1
|
Ota K, Yamato T. Energy Exchange Network Model Demonstrates Protein Allosteric Transition: An Application to an Oxygen Sensor Protein. J Phys Chem B 2019; 123:768-775. [DOI: 10.1021/acs.jpcb.8b10489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kunitaka Ota
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, 1 rue Laurent Fries Parc d’Innovation, 67404 Illkirch, Cedex, France
| |
Collapse
|
2
|
Leitner DM, Yamato T. MAPPING ENERGY TRANSPORT NETWORKS IN PROTEINS. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Bose S, Chakrabarty S, Ghosh D. Electrostatic Origin of the Red Solvatochromic Shift of DFHBDI in RNA Spinach. J Phys Chem B 2017; 121:4790-4798. [DOI: 10.1021/acs.jpcb.7b02445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samik Bose
- Physical and Materials
Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Suman Chakrabarty
- Physical and Materials
Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Debashree Ghosh
- Physical and Materials
Chemistry
Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
4
|
Biancardi A, Barnes J, Caricato M. Point charge embedding for ONIOM excited states calculations. J Chem Phys 2017; 145:224109. [PMID: 27984901 DOI: 10.1063/1.4972000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid quantum mechanical methods can assist in the interpretation and prediction of the electronic spectra of large molecular structures. In this work, we study the performance of the ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics) hybrid method for the calculation of transition energies and oscillator strengths by embedding the core region in a field of fixed point charges. These charges introduce polarization effects from the substituent groups to the core region. We test various charge definitions, with particular attention to the issue of overpolarization near the boundary between layers. To minimize this issue, we fit the charges on the electrostatic potential of the entire structure in the presence of the link atoms used to cap dangling bonds. We propose two constrained fitting strategies: one that produces an average set of charges common to both model system calculations, EE(L1), and one that produces two separate sets of embedding charges, EE(L2). The results from our tests show that indeed electronic embedding with constrained-fitted charges tends to improve the performance of ONIOM compared to non-embedded calculations. However, the EE(L2) charges work best for transition energies, and the EE(L1) charges work best for oscillator strengths. This may be an indication that fixed point charges do not have enough flexibility to adapt to each system, and other effects (e.g., polarization of the embedding field) may be necessary.
Collapse
Affiliation(s)
- Alessandro Biancardi
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Jeremy Barnes
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| |
Collapse
|
5
|
García-Prieto FF, Muñoz-Losa A, Luz Sánchez M, Elena Martín M, Aguilar MA. Solvent effects on de-excitation channels in the p-coumaric acid methyl ester anion, an analogue of the photoactive yellow protein (PYP) chromophore. Phys Chem Chem Phys 2016; 18:27476-27485. [DOI: 10.1039/c6cp03541h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Environmental effects on the deactivation channels of the PYP chromophore in the gas phase and water solution are compared at the CASPT2//CASSCF/cc-pVDZ level.
Collapse
Affiliation(s)
| | - Aurora Muñoz-Losa
- Institute of Theoretical Chemistry
- Faculty of Chemistry
- University of Vienna
- A-1090 Vienna
- Austria
| | - M. Luz Sánchez
- Área de Química Física
- University of Extremadura
- 06006 Badajoz
- Spain
| | - M. Elena Martín
- Área de Química Física
- University of Extremadura
- 06006 Badajoz
- Spain
| | | |
Collapse
|
6
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 819] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
7
|
Tan EMM, Amirjalayer S, Mazzella P, Bakker BH, van Maarseveen JH, Bieraugel H, Buma WJ. Molecular Beam and ab Initio Studies of Photoactive Yellow Protein Chromophores: Influence of the Thioester Functionality and Single Bond Rotation. J Phys Chem B 2014; 118:12395-403. [DOI: 10.1021/jp5075169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric M. M. Tan
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Saeed Amirjalayer
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Physical
Institute and Center for Nanotechnology (CeNTech) Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Paul Mazzella
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Bert H. Bakker
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jan H. van Maarseveen
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Hans Bieraugel
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Wybren J. Buma
- van
’t Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Shingae T, Kubota K, Kumauchi M, Tokunaga F, Unno M. Raman Optical Activity Probing Structural Deformations of the 4-Hydroxycinnamyl Chromophore in Photoactive Yellow Protein. J Phys Chem Lett 2013; 4:1322-1327. [PMID: 26282147 DOI: 10.1021/jz400454j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many biological cofactors, such as light-absorbing chromophores in photoreceptors, contain a π-electron system and are planar molecules. These cofactors are, however, usually nonplanar within a protein environment, and such structural distortions have been shown to be functionally important. Because the nonplanar structure makes the molecule chiral, Raman optical activity (ROA) provides a wealth of stereochemical information about the structural and conformational details of cofactors. The present study applied a near-infrared excited ROA to photoactive yellow protein, a blue light receptor. We successfully obtained the ROA spectra of the 4-hydroxycinnamyl chromophore embedded in a protein environment. Furthermore, calculations of the ROA spectra utilizing density functional theory provide detailed structural information, such as data on out-of-plane distortions of the chromophore. The structural information obtained from the ROA spectra includes the positions of hydrogen atoms, which are usually not detected in the crystal structures of biological samples.
