1
|
Jayaraj JM, Muthusamy K. Role of deleterious nsSNPs of klotho protein and their drug response: a computational mechanical insights. J Biomol Struct Dyn 2024; 42:2886-2896. [PMID: 37216366 DOI: 10.1080/07391102.2023.2214230] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/23/2023] [Indexed: 05/24/2023]
Abstract
Worldwide, the burden of chronic kidney disease (CKD) has increased rapidly and is a lethal disease. The klotho protein plays a vital role in the regulatory mechanism in the progression of CKD. Particularly the decreased expression of klothoand its genetic variations might affect the potency of drugs. This study aims to identify a new drug molecule, which works equipotential in all types of klotholike wild and mutant variants. All non-synonymous SNPs were predicted by several SNP tools. Where, two missense variants were examined as vulnerable, significantly damaging, and also involved in the structural conformational changes of the protein. Based on structure-based screening, E-pharmacophore screening, binding mode analysis, binding free energy analysis, QM/MM, and molecular dynamics analysis a lead compound (Lifechemical_F2493-2038) was identified as an effective agonistic molecule hence the identified Lifechemical_F2493-2038 compound is well bound to the wild and mutant proteins which found to increase the expression of klotho.Communicated by Ramaswamy H. Sarma.
Collapse
|
2
|
Porras LM, Padilla N, Moles-Fernández A, Feliubadaló L, Santamariña-Pena M, Sánchez AT, López-Novo A, Blanco A, de la Hoya M, Molina IJ, Osorio A, Pineda M, Rueda D, Ruiz-Ponte C, Vega A, Lázaro C, Díez O, Gutiérrez-Enríquez S, de la Cruz X. A New Set of in Silico Tools to Support the Interpretation of ATM Missense Variants Using Graphical Analysis. J Mol Diagn 2024; 26:17-28. [PMID: 37865290 DOI: 10.1016/j.jmoldx.2023.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/30/2023] [Accepted: 09/20/2023] [Indexed: 10/23/2023] Open
Abstract
Establishing the pathogenic nature of variants in ATM, a gene associated with breast cancer and other hereditary cancers, is crucial for providing patients with adequate care. Unfortunately, achieving good variant classification is still difficult. To address this challenge, we extended the range of in silico tools with a series of graphical tools devised for the analysis of computational evidence by health care professionals. We propose a family of fast and easy-to-use graphical representations in which the impact of a variant is considered relative to other pathogenic and benign variants. To illustrate their value, the representations are applied to three problems in variant interpretation. The assessment of computational pathogenicity predictions showed that the graphics provide an intuitive view of prediction reliability, complementing and extending conventional numerical reliability indexes. When applied to variant of unknown significance populations, the representations shed light on the nature of these variants and can be used to prioritize variants of unknown significance for further studies. In a third application, the graphics were used to compare the two versions of the ATM-adapted American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines, obtaining valuable information on their relative virtues and weaknesses. Finally, a server [ATMision (ATM missense in silico interpretation online)] was generated for users to apply these representations in their variant interpretation problems, to check the ATM-adapted guidelines' criteria for computational evidence on their variant(s) and access different sources of information.
Collapse
Affiliation(s)
- Luz-Marina Porras
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Marta Santamariña-Pena
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Alysson T Sánchez
- Hereditary Cancer Program, Oncobell Program, Catalan Institute of Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Anael López-Novo
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Blanco
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Ignacio J Molina
- Instituto de Biopatología y Medicina Regenerativa, Universidad de Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain; Spanish Network on Rare Diseases, Madrid, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Daniel Rueda
- Hereditary Cancer Laboratory, 12 de Octubre University Hospital, i+12 Research Institute, Madrid, Spain
| | - Clara Ruiz-Ponte
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Ana Vega
- Fundación Pública Galega Medicina Xenómica, Santiago de Compostela, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de enfermedades Raras, Madrid, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain; Program in Molecular Mechanisms and Experimental Therapy in Oncology, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Orland Díez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
3
|
Suriñach A, Hospital A, Westermaier Y, Jordà L, Orozco-Ruiz S, Beltrán D, Colizzi F, Andrio P, Soliva R, Municoy M, Gelpí JL, Orozco M. High-Throughput Prediction of the Impact of Genetic Variability on Drug Sensitivity and Resistance Patterns for Clinically Relevant Epidermal Growth Factor Receptor Mutations from Atomistic Simulations. J Chem Inf Model 2023; 63:321-334. [PMID: 36576351 DOI: 10.1021/acs.jcim.2c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.
Collapse
Affiliation(s)
- Aristarc Suriñach
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Adam Hospital
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Yvonne Westermaier
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Luis Jordà
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Sergi Orozco-Ruiz
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Daniel Beltrán
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Francesco Colizzi
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Pau Andrio
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain
| | - Robert Soliva
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Martí Municoy
- Nostrum Biodiscovery, Av. Josep Tarradellas 8-10, 08029 Barcelona, Spain
| | - Josep Lluís Gelpí
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, Barcelona 08034, Spain.,Department Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08029, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Department Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08029, Spain
| |
Collapse
|
4
|
Zahedi T, Colagar AH, Mahmoodzadeh H, Raoof JB. Missense mutations involvement in COX-2 structure, and protein-substrate binding affinity: in-silico study. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:1125-1143. [PMID: 34632961 DOI: 10.1080/15257770.2021.1983826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible inflammatory enzyme, which produces prostanoids from arachidonic acid. COX-2 overexpression and over-activity can cause inflammation, tumorigenesis, and angiogenesis. Prostanoids are the main reason for the inflammation, and increase of mitogenesis by COX-2. So, any change such as mutations that can lead to COX-2 over-activity could ignite the tumor situations with increase of prostanoids production is one of its ways. The aim of this study was to check the effect of 166 missense mutations of COX-2 on protein features that can affect the COX-2 activity such as protein stability, fluctuation, 2D structure, and its binding affinity with the substrate by in silico methods, network modeling, and docking calculations, by which 44 of them shown to be deleterious. Among them, the S124I and S474F mutations can increase the stability of the protein. 11.36% of deleterious nsSNPs were part of the substrate-binding region among which the M508T, H337R, and V511G have the potential to affect the protein by 2D structure alteration. V511G can improve binding affinity and H337R showed a small decrease in the deformation overall energy that can represent a decrease in the stability of COX-2. Also, L517S showed a significant decrease in the binding power of COX-2/substrate but based on the anisotropic network modeling this mutation has a dual effect on COX-2 stability. These nsSNPs/mutations have the potential causing an increase or decrease of tumorigenesis because increasing of COX-2 stability and its binding affinity can lead to altering its activity.
