virulence systems of the opportunistic pathogen Pseudomonas aeruginosa. The intracellular concentration of cAMP in P. aeruginosa cells is tightly controlled at the levels of cAMP synthesis and degradation through regulation of the activity and/or expression of the adenylate cyclases CyaA and CyaB or the cAMP phosphodiesterase CpdA. Interestingly, mutants of fimL, which usually demonstrate defective twitching motility, frequently revert to a wild-type twitching-motility phenotype presumably via the acquisition of an extragenic suppressor mutation(s). In this study, we have characterized five independent fimL twitching-motility revertants and have determined that all have increased intracellular cAMP levels compared with the parent fimL mutant. Whole-genome sequencing revealed that only one of these fimL revertants has acquired a loss-of-function mutation in cpdA that accounts for the elevated levels of intracellular cAMP. As mutation of cpdA did not account for the restoration of twitching motility observed in the other four fimL revertants, these observations suggest that there is at least another, as yet unidentified, site of extragenic suppressor mutation that can cause phenotypic reversion in fimL mutants and modulation of intracellular cAMP levels of P. aeruginosa.
Collapse
Affiliation(s)
- Laura M Nolan
- The ithree institute, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rodrigues JR, Fernández A, Canales J, Cabezas A, Ribeiro JM, Costas MJ, Cameselle JC. Characterization of Danio rerio Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase, the structural prototype of the ADPRibase-Mn-like protein family. PLoS One 2012; 7:e42249. [PMID: 22848751 PMCID: PMC3407115 DOI: 10.1371/journal.pone.0042249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022] Open
Abstract
The ADPRibase-Mn-like protein family, that belongs to the metallo-dependent phosphatase superfamily, has different functional and structural prototypes. The functional one is the Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase from Rattus norvegicus, which is essentially inactive with Mg2+ and active with low micromolar Mn2+ in the hydrolysis of the phosphoanhydride linkages of ADP-ribose, CDP-alcohols and cyclic ADP-ribose (cADPR) in order of decreasing efficiency. The structural prototype of the family is a Danio rerio protein with a known crystallographic structure but functionally uncharacterized. To estimate the structure-function correlation with the same protein, the activities of zebrafish ADPRibase-Mn were studied. Differences between zebrafish and rat enzymes are highlighted. The former showed a complex activity dependence on Mn2+, significant (≈25%) Mg2+-dependent activity, but was almost inactive on cADPR (150-fold less efficient than the rat counterpart). The low cADPR hydrolase activity agreed with the zebrafish genome lacking genes coding for proteins with significant homology with cADPR-forming enzymes. Substrate-docking to zebrafish wild-type protein, and characterization of the ADPRibase-Mn H97A mutant pointed to a role of His-97 in catalysis by orientation, and to a bidentate water bridging the dinuclear metal center as the potential nucleophile. Finally, three structural elements that delimit the active site entrance in the zebrafish protein were identified as unique to the ADPRibase-Mn-like family within the metallo-dependent phosphatase superfamily.
Collapse
Affiliation(s)
- Joaquim Rui Rodrigues
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal
| | - Ascensión Fernández
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Canales
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Alicia Cabezas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - João Meireles Ribeiro
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - María Jesús Costas
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - José Carlos Cameselle
- Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
- * E-mail:
| |
Collapse
|
32
|
Banjac A, Kurz U, Schultz JE. The regulatory tandem domains of human phosphodiesterases 1 and 4 regulate a cyanobacterial adenylyl cyclase. Cell Signal 2012; 24:1479-84. [PMID: 22484154 DOI: 10.1016/j.cellsig.2012.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/08/2012] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Human phosphodiesterase 1 is regulated by a tandem of N-terminal calmodulin/Ca(2+)-binding domains. We grafted the tandems from hPDE1A3 and -B1 onto the cyanobacterial adenylyl cyclase CyaB1 thus replacing an intrinsic tandem GAF-domain. Cyclase activity was stimulated by Ca(2+)/calmodulin 1.9 to 4.4-fold, i.e. similarly as reported for hPDE1 regulation. hPDE4 long isoforms are activated by phosphorylation of a serine located in a conserved RRESF motif in a tandem of N-terminal upstream-conserved regions (UCR). We grafted the UCR tandems from hPDE4A4, -B1, and -D3 onto the CyaB1 cyclase as a reporter enzyme. Activity was enhanced 1.4 to 4.5-fold by respective phosphomimetic (S/D) point mutations. Similarly, cyclase activity was increased 2.5-fold by phosphorylation of the chimera with the PDE4D3 UCR tandem by cAMP-dependent protein kinase. We propose a common mechanism of activation in mammalian phosphodiesterases containing N-terminal tandem regulatory domains. A downstream region is suggested to alternate between random and ordered conformations and to enable switching between inactive, the catalytic domain occluding PDE homodimers and active monomeric PDE catalytic domains.