Collapse
Affiliation(s)
- Takahito Shingae
- †Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kensuke Kubota
- †Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Masato Kumauchi
- ‡Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Fumio Tokunaga
- §Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masashi Unno
- †Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
- ∥PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Quantum chemical comparison of vertical, adiabatic, and 0-0 excitation energies: The PYP and GFP chromophores. J Comput Chem 2012; 33:1892-901. [DOI: 10.1002/jcc.23027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 12/11/2022]
|
10
|
Changenet-Barret P, Lacombat F, Plaza P. Reaction-coordinate tracking in the excited-state deactivation of the photoactive yellow protein chromophore in solution. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2012.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Boggio-Pasqua M, Burmeister CF, Robb MA, Groenhof G. Photochemical reactions in biological systems: probing the effect of the environment by means of hybrid quantum chemistry/molecular mechanics simulations. Phys Chem Chem Phys 2012; 14:7912-28. [DOI: 10.1039/c2cp23628a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Bhattacharya A, Bernstein ER. Nonadiabatic Decomposition of Gas-Phase RDX through Conical Intersections: An ONIOM-CASSCF Study. J Phys Chem A 2011; 115:4135-47. [DOI: 10.1021/jp109152p] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- A. Bhattacharya
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| | - E. R. Bernstein
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80521, United States
| |
Collapse
|
13
|
Loukou C, Changenet-Barret P, Rager MN, Plaza P, Martin MM, Mallet JM. The design, synthesis and photochemical study of a biomimetic cyclodextrin model of photoactive yellow protein (PYP). Org Biomol Chem 2011; 9:2209-18. [PMID: 21301710 DOI: 10.1039/c0ob00646g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The design, synthesis and study of the photophysical and photochemical properties of the first biomimetic cyclodextrin (CD) model of photoactive yellow protein (PYP) are described. This model bears a deprotonated trans-p-coumaric acid chromophore, covalently linked via a cysteine moiety to a permethylated 6-monoamino β-CD. NMR and UV/Visible spectroscopy studies showed the formation of strong self-inclusion complexes in water at basic pH. Steady-state photolysis demonstrated that, unlike the free chromophore in solution, excitation of the model molecule leads to the formation of a photoproduct identified as the cis isomer by NMR spectroscopy. These observations provide evidence that the restricted CD cavity offers a promising framework for the design of biomimetic models of the PYP hydrophobic pocket.