Collapse
Affiliation(s)
- Tahereh Zahedi
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Mazandaran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgical Oncology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Jahan-Bakhsh Raoof
- Department Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Mazandaran, Iran
| |
Collapse
|
5
|
Jayaraj JM, Kuriakose BB, Alhazmi AH, Muthusamy K. Structural and functional insights on vitamin D receptor and CYP24A1 deleterious single nucleotide polymorphisms: A computational and pharmacogenomics perpetual approach. Cell Biochem Funct 2021; 39:874-885. [PMID: 34231237 DOI: 10.1002/cbf.3658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
The development of chronic kidney disease (CKD) drugs remains a challenge due to the variations in the genes. The vitamin D receptor (VDR) and Cytochrome 24A1 (CYP24A1) genetic variants might affect the drug potency, efficacy and pathway. Here we have to analyse and determine the deleterious single-nucleotide polymorphisms (nsSNPs) of VDR and CYP24A1 genes and their different population's drug responses in different populations to understand the key role in CKD. Among that the large scale of nsSNP, we used certain computational tools that predicted six missense variants are observed to be significantly damaging effect and SNP variability with large differences in various populations. Molecular docking studies were carried out by clinical and our screened compounds to VDR and CYP24A1. Docking results revealed all the compounds have a good binding affinity (Score). The screened compounds (TCM_2868 and UNPD_141613) show good binding affinity when compared to known compounds. The QM/MM study revealed that the compounds have electron transfer ability and act as a donor/acceptor to mutated proteins. The structural and conformational changes of protein complexes were analysed by molecular dynamics study. Hence, this study helps to identify suitable drugs through drug discovery in CKD treatment. The abovementioned compounds have more binding affinity, efficacy, and potency of both wild and mutant of VDR and CYP24A1.
Collapse
Affiliation(s)
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Amani Hamad Alhazmi
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | | |
Collapse
|
6
|
Loganathan L, Kuriakose BB, Mushfiq S, Muthusamy K. Mechanistic insights on nsSNPs on binding site of renin and cytochrome P450 proteins: A computational perceptual study for pharmacogenomics evaluation. J Cell Biochem 2021; 122:1460-1474. [PMID: 34161641 DOI: 10.1002/jcb.30069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/06/2022]
Abstract
Past several decades, therapeutic investigations lead to the discovery of numerous antihypertensive drugs. Although it has been proved for their potency, altered efficacy is common norms in several conditions due to genetic variations. Cytochrome P450 plays a crucial role in drug metabolism and responsible for the pharmacokinetic and pharmacodynamic properties of the drug molecules. Here, we report the deleterious point mutations in the genes associated with the altered response of antihypertensive drug molecules and their metabolizers. Missense variants were filtered as potential nonsynonymous single nucleotide polymorphisms among the available data for the target genes (REN, CYP2D6, CYP3A4). The key objective of the work is to identify the deleterious single nucleotide polymorphisms (SNPs) responsible for the drug response and metabolism for the application of personalized medication. The molecular docking studies revealed that Aliskiren and other clinically approved drug molecules have a high binding affinity with both wild and mutant structures of renin, CYP2D6, and CYP3A4 proteins. The docking (Glide XP) score was observed to have in the range of -8.896 to -11.693 kcal/mol. The molecular dynamics simulation studies were employed to perceive the structural changes and conformational deviation through various analyses. Each studied SNPs was observed to have disparate scoring in the binding affinity to the specific drug molecules. As a prospective plan, we assume this study might be applied to identify the risky SNPs associated with hypertension from the patients to recommend the suitable drug for personalized hypertensive treatment. Further, extensive clinical pharmacogenomics studies are required to support the findings.
Collapse
Affiliation(s)
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Sakeena Mushfiq
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | | |
Collapse
|
7
|
Özkan S, Padilla N, de la Cruz X. Towards a New, Endophenotype-Based Strategy for Pathogenicity Prediction in BRCA1 and BRCA2: In Silico Modeling of the Outcome of HDR/SGE Assays for Missense Variants. Int J Mol Sci 2021; 22:6226. [PMID: 34207612 PMCID: PMC8229251 DOI: 10.3390/ijms22126226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022] Open
Abstract
The present limitations in the pathogenicity prediction of BRCA1 and BRCA2 (BRCA1/2) missense variants constitute an important problem with negative consequences for the diagnosis of hereditary breast and ovarian cancer. However, it has been proposed that the use of endophenotype predictions, i.e., computational estimates of the outcomes of functional assays, can be a good option to address this bottleneck. The application of this idea to the BRCA1/2 variants in the CAGI 5-ENIGMA international challenge has shown promising results. Here, we developed this approach, exploring the predictive performances of the regression models applied to the BRCA1/2 variants for which the values of the homology-directed DNA repair and saturation genome editing assays are available. Our results first showed that we can generate endophenotype estimates using a few molecular-level properties. Second, we show that the accuracy of these estimates is enough to obtain pathogenicity predictions comparable to those of many standard tools. Third, endophenotype-based predictions are complementary to, but do not outperform, those of a Random Forest model trained using variant pathogenicity annotations instead of endophenotype values. In summary, our results confirmed the usefulness of the endophenotype approach for the pathogenicity prediction of the BRCA1/2 missense variants, suggesting different options for future improvements.
Collapse
Affiliation(s)
- Selen Özkan
- Research Unit in Clinical and Translational Bioinformatics, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.Ö.); (N.P.)
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.Ö.); (N.P.)
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (S.Ö.); (N.P.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
8
|
Baeissa HM, Pearl FMG. Identifying the Impact of Inframe Insertions and Deletions on Protein Function in Cancer. J Comput Biol 2019; 27:786-795. [PMID: 31460787 DOI: 10.1089/cmb.2018.0192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inframe insertion and deletion mutations (indels) are commonly observed in cancer samples accounting for over 1% of all reported mutations. Few somatic inframe indels have been clinically documented as pathogenic and at present there are few tools to predict which indels drive cancer development. However, indels are a common feature of hereditary disease and several tools have been developed to predict the impact of inframe indels on protein function. In this study, we test whether six of the popular prediction tools can be adapted to test for cancer driver mutations and then develop a new algorithm (IndelRF) that discriminates between recurrent indels in known cancer genes and indels not associated with disease. IndelRF was developed to try and identify somatic, driver, and inframe indel mutations. Using a random forest classifier with 11 features, IndelRF achieved accuracies of 0.995 and 0.968 for insertion and deletion mutations, respectively. Finally, we use IndelRF to classify the inframe indel cancer mutations in the MOKCa database.
Collapse
Affiliation(s)
- Hanadi M Baeissa
- Bioinformatics Group, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Frances M G Pearl
- Bioinformatics Group, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
9
|
Al-Muhaizea MA, AlMutairi F, Almass R, AlHarthi S, Aldosary MS, Alsagob M, AlOdaib A, Colak D, Kaya N. A Novel Homozygous Mutation in SPTBN2 Leads to Spinocerebellar Ataxia in a Consanguineous Family: Report of a New Infantile-Onset Case and Brief Review of the Literature. THE CEREBELLUM 2019; 17:276-285. [PMID: 29196973 DOI: 10.1007/s12311-017-0893-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was the identification of likely genes and mutations associated with an autosomal recessive (AR) rare spinocerebellar ataxia (SCA) phenotype in two patients with infantile onset, from a consanguineous family. Using genome-wide SNP screening, autozygosity mapping, targeted Sanger sequencing and nextgen sequencing, family segregation analysis, and comprehensive neuropanel, we discovered a novel mutation in SPTBN2. Next, we utilized multiple sequence alignment of amino acids from various species as well as crystal structures provided by protein data bank (PDB# 1WYQ and 1WJM) to model the mutation site and its effect on β-III-spectrin. Finally, we used various bioinformatic classifiers to determine pathogenicity of the missense variant. A comprehensive clinical and diagnostic workup including radiological exams were performed on the patients as part of routine patient care. The homozygous missense variant (c.1572C>T; p.R414C) detected in exon 2 was fully segregated in the family and absent in a large ethnic cohort as well as publicly available data sets. Our comprehensive targeted sequencing approaches did not reveal any other likely candidate variants or mutations in both patients. The two male siblings presented with delayed motor milestones and cognitive and learning disability. Brain MRI revealed isolated cerebellar atrophy more marked in midline inferior vermis at ages of 3 and 6.5 years. Sequence alignments of the amino acids for β-III-spectrin indicated that the arginine at 414 is highly conserved among various species and located towards the end of first spectrin repeat domain. Inclusive bioinformatic analysis predicted that the variant is to be damaging and disease causing. In addition to the novel mutation, a brief literature review of the previously reported mutations as well as clinical comparison of the cases were also presented. Our study reviews the previously reported SPTBN2 mutations and cases. Moreover, the novel mutation, p.R414C, adds up to the literature for the infantile-onset form of autosomal recessive ataxia associated with SPTBN2. Previously, few SPTBN2 recessive mutations have been reported in humans. Animal models especially the β-III-/- mouse model provided insights into early coordination and gait deficit suggestive of loss-of-function. It is expected to see more recessive SPTBN2 mutations appearing in the literature during the upcoming years.