Collapse
Affiliation(s)
- Ana Banjac
- Pharmazeutisches Institut, Universität Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
33
|
Enzymatic and mutational analyses of a class II 3',5'-cyclic nucleotide phosphodiesterase, PdeE, from Myxococcus xanthus. J Bacteriol 2011; 193:2053-7. [PMID: 21317337 DOI: 10.1128/jb.01250-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus PdeE, an enzyme homologous to class II 3',5'-cyclic nucleotide phosphodiesterases, hydrolyzed cyclic AMP (cAMP) and cGMP with K(m) values of 12 μM and 25 μM, respectively. A pdeE mutant exhibited delays in fruiting body and spore formation compared with the wild type when cultured on starvation medium.
Collapse
|
34
|
Kim YG, Jeong JH, Ha NC, Kim KJ. Structural and functional analysis of the Lmo2642 cyclic nucleotide phosphodiesterase from Listeria monocytogenes. Proteins 2011; 79:1205-14. [PMID: 21246635 DOI: 10.1002/prot.22954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 11/07/2022]
Abstract
Listeria monocytogenes is a facultative intracellular pathogen invading humans and animals with the highest fatality rate among the food-borne pathogens. The Listeria pathogenic processes, such as cell entry and escape from phagosomes, depend on the actions of diverse bacterial factors, including lipoproteins. Here, we report the crystal structure of Lmo2642, a conserved putative lipoprotein containing a Ser/Thr phosphatase domain. The protein consists of two distinct domains: a catalytic domain that belongs to the metallophosphoesterase superfamily and an auxiliary α-helical bundle domain. The active site in the catalytic domain of Lmo2642 contains a dinuclear metal center in which Mn²(+) and Fe³(+) are preferentially positioned at the site1 and site2, respectively. On the basis of the structural analysis and enzymatic assays, we identified the biochemical activity of the protein as a cyclic nucleotide phosphodiesterase toward 2',3'- and 3',5'-cyclic nucleotides. Considering the cNMP phosphodiesterase activity and the putative surface localization of Lmo2642, we speculate that Lmo2642 has some potential roles in the host-pathogen interactions by changing the cAMP concentration of host cells during L. monocytogenes infection.
Collapse
Affiliation(s)
- Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea.
| | | | | | | |
Collapse
|
35
|
Fuchs EL, Brutinel ED, Klem ER, Fehr AR, Yahr TL, Wolfgang MC. In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J Bacteriol 2010; 192:2779-90. [PMID: 20348254 PMCID: PMC2876501 DOI: 10.1128/jb.00168-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/16/2010] [Indexed: 12/19/2022] Open
Abstract
Cyclic AMP (cAMP) is an important second messenger signaling molecule that controls a wide variety of eukaryotic and prokaryotic responses to extracellular cues. For cAMP-dependent signaling pathways to be effective, the intracellular cAMP concentration is tightly controlled at the level of synthesis and degradation. In the opportunistic human pathogen Pseudomonas aeruginosa, cAMP is a key regulator of virulence gene expression. To better understand the role of cAMP homeostasis in this organism, we identified and characterized the enzyme CpdA, a putative cAMP phosphodiesterase. We demonstrate that CpdA possesses 3',5'-cAMP phosphodiesterase activity in vitro and that it utilizes an iron-dependent catalytic mechanism. Deletion of cpdA results in the accumulation of intracellular cAMP and altered regulation of P. aeruginosa virulence traits. Further, we demonstrate that the cAMP-dependent transcription factor Vfr directly regulates cpdA expression in response to intracellular cAMP accumulation, thus providing a feedback mechanism for controlling cAMP levels and fine-tuning virulence factor expression.