Collapse
Affiliation(s)
- Christina Loukou
- Département de Chimie, UMR-CNRS 7203, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, Cedex 05, France
| | | | | | | | | | | |
Collapse
|
14
|
Changenet-Barret P, Loukou C, Ley C, Lacombat F, Plaza P, Mallet JM, Martin MM. Primary photodynamics of a biomimetic model of photoactive yellow protein (PYP). Phys Chem Chem Phys 2010; 12:13715-23. [DOI: 10.1039/c0cp00618a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
YAMATO T. Proteins at Work: Computational Biopolymer Science of Energy, Electron, Proton Transfer and Ligand Migration. KOBUNSHI RONBUNSHU 2010. [DOI: 10.1295/koron.67.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Caricato M, Vreven T, Trucks GW, Frisch MJ, Wiberg KB. Using the ONIOM hybrid method to apply equation of motion CCSD to larger systems: Benchmarking and comparison with time-dependent density functional theory, configuration interaction singles, and time-dependent Hartree–Fock. J Chem Phys 2009; 131:134105. [DOI: 10.1063/1.3236938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
17
|
Coto PB, Roca-Sanjuán D, Serrano-Andrés L, Martín-Pendás A, Martí S, Andrés J. Toward Understanding the Photochemistry of Photoactive Yellow Protein: A CASPT2/CASSCF and Quantum Theory of Atoms in Molecules Combined Study of a Model Chromophore in Vacuo. J Chem Theory Comput 2009; 5:3032-8. [DOI: 10.1021/ct900401z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- P. B. Coto
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - D. Roca-Sanjuán
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - L. Serrano-Andrés
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - A. Martín-Pendás
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - S. Martí
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| | - J. Andrés
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia, Spain, Departamento de Química-Física y Analítica, Facultad de Química, Universidad de Oviedo, 33006, Oviedo, Spain, Departamento de Química-Física y Analítica, Universidad Jaume I, 224, 12071, Castellón, Spain
| |
Collapse
|
18
|
Megley CM, Dickson LA, Maddalo SL, Chandler GJ, Zimmer M. Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein. J Phys Chem B 2009; 113:302-8. [PMID: 19067572 PMCID: PMC2671006 DOI: 10.1021/jp806285s] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/28/2008] [Indexed: 11/30/2022]
Abstract
Green fluorescent protein (GFP) and GFP-like fluorescent proteins owe their photophysical properties to an autocatalytically formed intrinsic chromophore. According to quantum mechanical calculations, the excited state of chromophore model systems has significant dihedral freedom, which may lead to fluorescence quenching intersystem crossing. Molecular dynamics simulations with freely rotating chromophoric dihedrals were performed on green, yellow, and blue fluorescent proteins in order to model the dihedral freedom available to the chromophore in the excited state. Most current theories suggest that a restriction in the rotational freedom of the fluorescent protein chromophore will lead to an increase in fluorescence brightness and/or quantum yield. According to our calculations, the dihedral freedom of the systems studied (BFP > A5 > YFP > GFP) increases in the inverse order to the quantum yield. In all simulations, the chromophore undergoes a negatively correlated hula twist (also known as a bottom hula twist mechanism).
Collapse
Affiliation(s)
- Colleen M Megley
- Chemistry Department, Connecticut College, New London, Connecticut 06320, USA
| | | | | | | | | |
Collapse
|
19
|
The Oniom Method and its Applications to Enzymatic Reactions. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2009. [DOI: 10.1007/978-1-4020-9956-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Dong J, Solntsev KM, Tolbert LM. Activation and Tuning of Green Fluorescent Protein Chromophore Emission by Alkyl Substituent-Mediated Crystal Packing. J Am Chem Soc 2008; 131:662-70. [PMID: 19140797 DOI: 10.1021/ja806962e] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Dong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400
| | - Kyril M. Solntsev
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400
| | - Laren M. Tolbert
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400
| |
Collapse
|
21
|
Bearpark MJ, Larkin SM, Vreven T. Searching for Conical Intersections of Potential Energy Surfaces with the ONIOM Method: Application to Previtamin D. J Phys Chem A 2008; 112:7286-95. [DOI: 10.1021/jp802204w] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Bearpark
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, and Gaussian, Incorporated, 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492
| | - Susan M. Larkin
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, and Gaussian, Incorporated, 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492
| | - Thom Vreven
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, and Gaussian, Incorporated, 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492
| |
Collapse
|
22
|