Collapse
Affiliation(s)
- Mohammad A Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Faten AlMutairi
- Genetics Department, King Faisal Specialist Hospital and Research Center, MBC: 03, Riyadh, 11211, Saudi Arabia
| | - Rawan Almass
- Genetics Department, King Faisal Specialist Hospital and Research Center, MBC: 03, Riyadh, 11211, Saudi Arabia
| | - Safinaz AlHarthi
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mazhor S Aldosary
- Genetics Department, King Faisal Specialist Hospital and Research Center, MBC: 03, Riyadh, 11211, Saudi Arabia
| | - Maysoon Alsagob
- Genetics Department, King Faisal Specialist Hospital and Research Center, MBC: 03, Riyadh, 11211, Saudi Arabia
| | - Ali AlOdaib
- Genetics Department, King Faisal Specialist Hospital and Research Center, MBC: 03, Riyadh, 11211, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics and Scientific Computing, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Genetics Department, King Faisal Specialist Hospital and Research Center, MBC: 03, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
10
|
Padilla N, Moles-Fernández A, Riera C, Montalban G, Özkan S, Ootes L, Bonache S, Díez O, Gutiérrez-Enríquez S, de la Cruz X. BRCA1- and BRCA2-specific in silico tools for variant interpretation in the CAGI 5 ENIGMA challenge. Hum Mutat 2019; 40:1593-1611. [PMID: 31112341 DOI: 10.1002/humu.23802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022]
Abstract
BRCA1 and BRCA2 (BRCA1/2) germline variants disrupting the DNA protective role of these genes increase the risk of hereditary breast and ovarian cancers. Correct identification of these variants then becomes clinically relevant, because it may increase the survival rates of the carriers. Unfortunately, we are still unable to systematically predict the impact of BRCA1/2 variants. In this article, we present a family of in silico predictors that address this problem, using a gene-specific approach. For each protein, we have developed two tools, aimed at predicting the impact of a variant at two different levels: Functional and clinical. Testing their performance in different datasets shows that specific information compensates the small number of predictive features and the reduced training sets employed to develop our models. When applied to the variants of the BRCA1/2 (ENIGMA) challenge in the fifth Critical Assessment of Genome Interpretation (CAGI 5) we find that these methods, particularly those predicting the functional impact of variants, have a good performance, identifying the large compositional bias towards neutral variants in the CAGI sample. This performance is further improved when incorporating to our prediction protocol estimates of the impact on splicing of the target variant.
Collapse
Affiliation(s)
- Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Casandra Riera
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Montalban
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Selen Özkan
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lars Ootes
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sandra Bonache
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Orland Díez
- Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Area of Clinical and Molecular Genetics, University Hospital of Vall d'Hebron, Barcelona, Spain
| | | | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
11
|
Bonjoch L, Mur P, Arnau-Collell C, Vargas-Parra G, Shamloo B, Franch-Expósito S, Pineda M, Capellà G, Erman B, Castellví-Bel S. Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Mol Aspects Med 2019; 69:27-40. [PMID: 30935834 DOI: 10.1016/j.mam.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Most next generation sequencing (NGS) studies identified candidate genetic variants predisposing to colorectal cancer (CRC) but do not tackle its functional interpretation to unequivocally recognize a new hereditary CRC gene. Besides, germline variants in already established hereditary CRC-predisposing genes or somatic variants share the same need when trying to categorize those with relevant significance. Functional genomics approaches have an important role in identifying the causal links between genetic architecture and phenotypes, in order to decipher cellular function in health and disease. Therefore, functional interpretation of identified genetic variants by NGS platforms is now essential. Available approaches nowadays include bioinformatics, cell and molecular biology and animal models. Recent advances, such as the CRISPR-Cas9, ZFN and TALEN systems, have been already used as a powerful tool with this objective. However, the use of cell lines is of limited value due to the CRC heterogeneity and its close interaction with microenvironment. Access to tridimensional cultures or organoids and xenograft models that mimic the in vivo tissue architecture could revolutionize functional analysis. This review will focus on the application of state-of-the-art functional studies to better tackle new genes involved in germline predisposition to this neoplasm.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Bahar Shamloo
- Molecular Biology, Genetics, and Bioengineering Department, Legacy Research Institute, Portland, OR, USA
| | - Sebastià Franch-Expósito
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Genetic analysis of patients with fructose-1,6-bisphosphatase deficiency. Gene 2019; 699:102-109. [PMID: 30858132 DOI: 10.1016/j.gene.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Fructose-1,6-bisphosphatase deficiency (FBPase deficiency) is a rare inborn error of metabolism that affects gluconeogenesis. Ketotic hypoglycemia is the main symptom and can occur at any age, usually after long periods of fasting or during illness. The diagnosis may be achieved by measurement of the enzyme activity in a liver sample, but FBP1 analysis has become the most common approach. AIM To characterize the genotype of Southern Brazilian FBPase-deficient patients. METHODOLOGY The FBP1 gene of six unrelated patients (one had consanguineous parents) with previous diagnoses of FBPase deficiency (enzymatic, pts A, B, D, E; genetic through Next-Generation Sequencing-NGS, pt F; enzymatic and Sanger sequencing, pt C) was first analyzed through NGS. Pathogenic variants found in NGS were confirmed by Sanger sequencing. The pathogenicity of novel missense variants was evaluated through in silico analysis. RESULTS Five patients (pt A, B, D, E, F) had their genotype identified by NGS, all of them being homozygous. In Pt C, NGS detected only one pathogenic variant. Among the 11 alleles analyzed, only three variants were found, two being novel: c.958G > A and c.986T > C. In silico analysis indicated the pathogenicity of both variants. Interestingly, the three variants seem to be linked to specific haplotypes, indicating that an endogamy effect may be acting on these alleles in the population of Southern Brazil. CONCLUSIONS Our data suggest that NGS is a good tool for the diagnosis of FBPase deficiency. Variants c.958G > A and c.986T > C are the most prevalent variants in the country.