Collapse
Affiliation(s)
- Erin L. Fuchs
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Evan D. Brutinel
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Erich R. Klem
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Anthony R. Fehr
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Timothy L. Yahr
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Matthew C. Wolfgang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
36
|
Mashhadi Z, Xu H, White RH. An Fe2+-dependent cyclic phosphodiesterase catalyzes the hydrolysis of 7,8-dihydro-D-neopterin 2',3'-cyclic phosphate in methanopterin biosynthesis. Biochemistry 2009; 48:9384-92. [PMID: 19746965 DOI: 10.1021/bi9010336] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
7,8-Dihydro-D-neopterin 2',3'-cyclic phosphate (H(2)N-cP) is the first intermediate in biosynthesis of the pterin portion of tetrahydromethanopterin (H(4)MPT), a C(1) carrier coenzyme first identified in the methanogenic archaea. This intermediate is produced from GTP by MptA (MJ0775 gene product), a new class of GTP cyclohydrolase I [Grochowski, L. L., Xu, H., Leung, K., and White, R. H. (2007) Biochemistry 46, 6658-6667]. Here we report the identification of a cyclic phosphodiesterase that hydrolyzes the cyclic phosphate of H(2)N-cP and converts it to a mixture of 7,8-dihydro-D-neopterin 2'-monophosphate and 7,8-dihydro-d-neopterin 3'-monophosphate. The enzyme from Methanocaldococcus jannachii is designated MptB (MJ0837 gene product) to indicate that it catalyzes the second step of the biosynthesis of methanopterin. MptB is a member of the HD domain superfamily of enzymes, which require divalent metals for activity. Direct metal analysis of the recombinant enzyme demonstrated that MptB contained 1.0 mol of zinc and 0.8 mol of iron per protomer. MptB requires Fe(2+) for activity, the same as observed for MptA. Thus the first two enzymes involved in H(4)MPT biosynthesis in the archaea are Fe(2+) dependent.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Biochemistry (0308), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
37
|
Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K, Visweswariah SS. A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. J Biol Chem 2009; 284:32846-57. [PMID: 19801656 PMCID: PMC2781701 DOI: 10.1074/jbc.m109.049635] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 09/11/2009] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis utilizes many mechanisms to establish itself within the macrophage, and bacterially derived cAMP is important in modulating the host cellular response. Although the genome of M. tuberculosis is endowed with a number of mammalian-like adenylyl cyclases, only a single cAMP phosphodiesterase has been identified that can decrease levels of cAMP produced by the bacterium. We present the crystal structure of the full-length and sole cAMP phosphodiesterase, Rv0805, found in M. tuberculosis, whose orthologs are present only in the genomes of slow growing and pathogenic mycobacteria. The dimeric core catalytic domain of Rv0805 adopts a metallophosphoesterase-fold, and the C-terminal region builds the active site and contributes to multiple substrate utilization. Localization of Rv0805 to the cell wall is dependent on its C terminus, and expression of either wild type or mutationally inactivated Rv0805 in M. smegmatis alters cell permeability to hydrophobic cytotoxic compounds. Rv0805 may therefore play a key role in the pathogenicity of mycobacteria, not only by hydrolyzing bacterial cAMP, but also by moonlighting as a protein that can alter cell wall functioning.