Coto PB, Martí S, Oliva M, Olivucci M, Merchán M, Andrés J. Origin of the Absorption Maxima of the Photoactive Yellow Protein Resolved via Ab Initio Multiconfigurational Methods. J Phys Chem B 2008; 112:7153-6. [DOI: 10.1021/jp711396b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedro B. Coto
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia (Spain), Departament de Química Física i Analítica, Universitat Jaume I, 224, 12071, Castellón (Spain), Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403 (U.S.A.), and Dipartimento di Chimica, Università di Siena, Via Aldo Moro I-53100, Siena, (Italy)
| | - Sergio Martí
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia (Spain), Departament de Química Física i Analítica, Universitat Jaume I, 224, 12071, Castellón (Spain), Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403 (U.S.A.), and Dipartimento di Chimica, Università di Siena, Via Aldo Moro I-53100, Siena, (Italy)
| | - Mónica Oliva
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia (Spain), Departament de Química Física i Analítica, Universitat Jaume I, 224, 12071, Castellón (Spain), Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403 (U.S.A.), and Dipartimento di Chimica, Università di Siena, Via Aldo Moro I-53100, Siena, (Italy)
| | - Massimo Olivucci
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia (Spain), Departament de Química Física i Analítica, Universitat Jaume I, 224, 12071, Castellón (Spain), Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403 (U.S.A.), and Dipartimento di Chimica, Università di Siena, Via Aldo Moro I-53100, Siena, (Italy)
| | - Manuela Merchán
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia (Spain), Departament de Química Física i Analítica, Universitat Jaume I, 224, 12071, Castellón (Spain), Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403 (U.S.A.), and Dipartimento di Chimica, Università di Siena, Via Aldo Moro I-53100, Siena, (Italy)
| | - Juan Andrés
- Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Apdo. 22085, ES-46071, Valencia (Spain), Departament de Química Física i Analítica, Universitat Jaume I, 224, 12071, Castellón (Spain), Chemistry Department, Bowling Green State University, Bowling Green, Ohio 43403 (U.S.A.), and Dipartimento di Chimica, Università di Siena, Via Aldo Moro I-53100, Siena, (Italy)
| |
Collapse
|
23
|
Yamato T, Ishikura T, Kakitani T, Kawaguchi K, Watanabe H. Spectral tuning of photoactive yellow protein. Photochem Photobiol 2007; 83:323-7. [PMID: 17017845 DOI: 10.1562/2006-06-16-ra-930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report a theoretical study on the optical properties of a small, water-soluble photosensory receptor, photoactive yellow protein (PYP). A hierarchical ab initio molecular orbital calculation accurately evaluated the optical absorption maximum of the wild-type, as well as the lambda(max) values of 12 mutants. Electronic excitation of the chromophore directly affects the electronic state of nearby atoms in the protein environment. This effect is explicitly considered in the present study. Furthermore, the spectral tuning mechanism of PYP was investigated at the atomic level. The static disorder of a protein molecule is intimately related to the complex nature of its energy landscape. By using molecular dynamics simulation and quantum mechanical structure optimization, we obtained multiple minimum energy conformations of PYP. The statistical distribution of electronic excitation energies of these minima was compared with the hole-burning experiment (Masciangioli, T. [2000] Photochem. Photobiol. 72, 639), a direct observation of the distribution of excitation energies.
Collapse
Affiliation(s)
- T Yamato
- Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
24
|
Gromov EV, Burghardt I, Hynes JT, Köppel H, Cederbaum LS. Electronic structure of the photoactive yellow protein chromophore: Ab initio study of the low-lying excited singlet states. J Photochem Photobiol A Chem 2007. [DOI: 10.1016/j.jphotochem.2007.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Gromov EV, Burghardt I, Köppel H, Cederbaum LS. Electronic Structure of the PYP Chromophore in Its Native Protein Environment. J Am Chem Soc 2007; 129:6798-806. [PMID: 17474743 DOI: 10.1021/ja069185l] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on supermolecular ab initio calculations which clarify the role of the local amino acid environment in determining the unique electronic structure properties of the photoactive yellow protein (PYP) chromophore. The extensive ab initio calculations, at the level of the CC2 and EOM-CCSD methods, allow us to explicitly address how the interactions between the deprotonated p-coumaric thio-methyl ester (pCTM-) chromophore and the surrounding amino acids act together to create a specifically stabilized pCTM- species. Particularly noteworthy is the role of the Arg52 amino acid in stabilizing the chromophore against autoionization, and the role of the Tyr42 and Glu46 amino acids in determining the hydrogen-bonding properties that carry the dominant energetic effects.