Collapse
|
13
|
Feldman G, Kappes D, Mookerjee-Basu J, Freeman T, Fertala A, Parvizi J. Novel mutation in Teneurin 3 found to co-segregate in all affecteds in a multi-generation family with developmental dysplasia of the hip. J Orthop Res 2019; 37:171-180. [PMID: 30273960 DOI: 10.1002/jor.24148] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/04/2018] [Indexed: 02/04/2023]
Abstract
DDH is a debilitating condition characterized by incomplete formation of the acetabulum leading to dislocation of the hip, suboptimal joint function and accelerated wear of the articular cartilage resulting in early onset crippling arthritis of the hip in 20-40 year olds. Current diagnostic tests in newborns using physical manipulation of the femur or ultrasound either under or over-diagnose this condition. Developing an accurate, cost effective diagnostic test is a goal of this study. To better understand the biologic pathways involved in acetabular development, DNA from severely affected individuals in a four generation family that showed inter-generational transmission of the disorder was isolated and whole exome sequenced. A novel A to C transversion at position 183721398 on human chromosome four was found to co-segregate with the affected phenotype in this family. This mutation encodes a glutamine to proline change at position 2665 in the Teneurin 3 (TENM3) gene and was judged damaging by four prediction programs. Eight week old knock-in mutant mice show delayed development of the left acetabulum and the left glenoid fossa as shown by the presence of more Alcian blue staining on the socket rims of both the hip and the shoulder. We hypothesize that mutated TENM3 will slow chondrogenesis. MMP13 has been shown to impair extracellular matrix remodeling and suppress differentiation. Bone marrow cells from the knock-in mouse were found to overexpress MMP13 with or without BMP2 stimulation. This variant may elucidate pathways responsible for normal hip development and become part of an accurate test for DDH. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- George Feldman
- Thomas Jefferson University Division of Orthopaedic Research, Philadelphia, Pennsylvania
| | | | | | - Theresa Freeman
- Thomas Jefferson University Division of Orthopaedic Research, Philadelphia, Pennsylvania
| | - Andrzej Fertala
- Thomas Jefferson University Division of Orthopaedic Research, Philadelphia, Pennsylvania
| | - Javad Parvizi
- Thomas Jefferson University Division of Orthopaedic Research, Philadelphia, Pennsylvania.,Rothman Institute of Orthopaedics, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Semplicini C, Bertolin C, Bello L, Pantic B, Guidolin F, Vianello S, Catapano F, Colombo I, Moggio M, Gavassini BF, Cenacchi G, Papa V, Previtero M, Calore C, Sorarù G, Minervini G, Tosatto SCE, Stramare R, Pegoraro E. The clinical spectrum of CASQ1-related myopathy. Neurology 2018; 91:e1629-e1641. [PMID: 30258016 DOI: 10.1212/wnl.0000000000006387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To identify and characterize patients with calsequestrin 1 (CASQ1)-related myopathy. METHODS Patients selected according to histopathologic features underwent CASQ1 genetic screening. CASQ1-mutated patients were clinically evaluated and underwent muscle MRI. Vacuole morphology and vacuolated fiber type were characterized. RESULTS Twenty-two CASQ1-mutated patients (12 families) were identified, 21 sharing the previously described founder mutation (p.Asp244Gly) and 1 with the p.Gly103Asp mutation. Patients usually presented in the sixth decade with exercise intolerance and myalgias and later developed mild to moderate, slowly progressive proximal weakness with quadriceps atrophy and scapular winging. Muscle MRI (n = 11) showed a recurrent fibrofatty substitution pattern. Three patients presented subclinical cardiac abnormalities. Muscle histopathology in patients with p.Asp244Gly showed vacuoles in type II fibers appearing empty in hematoxylin-eosin, Gomori, and nicotinamide adenine dinucleotide (NADH) tetrazolium reductase stains but strongly positive for sarcoplasmic reticulum proteins. The muscle histopathology of p.Gly103Asp mutation was different, showing also NADH-positive accumulation consistent with tubular aggregates. CONCLUSIONS We report the clinical and molecular details of the largest cohort of CASQ1-mutated patients. A possible heart involvement is presented, further expanding the phenotype of the disease. One mutation is common due to a founder effect, but other mutations are possible. Because of a paucity of symptoms, it is likely that CASQ1 mutations may remain undiagnosed if a muscle biopsy is not performed.
Collapse
Affiliation(s)
- Claudio Semplicini
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Cinzia Bertolin
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Luca Bello
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Boris Pantic
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Francesca Guidolin
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Sara Vianello
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Francesco Catapano
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Irene Colombo
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Maurizio Moggio
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Bruno F Gavassini
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Giovanna Cenacchi
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Valentina Papa
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Marco Previtero
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Chiara Calore
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Gianni Sorarù
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Giovanni Minervini
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Silvio C E Tosatto
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Roberto Stramare
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy
| | - Elena Pegoraro
- From the Neuromuscular Center (C.S., C.B., L.B., B.P., F.G., S.V., B.F.G., G.S., E.P.), Department of Neurosciences, and Departments of Cardiac, Thoracic and Vascular Sciences (M.P., C.C.), Biomedical Sciences (G.M., S.C.E.T.), and Medicine (R.S.), Section of Radiology, University of Padova, Italy; Dubowitz Neuromuscular Centre (Developmental Neuroscience Programme) (F.C.), UCL Great Ormond Street Institute of Child Health, University College London, UK; Neuromuscular and Rare Disease Unit (I.C., M.M.), Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan; Department of Biomedical and Neuromotor Sciences (G.C., V.P.), University of Bologna; and CNR Institute of Neuroscience (S.C.E.T.), Padova, Italy.
| |
Collapse
|
15
|
Fabry disease in the Spanish population: observational study with detection of 77 patients. Orphanet J Rare Dis 2018; 13:52. [PMID: 29631605 PMCID: PMC5891901 DOI: 10.1186/s13023-018-0792-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/22/2018] [Indexed: 12/26/2022] Open
Abstract
Background Fabry disease is a multisystemic lysosomal storage disorder caused by the impairment of α-galactosidase A. The incidence of this rare disease is underestimated due to delayed diagnosis. Moreover, the management of the identified subjects is often complicated by the detection of variants of unclear diagnostic interpretation, usually identified in screening studies. We performed an observational study based on biochemical and genetic analysis of 805 dried blood spot samples from patients with clinical symptoms or family history of this pathology, which were collected from 109 Spanish hospitals, all over the country. Results We identified 77 new diagnosed patients with mutations related to classical Fabry disease, as well as 2 subjects with c.374A > T; p.His125Leu, a possible new mutation that need to be confirmed. Additionally, we detected 8 subjects carrying genetic variants possibly linked to late onset Fabry disease (p.Arg118Cys and p.Ala143Thr), 4 cases with polymorphism p.Asp313Tyr and 36 individuals with single nucleotide polymorphisms in intronic regions of GLA. Five of the identified mutations (c.431delG; c.1182delA; c.374A > T; c.932 T > C; c.125 T > A; c.778G > A), which were associated with a classical phenotype have not been previously described. Moreover 3 subjects presenting complex haplotypes made up by the association of intronic variants presented impaired levels of GLA transcripts and Gb3 deposits in skin biopsy. Conclusions Enzymatic screening for Fabry Disease in risk population (2 or more clinical manifestations or family history of the disease) helped to identify undiagnosed patients and unravel the impairment of GLA expression in some subjects with complex haplotypes. Electronic supplementary material The online version of this article (10.1186/s13023-018-0792-8) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Two microcephaly-associated novel missense mutations in CASK specifically disrupt the CASK-neurexin interaction. Hum Genet 2018; 137:231-246. [PMID: 29426960 DOI: 10.1007/s00439-018-1874-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022]
Abstract
Deletion and truncation mutations in the X-linked gene CASK are associated with severe intellectual disability (ID), microcephaly and pontine and cerebellar hypoplasia in girls (MICPCH). The molecular origin of CASK-linked MICPCH is presumed to be due to disruption of the CASK-Tbr-1 interaction. This hypothesis, however, has not been directly tested. Missense variants in CASK are typically asymptomatic in girls. We report three severely affected girls with heterozygous CASK missense mutations (M519T (2), G659D (1)) who exhibit ID, microcephaly, and hindbrain hypoplasia. The mutation M519T results in the replacement of an evolutionarily invariant methionine located in the PDZ signaling domain known to be critical for the CASK-neurexin interaction. CASKM519T is incapable of binding to neurexin, suggesting a critically important role for the CASK-neurexin interaction. The mutation G659D is in the SH3 (Src homology 3) domain of CASK, replacing a semi-conserved glycine with aspartate. We demonstrate that the CASKG659D mutation affects the CASK protein in two independent ways: (1) it increases the protein's propensity to aggregate; and (2) it disrupts the interface between CASK's PDZ (PSD95, Dlg, ZO-1) and SH3 domains, inhibiting the CASK-neurexin interaction despite residing outside of the domain deemed critical for neurexin interaction. Since heterozygosity of other aggregation-inducing mutations (e.g., CASKW919R) does not produce MICPCH, we suggest that the G659D mutation produces microcephaly by disrupting the CASK-neurexin interaction. Our results suggest that disruption of the CASK-neurexin interaction, not the CASK-Tbr-1 interaction, produces microcephaly and cerebellar hypoplasia. These findings underscore the importance of functional validation for variant classification.