Collapse
Affiliation(s)
- Marjetka Podobnik
- From the
Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry of Slovenia, Hajdrihova 19,1000 Ljubljana, Slovenia
| | - Richa Tyagi
- the
Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India, and
| | - Nishad Matange
- the
Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India, and
| | - Urška Dermol
- From the
Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry of Slovenia, Hajdrihova 19,1000 Ljubljana, Slovenia
| | - Arun K. Gupta
- AstraZeneca India Private Limited, Avishkar Kirloskar Business Park, Bellary Road, Hebbal, Bangalore 560 024, India
| | - Rohini Mattoo
- the
Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India, and
| | - Kothandaraman Seshadri
- AstraZeneca India Private Limited, Avishkar Kirloskar Business Park, Bellary Road, Hebbal, Bangalore 560 024, India
| | - Sandhya S. Visweswariah
- the
Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India, and
| |
Collapse
|
38
|
Barth E, Gora KV, Gebendorfer KM, Settele F, Jakob U, Winter J. Interplay of cellular cAMP levels, {sigma}S activity and oxidative stress resistance in Escherichia coli. MICROBIOLOGY-SGM 2009; 155:1680-1689. [PMID: 19372151 DOI: 10.1099/mic.0.026021-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypochlorous acid (HOCl), the active ingredient of household bleach, functions as a powerful antimicrobial that is used not only in numerous industrial applications but also in mammalian host defence. Here we show that multicopy expression of cpdA, encoding the cAMP phosphodiesterase, leads to a dramatically increased resistance of Escherichia coli to HOCl stress as well as to the unrelated hydrogen peroxide (H(2)O(2)) stress. This general oxidative stress resistance is apparently caused by the CpdA-mediated decrease in cellular cAMP levels, which leads to the partial inactivation of the global transcriptional regulator cAMP receptor protein (CRP). Downregulation of CRP in turn causes the derepression of rpoS, encoding the alternative sigma factor sigma(S), which activates the general stress response in E. coli. We found that these highly oxidative stress-resistant cells have a substantially increased capacity to combat HOCl-mediated insults and to degrade reactive oxygen species. Mutational analysis revealed that the DNA-protecting protein Dps, the catalase KatE, and the exonuclease III XthA play the predominant roles in conferring the high resistance of rpoS-overexpressing strains towards HOCl and H(2)O(2) stress. Our results demonstrate the close regulatory interplay between cellular cAMP levels, sigma(S) activity and oxidative stress resistance in E. coli.
Collapse
Affiliation(s)
- Evelyn Barth
- Department Chemie, Biotechnologie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Katherine V Gora
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Katharina M Gebendorfer
- Center for Integrated Protein Science Munich (CiPSM), 81377 Munich, Germany.,Department Chemie, Biotechnologie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| | - Florian Settele
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Jeannette Winter
- Center for Integrated Protein Science Munich (CiPSM), 81377 Munich, Germany.,Department Chemie, Biotechnologie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany
| |
Collapse
|
39
|
Enzymatic characteristics of two novelMyxococcus xanthusenzymes, PdeA and PdeB, displaying 3′,5′- and 2′,3′-cAMP phosphodiesterase, and phosphatase activities. FEBS Lett 2008; 583:443-8. [DOI: 10.1016/j.febslet.2008.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
|
40
|
Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase: a novel metallophosphoesterase family preferentially expressed in rodent immune cells. Biochem J 2008; 413:103-13. [PMID: 18352857 DOI: 10.1042/bj20071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADPRibase-Mn (Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase) was earlier isolated from rat liver supernatants after separation from ADPRibase-I and ADPRibase-II (Mg2+-activated ADP-ribose pyrophosphatases devoid of CDP-alcohol pyrophosphatase activity). The last mentioned are putative Nudix hydrolases, whereas the molecular identity of ADPRibase-Mn is unknown. MALDI (matrix-assisted laser-desorption ionization) MS data from rat ADPRibase-Mn pointed to a hypothetical protein that was cloned and expressed and showed the expected specificity. It is encoded by the RGD1309906 rat gene, which so far has been annotated simply as 'hydrolase'. ADPRibase-Mn is not a Nudix hydrolase, but it shows the sequence and structural features typical of the metallophosphoesterase superfamily. It may constitute a protein family of its own, the members of which appear to be specific to vertebrates, plants and algae. ADP-ribose was successfully docked to a model of rat ADPRibase-Mn, revealing its putative active centre. Microarray data from the GEO (Gene Expression Omnibus) database indicated that the mouse gene 2310004I24Rik, an orthologue of RGD1309906, is preferentially expressed in immune cells. This was confirmed by Northern-blot and activity assay of ADPRibase-Mn in rat tissues. A possible role of ADPRibase-Mn in immune cell signalling is suggested by the second-messenger role of ADP-ribose, which activates TRPM2 (transient receptor potential melastatin channel-2) ion channels as a mediator of oxidative/nitrosative stress, and by the signalling function assigned to many of the microarray profile neighbours of 2310004I24Rik. Furthermore, the influence of ADPRibase-Mn on the CDP-choline or CDP-ethanolamine pathways of phospholipid biosynthesis cannot be discounted.