Collapse
Affiliation(s)
- Evgeniy V Gromov
- Theoretische Chemie, Physikalisch-Chemisches Institut Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
26
|
Ishikura T, Yamato T. Energy transfer pathways relevant for long-range intramolecular signaling of photosensory protein revealed by microscopic energy conductivity analysis. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.10.092] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Dreuw A. Quantum Chemical Methods for the Investigation of Photoinitiated Processes in Biological Systems: Theory and Applications. Chemphyschem 2006; 7:2259-74. [PMID: 17009357 DOI: 10.1002/cphc.200600064] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.
Collapse
Affiliation(s)
- Andreas Dreuw
- Institut für Physikalische und Theoretische Chemie, Johann Wolfgang Goethe-Universität, Max von Laue-Str. 7, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Kawaguchi K, Yamato T. Theoretical prediction of optical absorption maxima for photosensory receptor mutants. Chem Phys Lett 2006. [DOI: 10.1016/j.cplett.2006.08.141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Lee IR, Lee W, Zewail AH. Primary steps of the photoactive yellow protein: isolated chromophore dynamics and protein directed function. Proc Natl Acad Sci U S A 2006; 103:258-62. [PMID: 16407155 PMCID: PMC1326191 DOI: 10.1073/pnas.0510015103] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cycle of the photoactive yellow protein (PYP) has been extensively studied, but the dynamics of the isolated chromophore responsible for transduction is unknown. Here, we present real-time observation of the dynamics of the negatively charged chromophore and detection of intermediates along the path of trans-to-cis isomerization using femtosecond mass selection/electron detachment techniques. The results show that the role of the protein environment is not in the first step of double-bond twisting (barrier crossing) but in directing efficient conversion to the cis-structure and in impeding radical formation within the protein.
Collapse
Affiliation(s)
- I-Ren Lee
- Arthur Amos Noyes Laboratory of Chemical Physics, Laboratory for Molecular Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
30
|
Monajjemi M, Heshmata M, Haeria HH. QM/MM model study on properties and structure of some antibiotics in gas phase: Comparison of energy and NMR chemical shift. BIOCHEMISTRY. BIOKHIMIIA 2006; 71 Suppl 1:S113-S122. [PMID: 16487062 DOI: 10.1134/s0006297906130190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The combination of Quantum Mechanics (QM) and Molecular Mechanics (MM) methods has become an alternative tool for many applications for which pure QM and MM are not suitable. The QM/MM method has been used for different types of problems, for example: structural biology, surface phenomena, and liquid phase. In this paper, we have used these methods for antibiotics and then we compare results. The calculations were done by the full ab initio method (HF/3-21G) and the (HF/STO-3G) and QM/MM (ONIOM) method with HF (3-21G)/AM1/UFF and HF (STO-3G)/AM1/UFF. We found the geometry that has obtained by the QM/MM method to be very accurate, and we can use this rapid method in place of time consuming ab initio methods for large molecules. Comparison of energy values in the QM/MM and QM methods is given. In the present work, we compare chemical shifts and conclude that the QM/MM method is a perturbed full QM method. The work has been done on penicillin, streptomycin, benzyl penicillin, neomycin, kanamycin, gentamicin, and amoxicillin.
Collapse
Affiliation(s)
- M Monajjemi
- Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | | |
Collapse
|
31
|
Maddalo SL, Zimmer M. The Role of the Protein Matrix in Green Fluorescent Protein Fluorescence. Photochem Photobiol 2006; 82:367-72. [PMID: 16613487 DOI: 10.1562/2005-04-11-ra-485] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the ground state of the highly conjugated green fluorescent protein (GFP), the chromophore should be planar. However, numerous crystal structures of GFP and GFP-like proteins have been reported with slightly twisted chromophores. We have previously shown that the protein cavity surrounding the chromophore in wild-type GFP is not complementary with a planar chromophore. This study shows that the crystal structure of wild-type GFP is not an anomaly: most of the GFP and GFP-like proteins in the protein databank have a protein matrix that is not complementary with a planar chromophore. When the pi-conjugation across the ethylenic bridge of the chromophore is removed the protein matrix will significantly twist the freely rotating chromophore from the relatively planar structures found in the crystal structures. The possible consequences of this nonplanar deformation on the photophysics of GFP are discussed. A volume analysis of the cis-trans-isomerization of HBDI, a GFP chromophore model compound, reveals that its hula-twist motion is volume conserving. This means that, if the GFP chromophore or GFP chromophore model compounds undergo a cis-trans-isomerization in a volume-constricting medium, such as a protein matrix or viscous liquid, it will probably isomerize by means of a HT-type motion.