Collapse
|
17
|
Lee TS, Potts SJ, McGinniss MJ, Strom CM. Multiple Property Tolerance Analysis for the Evaluation of Missense Mutations. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Computational prediction of the impact of a mutation on protein function is still not accurate enough for clinical diagnostics without additional human expert analysis. Sequence alignment-based methods have been extensively used but their results highly depend on the quality of the input alignments and the choice of sequences. Incorporating the structural information with alignments improves prediction accuracy. Here, we present a conservation of amino acid properties method for mutation prediction, Multiple Properties Tolerance Analysis (MuTA), and a new strategy, MuTA/S, to incorporate the solvent accessible surface (SAS) property into MuTA. Instead of combining multiple features by machine learning or mathematical methods, an intuitive strategy is used to divide the residues of a protein into different groups, and in each group the properties used is adjusted. The results for LacI, lysozyme, and HIV protease show that MuTA performs as well as the widely used SIFT algorithm while MuTA/S outperforms SIFT and MuTA by 2%–25% in terms of prediction accuracy. By incorporating the SAS term alone, the alignment dependency of overall prediction accuracy is significantly reduced. MuTA/S also defines a new way to incorporate any structural features and knowledge and may lead to more accurate predictions.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Consortium for Bioinformatics and Computational Biology, and Department of Chemistry, University of Minnesota, P.O. Box 14800, Minneapolis, MN 55414
| | - Steven J. Potts
- Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690
| | - Matthew J. McGinniss
- Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690
| | - Charles M. Strom
- Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690
| |
Collapse
|
18
|
de la Campa EÁ, Padilla N, de la Cruz X. Development of pathogenicity predictors specific for variants that do not comply with clinical guidelines for the use of computational evidence. BMC Genomics 2017; 18:569. [PMID: 28812538 PMCID: PMC5558188 DOI: 10.1186/s12864-017-3914-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Strict guidelines delimit the use of computational information in the clinical setting, due to the still moderate accuracy of in silico tools. These guidelines indicate that several tools should always be used and that full coincidence between them is required if we want to consider their results as supporting evidence in medical decision processes. Application of this simple rule certainly decreases the error rate of in silico pathogenicity assignments. However, when predictors disagree this rule results in the rejection of potentially valuable information for a number of variants. In this work, we focus on these variants of the protein sequence and develop specific predictors to help improve the success rate of their annotation. Results We have used a set of 59,442 protein sequence variants (15,723 pathological and 43,719 neutral) from 228 proteins to identify those cases for which pathogenicity predictors disagree. We have repeated this process for all the possible combinations of five known methods (SIFT, PolyPhen-2, PON-P2, CADD and MutationTaster2). For each resulting subset we have trained a specific pathogenicity predictor. We find that these specific predictors are able to discriminate between neutral and pathogenic variants, with a success rate different from random. They tend to outperform the constitutive methods but this trend decreases as the performance of the constitutive predictor improves (e.g. with PON-P2 and PolyPhen-2). We also find that specific methods outperform standard consensus methods (Condel and CAROL). Conclusion Focusing development efforts on the case of variants for which known methods disagree we may obtain pathogenicity predictors with improved performances. Although we have not yet reached the success rate that allows the use of this computational evidence in a clinical setting, the simplicity of the approach indicates that more advanced methods may reach this goal in a close future. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3914-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Álvarez de la Campa
- Research Unit in Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Natàlia Padilla
- Research Unit in Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
19
|
Pousada G, Lupo V, Cástro-Sánchez S, Álvarez-Satta M, Sánchez-Monteagudo A, Baloira A, Espinós C, Valverde D. Molecular and functional characterization of the BMPR2 gene in Pulmonary Arterial Hypertension. Sci Rep 2017; 7:1923. [PMID: 28507310 PMCID: PMC5432510 DOI: 10.1038/s41598-017-02074-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
Pulmonary arterial hypertension is a progressive disease that causes the obstruction of precapillary pulmonary arteries and a sustained increase in pulmonary vascular resistance. The aim was to analyze functionally the variants found in the BMPR2 gene and to establish a genotype-phenotype correlation. mRNA expression studies were performed using pSPL3 vector, studies of subcellular localization were performed using pEGFP-N1 vector and luciferase assays were performed using pGL3-Basic vector. We have identified 30 variants in the BMPR2 gene in 27 of 55 patients. In 16 patients we detected pathogenic mutations. Minigene assays revealed that 6 variants (synonymous, missense) result in splicing defect. By immunofluorescence assay, we observed that 4 mutations affect the protein localization. Finally, 4 mutations located in the 5'UTR region showed a decreased transcriptional activity in luciferase assays. Genotype-phenotype correlation, revealed that patients with pathogenic mutations have a more severe phenotype (sPaP p = 0.042, 6MWT p = 0.041), a lower age at diagnosis (p = 0.040) and seemed to have worse response to phosphodiesterase-5-inhibitors (p = 0.010). Our study confirms that in vitro expression analysis is a suitable approach in order to investigate the phenotypic consequences of the nucleotide variants, especially in cases where the involved genes have a pattern of expression in tissues of difficult access.