Collapse
|
41
|
Castro A, Jerez MJ, Gil C, Calderón F, Doménech T, Nueda A, Martínez A. CODES, a novel procedure for ligand-based virtual screening: PDE7 inhibitors as an application example. Eur J Med Chem 2008; 43:1349-59. [DOI: 10.1016/j.ejmech.2007.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/18/2007] [Accepted: 10/18/2007] [Indexed: 11/30/2022]
|
42
|
Lu J, Bao Q, Wu J, Wang H, Li D, Xi Y, Wang S, Yu S, Qu J. CSCDB: the cAMP and cGMP signaling components database. Genomics 2008; 92:60-4. [PMID: 18472393 DOI: 10.1016/j.ygeno.2008.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 03/10/2008] [Accepted: 03/21/2008] [Indexed: 11/17/2022]
Abstract
Adenylate cyclases, guanylate cyclases, cyclic nucleotide phosphodiesterases, and cyclic nucleotide-binding proteins constitute the core of cAMP and cGMP signaling components. Using a combination of BLAST and profile search methods, we found that cyclic nucleotide-binding proteins exhibited diverse domain architectures. In addition to the domain architectures involved in the characterized functional groups, a cyclic nucleotide-binding domain was also fused to various domains involved in pyridine nucleotide-disulfide oxidoreductase, acetyltransferase, thioredoxin reductase, glutaminase, rhodanese, ferredoxin, and diguanylate cyclase, implying the versatile functions of cyclic nucleotide-binding proteins. We constructed the CSCDB database to accumulate the components of cAMP and cGMP signaling pathways in the complete genomes. User-friendly interfaces were created for easier browsing, searching, and downloading the data. Besides harboring the sequence itself, each entry provided detailed annotation information, such as sequence features, chromosomal localization, functional domains, transmembrane region, and sequence similarity against several major databases. Currently, CSCDB contains 4234 entries covering 466 organisms, including 35 eukaryotes, 382 bacteria, and 29 archaea. CSCDB can be freely accessible on the web at http://cscdb.com.cn.
Collapse
Affiliation(s)
- Jianxin Lu
- Institute of Biomedical Informatics/Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical College, Wenzhou 325003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Puzzo D, Sapienza S, Arancio O, Palmeri A. Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 2008; 4:371-87. [PMID: 18728748 PMCID: PMC2518390 DOI: 10.2147/ndt.s2447] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Phosphodiesterases (PDEs) are enzymes that break down the phosphodiesteric bond of the cyclic nucleotides, cAMP and cGMP, second messengers that regulate many biological processes. PDEs participate in the regulation of signal transduction by means of a fine regulation of cyclic nucleotides so that the response to cell stimuli is both specific and activates the correct third messengers. Several PDE inhibitors have been developed and used as therapeutic agents because they increase cyclic nucleotide levels by blocking the PDE function. In particular, sildenafil, an inhibitor of PDE5, has been mainly used in the treatment of erectile dysfunction but is now also utilized against pulmonary hypertension. This review examines the physiological role of PDE5 in synaptic plasticity and memory and the use of PDE5 inhibitors as possible therapeutic agents against disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Daniela Puzzo
- Dept of Physiological Sciences, University of Catania Catania, Italy.
| | | | | | | |
Collapse
|
44
|
Ye JD, Barth CD, Anjaneyulu PSR, Tuschl T, Piccirilli JA. Reactions of phosphate and phosphorothiolate diesters with nucleophiles: comparison of transition state structures. Org Biomol Chem 2007; 5:2491-7. [PMID: 17637971 DOI: 10.1039/b707205h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of methyl aryl phosphorothiolate esters (SP) were synthesized and their reactions with pyridine derivatives were compared to those for methyl aryl phosphate esters (OP). Results show that SP esters react with pyridine nucleophiles via a concerted S(N)2(P) mechanism. Brønsted analysis suggests that reactions of both SP and OP esters proceed via transition states with dissociative character. The overall similarity of the transition state structures supports the use of phosphorothiolates as substrate analogues to probe mechanisms of enzyme-catalyzed phosphoryl transfer reactions.