Collapse
Affiliation(s)
- Scott L Maddalo
- Chemistry Department, Connecticut College, New London, CT, USA
| | | |
Collapse
|
32
|
Chandrakuntal K, Thomas NM, Kumar PG, Laloraya M, Laloraya MM. Fluorescence Resonance Energy Transfer Between Polyphenolic Compounds and Riboflavin Indicates a Possible Accessory Photoreceptor Function for Some Polyphenolic Compounds. Photochem Photobiol 2006; 82:1358-64. [PMID: 16842022 DOI: 10.1562/2005-08-09-ra-644] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The photoreceptive extreme tip of the wheat coleoptile exhibits intense green-yellow fluorescence under UV light, suggesting the presence of UV-absorbing materials. Fluorescence spectra of the intact coleoptile tip and tip homogenate showed the presence of the known photoreceptor pigments flavin and carotene, and a preponderance of phenolic compounds. Absorption spectra and fluorescence spectra of various phenolic compounds showed close overlap with the absorption and fluorescence spectra of the wheat coleoptile tip homogenate. Fluorescence spectra of several phenolic compounds showed close overlap with the absorption bands of flavin, carotene and pterine, suggesting possible energy transduction from phenols to these photoreceptors. Excitation of gentisic acid and ferulic acid with 340 nm light in the presence of flavin showed enhancement of flavin fluorescence in a concentration- and viscosity-dependent fashion, indicating fluorescence resonance energy transfer between them and riboflavin. Furthermore, several phenolic compounds tested generated superoxide anion on excitation at 340 nm, suggesting that superoxide-dependent signal cascades could operate in a polyphenol-mediated pathway. Phenolic compounds thus may act as accessory photoreceptors bringing about excitation energy transfer to the reactive photoreceptor molecules, or they may take over the function of the normal photoreceptor in genetic mutations lacking the system, or both processes may occur. The responses of plants to UV-B and UV-A light in mutants may be explained in terms of various phenolics acting as energy transducers in photoreceptor functioning.
Collapse
Affiliation(s)
- Kumar Chandrakuntal
- Rajiv Gandhi Centre for Biotechnology, Thycaud, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | | | | | | | | |
Collapse
|
33
|
de Groot M, Buma WJ. Comment on “Gas-Phase Photochemistry of the Photoactive Yellow Protein Chromophore trans-p-Coumaric Acid”. J Phys Chem A 2005; 109:6135-6. [PMID: 16833951 DOI: 10.1021/jp052128e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mattijs de Groot
- Van't Hoff Institute for Molecular Sciences, Faculty of Science, University of Amsterdam, Nieuwe Achtergracht 127-129, 1018 WV Amsterdam, The Netherlands
| | | |
Collapse
|
34
|
Yamada A, Ishikura T, Yamato T. Direct measure of functional importance visualized atom-by-atom for photoactive yellow protein: Application to photoisomerization reaction. Proteins 2004; 55:1070-7. [PMID: 15146504 DOI: 10.1002/prot.20063] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photoreceptor proteins serve as efficient nano-machines for the photoenergy conversion and the photosignal transduction of living organisms. For instance, the photoactive yellow protein derived from a halophilic bacterium has the p-coumaric acid chromophore, which undergoes an ultrafast photoisomerization reaction after light illumination. To understand the structure-function relationship at the atomic level, we used a computational method to find functionally important atoms for the photoisomerization reaction of the photoactive yellow protein. In the present study, a "direct" measure of the functional significance was quantitatively evaluated for each atom by calculating the partial atomic driving force for the photoisomerization reaction. As a result, we revealed the reaction mechanism in which the specific role of each functionally important atom has been well characterized in a systematic manner. In addition, we observed that this mechanism is strongly conserved during the thermal fluctuation of the photoactive yellow protein. We compared the experimental data of fluorescence decay constant of several different mutants and the present analysis. As a result, we found that the reaction rate constant is decreased when a large positive driving force is missing.
Collapse
Affiliation(s)
- Atsushi Yamada
- Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | | | | |
Collapse
|