Collapse
Affiliation(s)
- Guillermo Pousada
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Vincenzo Lupo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Sheila Cástro-Sánchez
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - María Álvarez-Satta
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Ana Sánchez-Monteagudo
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Adolfo Baloira
- Neumology Service, Complexo Hospitalario Universitario de Pontevedra, 36071, Pontevedra, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012, Valencia, Spain
| | - Diana Valverde
- Dep. Biochemistry, Genetics and Immunology. Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Grupo de Investigación Enfermedades Raras y Medicina Pediátrica, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.
| |
Collapse
|
20
|
Soon BH, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, Thanabalan J, Mohd Haspani MS, Toh CJ, Mohd Tamil A, Harun R, Wan Ngah WZ, Jamal R. Mitochondrial DNA Mutations in Grade II and III Glioma Cell Lines Are Associated with Significant Mitochondrial Dysfunction and Higher Oxidative Stress. Front Physiol 2017; 8:231. [PMID: 28484394 PMCID: PMC5399085 DOI: 10.3389/fphys.2017.00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/31/2017] [Indexed: 01/13/2023] Open
Abstract
The role of mitochondria in tumorigenesis has regained much attention as it could dysregulate cellular energetics, oxidative stress and apoptosis. However, the role of mitochondria in different grade gliomasis still unknown. This study aimed to identify mitochondrial DNA (mtDNA) sequence variations that could possibly affect the mitochondrial functions and also the oxidative stress status. Three different grades of human glioma cell lines and a normal human astrocyte cell line were cultured in-vitro and tested for oxidative stress biomarkers. Relative oxidative stress level, mitochondria activity, and mitochondrial mass were determined by live cell imaging with confocal laser scanning microscope using CM-H2DCFDA, MitoTracker Green, and MitoTracker Orange stains. The entire mitochondrial genome was sequenced using the AffymetrixGeneChip Human Mitochondrial Resequencing Array 2.0. The mitochondrial sequence variations were subjected to phylogenetic haplogroup assessment and pathogenicity of the mutations were predicted using pMUT and PolyPhen2. The Grade II astrocytoma cells showed increased oxidative stress wherea high level of 8-OHdG and oxidative stress indicator were observed. Simultaneously, Grade II and III glioma cells showed relatively poor mitochondria functions and increased number of mutations in the coding region of the mtDNA which could be due to high levels of oxidative stress in these cells. These non-synonymous mtDNA sequence variations were predicted to be pathogenic and could possibly lead to protein dysfunction, leading to oxidative phosphorylation (OXPHOS) impairment, mitochondria dysfunction and could create a vicious cycle of oxidative stress. The Grade IV cells had no missense mutation but preserved intact mitochondria and excellent antioxidant defense mechanisms thus ensuring better survival. In conclusion, Grade II and III glioma cells demonstrated coding region mtDNA mutations, leading to mitochondrial dysfunction and higher oxidative stress.
Collapse
Affiliation(s)
- Bee Hong Soon
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Sue-Mian Then
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia.,The University of Nottingham Malaysia CampusSemenyih, Malaysia
| | - Azizi Abu Bakar
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Farizal Fadzil
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Jegan Thanabalan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | | | - Charng Jeng Toh
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Azmi Mohd Tamil
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Wan Z Wan Ngah
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| |
Collapse
|
21
|
Soini HK, Väisänen A, Kärppä M, Hinttala R, Kytövuori L, Moilanen JS, Uusimaa J, Majamaa K. A novel MTTT mutation m.15933G > A revealed in analysis of mitochondrial DNA in patients with suspected mitochondrial disease. BMC MEDICAL GENETICS 2017; 18:14. [PMID: 28187756 PMCID: PMC5303298 DOI: 10.1186/s12881-017-0377-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/03/2017] [Indexed: 01/25/2023]
Abstract
Background Mitochondrial diseases present with variable multi-organ symptoms. Common disease-causing mutations in mitochondrial DNA (mtDNA) are regularly screened in diagnostic work-up, but novel mutations may remain unnoticed. Methods Patients (N = 66) with a clinical suspicion of mitochondrial disease were screened for their mtDNA coding region using conformation sensitive gel electrophoresis and sequencing. Long-PCR was used to detect deletions followed by POLG1 sequencing in patients with multiple deletions. Results We discovered three novel mtDNA variants that included m.8743G > C, m.11322A > G and m.15933G > A. The novel MTTT variant m.15933G > A is suggested to be pathogenic. Analysis revealed also multiple mtDNA deletions in two patients and five nonsynonymous variants that were putatively pathogenic according to in-silico prediction algorithms. In addition, a rare haplogroup H associated m.7585_7586insT variant was discovered. Conclusions Among patients with a suspected mitochondrial disease, a novel MTTT variant m.15933G > A was discovered and is suggested to be pathogenic. In addition, several putatively pathogenic nonsynonymous variants and rare variants were found. These findings highlight the importance of coding region mtDNA screening among patients with clinical features suggesting a mitochondrial disease, but who lack the common mitochondrial disease mutations.
Collapse
Affiliation(s)
- Heidi K Soini
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland. .,PEDEGO Research Unit, Pediatrics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.
| | - Antti Väisänen
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| | - Reetta Hinttala
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,PEDEGO Research Unit, Pediatrics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Pediatrics, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| | - Jukka S Moilanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Clinical Genetics, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland.,PEDEGO Research Unit, Clinical Genetics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland
| | - Johanna Uusimaa
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,PEDEGO Research Unit, Pediatrics, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Pediatrics, Oulu University Hospital, P.O. Box 23, FI-90029 OYS, Oulu, Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology, Oulu University Hospital, P.O. Box 20, FI-90029 OYS, Oulu, Finland
| |
Collapse
|
22
|
Complex inheritance in Pulmonary Arterial Hypertension patients with several mutations. Sci Rep 2016; 6:33570. [PMID: 27630060 PMCID: PMC5024326 DOI: 10.1038/srep33570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
Pulmonary Arterial Hypertension (PAH) is a rare and progressive disease with low incidence and prevalence, and elevated mortality. PAH is characterized by increased mean pulmonary artery pressure. The aim of this study was to analyse patients with combined mutations in BMPR2, ACVRL1, ENG and KCNA5 genes and to establish a genotype-phenotype correlation. Major genes were analysed by polymerase chain reaction (PCR) and direct sequencing. Genotype-phenotype correlation was performed. Fifty-seven (28 idiopathic PAH, 29 associated PAH group I) were included. Several mutations in different genes, classified as pathogenic by in silico analysis, were present in 26% of PAH patients. The most commonly involved gene was BMPR2 (12 patients) followed by ENG gene (9 patients). ACVRL1 and KCNA5 genes showed very low incidence of mutations (5 and 1 patients, respectively). Genotype-phenotype correlation showed statistically significant differences for gender (p = 0.045), age at diagnosis (p = 0.035), pulmonary vascular resistance (p = 0.030), cardiac index (p = 0.035) and absence of response to treatment (p = 0.011). PAH is consequence of a heterogeneous constellation of genetic arrangements. Patients with several pathogenic mutations seem to display a more severe phenotype.