Collapse
Affiliation(s)
- Jing-Dong Ye
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Howard Hughes Medical Institute, The University of Chicago, 929 E 57th St., CIS-W408A, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
45
|
Bader S, Kortholt A, Van Haastert P. Seven Dictyostelium discoideum phosphodiesterases degrade three pools of cAMP and cGMP. Biochem J 2007; 402:153-61. [PMID: 17040207 PMCID: PMC1783984 DOI: 10.1042/bj20061153] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Dictyostelium discoideum genome uncovers seven cyclic nucleotide PDEs (phosphodiesterases), of which six have been characterized previously and the seventh is characterized in the present paper. Three enzymes belong to the ubiquitous class I PDEs, common in all eukaryotes, whereas four enzymes belong to the rare class II PDEs that are present in bacteria and lower eukaryotes. Since all D. discoideum PDEs are now characterized we have calculated the contribution of each enzyme in the degradation of the three important pools of cyclic nucleotides: (i) extracellular cAMP that induces chemotaxis during aggregation and differentiation in slugs; (ii) intracellular cAMP that mediates development; and (iii) intracellular cGMP that mediates chemotaxis. It appears that each cyclic nucleotide pool is degraded by a combination of enzymes that have different affinities, allowing a broad range of substrate concentrations to be degraded with first-order kinetics. Extracellular cAMP is degraded predominantly by the class II high-affinity enzyme DdPDE1 and its close homologue DdPDE7, and in the multicellular stage also by the low-affinity transmembrane class I enzyme DdPDE4. Intracellular cAMP is degraded by the DdPDE2, a class I enzyme regulated by histidine kinase/phospho-relay, and by the cAMP-/cGMP-stimulated class II DdPDE6. Finally, basal intracellular cGMP is degraded predominantly by the high-affinity class I DdPDE3, while the elevated cGMP levels that arise after receptor stimulation are degraded predominantly by a cGMP-stimulated cGMP-specific class II DdPDE5. The analysis shows that the combination of enzymes is tuned to keep the concentration and lifetime of the substrate within a functional range.
Collapse
Affiliation(s)
- Sonya Bader
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
| | - Arjan Kortholt
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
| | - Peter J. M. Van Haastert
- Department of Molecular Cell Biology, University of Groningen, Kerklaan 30, 9751NN, Haren, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS, Podobnik M. Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. J Mol Biol 2007; 365:211-25. [PMID: 17059828 DOI: 10.1016/j.jmb.2006.10.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 10/02/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
Cyclic nucleotide monophosphate (cNMP) hydrolysis in bacteria and eukaryotes is brought about by distinct cNMP phosphodiesterases (PDEs). Since these enzymes differ in amino acid sequence and properties, they have evolved by convergent evolution. Cyclic NMP PDEs cleave cNMPs to NMPs, and the Rv0805 gene product is, to date, the only identifiable cNMP PDE in the genome of Mycobacterium tuberculosis. We have shown that Rv0805 is a cAMP/cGMP dual specificity PDE, and is unrelated in amino acid sequence to the mammalian cNMP PDEs. Rv0805 is a dimeric, Fe(3+)-Mn(2+) binuclear PDE, and mutational analysis demonstrated that the active site metals are co-ordinated by conserved aspartate, histidine and asparagine residues. We report here the structure of the catalytic core of Rv0805, which is distantly related to the calcineurin-like phosphatases. The crystal structure of the Rv0805 dimer shows that the active site metals contribute to dimerization and thus play an additional structural role apart from their involvement in catalysis. We also present the crystal structures of the Asn97Ala mutant protein that lacks one of the Mn(2+) co-ordinating residues as well as the Asp66Ala mutant that has a compromised cAMP hydrolytic activity, providing a structural basis for the catalytic properties of these mutant proteins. A molecule of phosphate is bound in a bidentate manner at the active site of the Rv0805 wild-type protein, and cacodylate occupies a similar position in the crystal structure of the Asp66Ala mutant protein. A unique substrate binding pocket in Rv0805 was identified by computational docking studies, and the role of the His140 residue in interacting with cAMP was validated through mutational analysis. This report on the first structure of a bacterial cNMP PDE thus significantly extends our molecular understanding of cAMP hydrolysis in class III PDEs.