Collapse
|
23
|
Riera C, Padilla N, de la Cruz X. The Complementarity Between Protein-Specific and General Pathogenicity Predictors for Amino Acid Substitutions. Hum Mutat 2016; 37:1013-24. [DOI: 10.1002/humu.23048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Casandra Riera
- Research Unit in Translational Bioinformatics; Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona; Barcelona Spain
| | - Natàlia Padilla
- Research Unit in Translational Bioinformatics; Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona; Barcelona Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics; Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona; Barcelona Spain
- ICREA; Barcelona Spain
| |
Collapse
|
24
|
Pousada G, Baloira A, Fontán D, Núñez M, Valverde D. Mutational and clinical analysis of the ENG gene in patients with pulmonary arterial hypertension. BMC Genet 2016; 17:72. [PMID: 27260700 PMCID: PMC4893224 DOI: 10.1186/s12863-016-0384-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare vascular disorder characterized by a capillary wedge pressure ≤ 15 mmHg and a mean pulmonary arterial pressure ≥ 25 mmHg at rest. PAH can be idiopathic, heritable or associated with other conditions. The aim of this study was to analyze the Endoglin (ENG) gene and assess the influence of the c.572G > A (p.G191D) mutation in patients with idiopathic or associated PAH. The correlation between the pathogenic mutations and clinical and functional parameters was further analyzed. Results Sixteen different changes in the ENG gene were found in 44 out of 57 patients. After in silico analysis, we classified eight mutations as pathogenic in 16 of patients. The c.572G>A (p.G191D) variation was observed in ten patients, and the analysis for the splicing process using hybrid minigenes, with pSPL3 vector to assess splicing alterations, do not generate a new transcript. Age at diagnosis (p = 0.049) and the 6-min walking test (p = 0.041) exhibited statistically significant differences between carriers and non-carriers of pathogenic mutations. Patients with pathogenic mutations exhibited disease symptoms 8 years before non-carriers. Five patients with pathogenic mutations were carriers of another mutation in the BMPR2 or ACVRL1 genes. Conclusions We present a series of PAH patients with mutations in the ENG gene, some of them not previously described, exhibiting clinical and hemodynamic alterations suggesting that the presence of these mutations may be associated with the severity of the disease. Moreover, genetic analysis in patients with PAH may be of clinical relevance and indicates the complexity of the genetic background.
Collapse
Affiliation(s)
- Guillermo Pousada
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain.,Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | - Adolfo Baloira
- Complexo Hospitalario Universitario de Pontevedra, Servicio de neumología, Pontevedra, Spain
| | - Diego Fontán
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain
| | - Marta Núñez
- Complexo Hospitalario Universitario de Pontevedra, Servicio de neumología, Pontevedra, Spain
| | - Diana Valverde
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, As Lagoas Marcosende S/N, 36310, Vigo, Spain. .,Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain.
| |
Collapse
|
25
|
Schiemann AH, Stowell KM. Comparison of pathogenicity prediction tools on missense variants in RYR1 and CACNA1S associated with malignant hyperthermia. Br J Anaesth 2016; 117:124-8. [PMID: 27147545 DOI: 10.1093/bja/aew065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Malignant hyperthermia (MH) is a pharmacogenetic disorder that has been linked to the skeletal muscle calcium release channel (RYR1) and the α1S subunit of the voltage-dependent L-type calcium channel (CACNA1S). Genomic DNA capture and next generation sequencing are becoming the preferred method to identify mutations in these genes. Bioinformatic pathogenicity prediction of identified variants may help to determine if these variants are in fact disease causing. METHODS Eight pathogenicity prediction programmes freely available on the web were used to determine their ability to correctly predict the impact of a missense variant on RyR1 or dihydropyridine receptor (DHPR) protein function. We tested MH-causative variants, variants that had been shown to alter calcium release in cells, and common sequence variants in RYR1 and CACNA1S. RESULTS None of the prediction programmes was able to identify all of the variants tested correctly as either 'damaging' (MH-causative variants, variants that had been shown to alter calcium release in cells) or as 'benign' (common sequence variants). The overall sensitivity of predictions ranged from 84% to 100% depending on the programme used, with specificity from 25% to 83%. CONCLUSIONS In this study we determined the sensitivity and specificity of bioinformatic pathogenicity prediction tools for RYR1 and CACNA1S. We suggest that the prediction results should be treated with caution, as none of the programmes tested predicted all the variants correctly and should only be used in combination with other available data (functional assays, segregation analysis).
Collapse
Affiliation(s)
- A H Schiemann
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - K M Stowell
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| |
Collapse
|
26
|
Genomic screening of ABCA4 and array CGH analysis underline the genetic variability of Greek patients with inherited retinal diseases. Meta Gene 2016; 8:37-43. [PMID: 27014590 PMCID: PMC4792891 DOI: 10.1016/j.mgene.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 02/10/2016] [Indexed: 11/22/2022] Open
Abstract
Background Retinal dystrophies are a clinically and genetically heterogeneous group of disorders which affect more than two million people worldwide. The present study focused on the role of the ABCA4 gene in the pathogenesis of hereditary retinal dystrophies (autosomal recessive Stargardt disease, autosomal recessive cone-rod dystrophy, and autosomal recessive retinitis pigmentosa) in patients of Greek origin. Materials and methods Our cohort included 26 unrelated patients and their first degree healthy relatives. The ABCA4 mutation screening involved Sanger sequencing of all exons and flanking regions. Evaluation of novel variants included sequencing of control samples, family segregation analysis and characterization by in silico prediction tools. Twenty five patients were also screened for copy number variations by array-comparative genomic hybridization. Results Excluding known disease-causing mutations and polymorphisms, two novel variants were identified in coding and non-coding regions of ABCA4. Array-CGH analysis revealed two partial deletions of USH2A and MYO3A in two patients with nonsyndromic autosomal recessive retinitis pigmentosa. Conclusions The ABCA4 mutation spectrum in Greek patients differs from other populations. Bioinformatic tools, segregation analysis along with clinical data from the patients seemed to be crucial for the evaluation of genetic variants and particularly for the discrimination between causative and non-causative variants. Sixteen known pathological genetic variants were identified in ABCA4 gene in Greek patients with retinal dystrophies. Two novel variants were found in patients with Stargardt’s disease and cone-rod dystrophy respectively. Two reported mutations in Stargardt's patients were identified in retinitis pigmentosa and cone-rod dystrophy patients. The mutations p.Gly1961Glu and p.Ala1038Val, which are common in other populations, where also found in our cohort consisted of 26 Greek patients. Array-comparative genome hybridization revealed large deletions in two out of the 25 cases studied.
Collapse
|
27
|
Reduced secretion and altered proteolytic processing caused by missense mutations in progranulin. Neurobiol Aging 2016; 39:220.e17-26. [DOI: 10.1016/j.neurobiolaging.2015.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/26/2015] [Accepted: 12/22/2015] [Indexed: 11/18/2022]
|
28
|
Analysis of Genes Involved in Body Weight Regulation by Targeted Re-Sequencing. PLoS One 2016; 11:e0147904. [PMID: 26828654 PMCID: PMC4734691 DOI: 10.1371/journal.pone.0147904] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/16/2022] Open
Abstract
Introduction Genes involved in body weight regulation that were previously investigated in genome-wide association studies (GWAS) and in animal models were target-enriched followed by massive parallel next generation sequencing. Methods We enriched and re-sequenced continuous genomic regions comprising FTO, MC4R, TMEM18, SDCCAG8, TKNS, MSRA and TBC1D1 in a screening sample of 196 extremely obese children and adolescents with age and sex specific body mass index (BMI) ≥ 99th percentile and 176 lean adults (BMI ≤ 15th percentile). 22 variants were confirmed by Sanger sequencing. Genotyping was performed in up to 705 independent obesity trios (extremely obese child and both parents), 243 extremely obese cases and 261 lean adults. Results and Conclusion We detected 20 different non-synonymous variants, one frame shift and one nonsense mutation in the 7 continuous genomic regions in study groups of different weight extremes. For SNP Arg695Cys (rs58983546) in TBC1D1 we detected nominal association with obesity (pTDT = 0.03 in 705 trios). Eleven of the variants were rare, thus were only detected heterozygously in up to ten individual(s) of the complete screening sample of 372 individuals. Two of them (in FTO and MSRA) were found in lean individuals, nine in extremely obese. In silico analyses of the 11 variants did not reveal functional implications for the mutations. Concordant with our hypothesis we detected a rare variant that potentially leads to loss of FTO function in a lean individual. For TBC1D1, in contrary to our hypothesis, the loss of function variant (Arg443Stop) was found in an obese individual. Functional in vitro studies are warranted.