Collapse
Affiliation(s)
- Avinash R Shenoy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | | | | | |
Collapse
|
47
|
Shenoy AR, Visweswariah SS. New messages from old messengers: cAMP and mycobacteria. Trends Microbiol 2006; 14:543-50. [PMID: 17055275 DOI: 10.1016/j.tim.2006.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/07/2006] [Accepted: 10/10/2006] [Indexed: 12/18/2022]
Abstract
Cyclic nucleotides are ancient second messengers, and the enzymes that synthesize cAMP and cGMP [cyclic nucleotide monophosphates (cNMPs)] are encoded in the genomes of several bacteria. We focus here on recent biochemical and structural information on the proteins that make and break cyclic nucleotides in mycobacteria, namely the nucleotide cyclases and phosphodiesterases, respectively. The presence of these enzymes along with putative cNMP-binding proteins suggests an intricate regulation of cAMP metabolism and utilization by these organisms. It is anticipated that future research will be directed towards identifying cellular processes that are regulated by cAMP in mycobacteria and deciphering the cross-talk between mycobacterial pathogens and their eukaryotic host.
Collapse
Affiliation(s)
- Avinash R Shenoy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
48
|
Johner A, Kunz S, Linder M, Shakur Y, Seebeck T. Cyclic nucleotide specific phosphodiesterases of Leishmania major. BMC Microbiol 2006; 6:25. [PMID: 16522215 PMCID: PMC1431542 DOI: 10.1186/1471-2180-6-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmania represent a complex of important human pathogens that belong to the systematic order of the kinetoplastida. They are transmitted between their human and mammalian hosts by different bloodsucking sandfly vectors. In their hosts, the Leishmania undergo several differentiation steps, and their coordination and optimization crucially depend on numerous interactions between the parasites and the physiological environment presented by the fly and human hosts. Little is still known about the signalling networks involved in these functions. In an attempt to better understand the role of cyclic nucleotide signalling in Leishmania differentiation and host-parasite interaction, we here present an initial study on the cyclic nucleotide-specific phosphodiesterases of Leishmania major. RESULTS This paper presents the identification of three class I cyclic-nucleotide-specific phosphodiesterases (PDEs) from L. major, PDEs whose catalytic domains exhibit considerable sequence conservation with, among other, all eleven human PDE families. In contrast to other protozoa such as Dictyostelium, or fungi such as Saccharomyces cerevisiae, Candida ssp or Neurospora, no genes for class II PDEs were found in the Leishmania genomes. LmjPDEA contains a class I catalytic domain at the C-terminus of the polypeptide, with no other discernible functional domains elsewhere. LmjPDEB1 and LmjPDEB2 are coded for by closely related, tandemly linked genes on chromosome 15. Both PDEs contain two GAF domains in their N-terminal region, and their almost identical catalytic domains are located at the C-terminus of the polypeptide. LmjPDEA, LmjPDEB1 and LmjPDEB2 were further characterized by functional complementation in a PDE-deficient S. cerevisiae strain. All three enzymes conferred complementation, demonstrating that all three can hydrolyze cAMP. Recombinant LmjPDEB1 and LmjPDEB2 were shown to be cAMP-specific, with Km values in the low micromolar range. Several PDE inhibitors were found to be active against these PDEs in vitro, and to inhibit cell proliferation. CONCLUSION The genome of L. major contains only PDE genes that are predicted to code for class I PDEs, and none for class II PDEs. This is more similar to what is found in higher eukaryotes than it is to the situation in Dictyostelium or the fungi that concomitantly express class I and class II PDEs. Functional complementation demonstrated that LmjPDEA, LmjPDEB1 and LmjPDEB2 are capable of hydrolyzing cAMP. In vitro studies with recombinant LmjPDEB1 and LmjPDEB2 confirmed this, and they demonstrated that both are completely cAMP-specific. Both enzymes are inhibited by several commercially available PDE inhibitors. The observation that these inhibitors also interfere with cell growth in culture indicates that inhibition of the PDEs is fatal for the cell, suggesting an important role of cAMP signalling for the maintenance of cellular integrity and proliferation.
Collapse
Affiliation(s)
- Andrea Johner
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- current address: Immunology and Infection Unit, Dept. of Biology, University of York; York YO10 5YW, UK
| | - Stefan Kunz
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Markus Linder
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
- current address: Swissmedic, Erlachstrasse 8, CH-3012 Bern, Switzerland
| | - Yasmin Shakur
- Otsuka Maryland Medicinal Laboratories, 9900 Medical Center Drive, Rockville, MD 20850, USA
| | - Thomas Seebeck
- Institute for Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| |
Collapse
|
49
|
Kimura Y, Nakatuma H, Sato N, Ohtani M. Contribution of the cyclic nucleotide phosphodiesterases PdeA and PdeB to adaptation of Myxococcus xanthus cells to osmotic or high-temperature stress. J Bacteriol 2006; 188:823-8. [PMID: 16385075 PMCID: PMC1347295 DOI: 10.1128/jb.188.2.823-828.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tBLASTn search of the Myxococcus xanthus genome database at The Institute for Genomic Research (TIGR) identified three genes (pdeA, pdeB, and pdeC) that encode proteins homologous to 3',5'-cyclic nucleotide phosphodiesterase. pdeA, pdeB, and pdeC mutants, constructed by replacing a part of the gene with the kanamycin or tetracycline resistance gene, showed normal growth, development, and germination under nonstress conditions. However, the spores of mutants, especially the pdeA and pdeB mutants, placed under osmotic stress germinated earlier than the wild-type spores. The phenotype was the opposite of that of the receptor-type adenylyl cyclase (cyaA or cyaB) mutant. Also, pdeA and pdeB mutants were found to have impaired growth under the condition of high-temperature stress. Intracellular cyclic AMP (cAMP) levels of pdeA or pdeB mutant cells under these stressful conditions were about 1.3-fold to 2.0-fold higher than those of wild-type cells. These results suggest that PdeA and PdeB may be involved in osmotic adaptation during spore germination and temperature adaptation during vegetative growth through the regulation of cAMP levels.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan 761-0795.
| | | | | | | |
Collapse
|
50
|
Yoshimura-Suzuki T, Sagami I, Yokota N, Kurokawa H, Shimizu T. DOS(Ec), a heme-regulated phosphodiesterase, plays an important role in the regulation of the cyclic AMP level in Escherichia coli. J Bacteriol 2005; 187:6678-82. [PMID: 16166529 PMCID: PMC1251570 DOI: 10.1128/jb.187.19.6678-6682.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heme-regulated phosphodiesterase from Escherichia coli (DOS(Ec)) catalyzes the hydrolysis of cyclic AMP (cAMP) in vitro and is regulated by the redox state of the bound heme. Changes in the redox state result in alterations in the three-dimensional structure of the enzyme, which is then transmitted to the functional domain to switch catalysis on or off. Because DOS(Ec) was originally cloned from E. coli genomic DNA, it has not been known whether it is actually expressed in wild-type E. coli. In addition, the turnover number of DOS(Ec) using cAMP as a substrate is only 0.15 min(-1), which is relatively low for a physiologically relevant enzyme. In the present study, we demonstrated for the first time that the DOS(Ec) gene and protein are expressed in wild-type E. coli, especially under aerobic conditions. We also developed a DOS(Ec) gene knockout strain (Deltados). Interestingly, the knockout of dos caused excess accumulation of intracellular cAMP (26-fold higher than in the wild-type strain) under aerobic conditions, whereas accumulation of cAMP was not observed under anaerobic conditions. We also found differences in cell morphology and growth rate between the mutant cells and the wild-type strain. The changes in the knockout strain were partially complemented by introducing an expression plasmid for dos. Thus, the present study revealed that expression of DOS(Ec) is regulated according to environmental O2 availability at the transcriptional level and that the concentration of cAMP in cells is regulated by DOS(Ec) expression.
Collapse
Affiliation(s)
- Tokiko Yoshimura-Suzuki
- Department of Molecular Cell Signalling, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | |
Collapse
|