Collapse
|
29
|
Minervini G, Quaglia F, Tosatto SCE. Computational analysis of prolyl hydroxylase domain-containing protein 2 (PHD2) mutations promoting polycythemia insurgence in humans. Sci Rep 2016; 6:18716. [PMID: 26754054 PMCID: PMC4709589 DOI: 10.1038/srep18716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 12/18/2022] Open
Abstract
Idiopathic erythrocytosis is a rare disease characterized by an increase in red blood cell mass due to mutations in proteins of the oxygen-sensing pathway, such as prolyl hydroxylase 2 (PHD2). Here, we present a bioinformatics investigation of the pathological effect of twelve PHD2 mutations related to polycythemia insurgence. We show that few mutations impair the PHD2 catalytic site, while most localize to non-enzymatic regions. We also found that most mutations do not overlap the substrate recognition site, suggesting a novel PHD2 binding interface. After a structural analysis of both binding partners, we suggest that this novel interface is responsible for PHD2 interaction with the LIMD1 tumor suppressor.
Collapse
Affiliation(s)
- Giovanni Minervini
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Federica Quaglia
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences and CRIBI Biotechnology Center, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.,CNR Institute of Neuroscience, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
30
|
Rodrigues C, Santos-Silva A, Costa E, Bronze-da-Rocha E. Performance of In Silico Tools for the Evaluation of UGT1A1 Missense Variants. Hum Mutat 2015; 36:1215-25. [PMID: 26377032 DOI: 10.1002/humu.22903] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 08/31/2015] [Indexed: 01/17/2023]
Abstract
Variations in the gene encoding uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) are particularly important because they have been associated with hyperbilirubinemia in Gilbert's and Crigler-Najjar syndromes as well as with changes in drug metabolism. Several variants associated with these phenotypes are nonsynonymous single-nucleotide polymorphisms (nsSNPs). Bioinformatics approaches have gained increasing importance in predicting the functional significance of these variants. This study was focused on the predictive ability of bioinformatics approaches to determine the pathogenicity of human UGT1A1 nsSNPs, which were previously characterized at the protein level by in vivo and in vitro studies. Using 16 Web algorithms, we evaluated 48 nsSNPs described in the literature and databases. Eight of these algorithms reached or exceeded 90% sensitivity and six presented a Matthews correlation coefficient above 0.46. The best-performing method was MutPred, followed by Sorting Intolerant from Tolerant (SIFT). The prediction measures varied significantly when predictors such us SIFT, polyphen-2, and Prediction of Pathological Mutations on Proteins were run with their native alignment generated by the tool, or with an input alignment that was strictly built with UGT1A1 orthologs and manually curated. Our results showed that the prediction performance of some methods based on sequence conservation analysis can be negatively affected when nsSNPs are positioned at the hypervariable or constant regions of UGT1A1 ortholog sequences.
Collapse
Affiliation(s)
- Carina Rodrigues
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Escola Superior de Saúde, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Alice Santos-Silva
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Elísio Costa
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Minervini G, Quaglia F, Tosatto SCE. Insights into the proline hydroxylase (PHD) family, molecular evolution and its impact on human health. Biochimie 2015; 116:114-24. [PMID: 26187473 DOI: 10.1016/j.biochi.2015.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/12/2015] [Indexed: 12/18/2022]
Abstract
PHDs (proline hydroxylases) are a small protein family found in all organisms, considered the central regulator of the molecular hypoxia response due to PHDs being completely inactivated under low oxygen concentration. At physiological oxygen concentration, PHDs drive the degradation of the HIF-1α (hypoxia-inducible factor 1-α), which is responsible for upregulating the expression of genes involved in the cellular response to hypoxia. Hypoxia is a common feature of most tumors, in particular during metastasis development. Indeed, cancer reacts by activating pathways promoting new blood vessel formation and activating strategies aimed to improve survival. In this scenario, the PHD family regulates the activation of HIF-1α and cell-cycle regulation. Several PHD mutations were found in cancer patients, underlining their importance for human health. Here, we propose a Bayesian model able to predict the pathological effect of human PHD mutations and their correlation with cancer outcome. The model was developed through an integrative in silico approach, where data collected from the literature has been coupled with sequence evolution and structural analysis. The model was used to assess 135 human PHD variants. Finally, bioinformatics characterization was used to demonstrate how few amino acid changes are able to explain the functional specialization of PHD family members and their physiological role in human health.
Collapse
Affiliation(s)
- Giovanni Minervini
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121, Padova, Italy
| | - Federica Quaglia
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121, Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121, Padova, Italy.
| |
Collapse
|
32
|
Compound RYR1 heterozygosity resulting in a complex phenotype of malignant hyperthermia susceptibility and a core myopathy. Neuromuscul Disord 2015; 25:567-76. [DOI: 10.1016/j.nmd.2015.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 11/19/2022]
|
33
|
Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 2015; 11:20140419. [PMID: 25165599 DOI: 10.1098/rsif.2014.0419] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
Collapse
Affiliation(s)
- Tobias Sikosek
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
34
|
Fine Mapping of a GWAS-Derived Obesity Candidate Region on Chromosome 16p11.2. PLoS One 2015; 10:e0125660. [PMID: 25955518 PMCID: PMC4425372 DOI: 10.1371/journal.pone.0125660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/17/2015] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Large-scale genome-wide association studies (GWASs) have identified 97 chromosomal loci associated with increased body mass index in population-based studies on adults. One of these SNPs, rs7359397, tags a large region (approx. 1MB) with high linkage disequilibrium (r2>0.7), which comprises five genes (SH2B1, APOBR, sulfotransferases: SULT1A1 and SULT1A2, TUFM). We had previously described a rare mutation in SH2B1 solely identified in extremely obese individuals but not in lean controls. METHODS The coding regions of the genes APOBR, SULT1A1, SULT1A2, and TUFM were screened for mutations (dHPLC, SSCP, Sanger re-sequencing) in 95 extremely obese children and adolescents. Detected non-synonymous variants were genotyped (TaqMan SNP Genotyping, MALDI TOF, PCR-RFLP) in independent large study groups (up to 3,210 extremely obese/overweight cases, 485 lean controls and 615 obesity trios). In silico tools were used for the prediction of potential functional effects of detected variants. RESULTS Except for TUFM we detected non-synonymous variants in all screened genes. Two polymorphisms rs180743 (APOBR p.Pro428Ala) and rs3833080 (APOBR p.Gly369_Asp370del9) showed nominal association to (extreme) obesity (uncorrected p = 0.003 and p = 0.002, respectively). In silico analyses predicted a functional implication for rs180743 (APOBR p.Pro428Ala). Both APOBR variants are located in the repetitive region with unknown function. CONCLUSION Variants in APOBR contributed as strongly as variants in SH2B1 to the association with extreme obesity in the chromosomal region chr16p11.2. In silico analyses implied no functional effect of several of the detected variants. Further in vitro or in vivo analyses on the functional implications of the obesity associated variants are warranted.
Collapse
|
35
|
Celeste FV, Vilboux T, Ciccone C, de Dios JK, Malicdan MCV, Leoyklang P, McKew JC, Gahl WA, Carrillo-Carrasco N, Huizing M. Mutation update for GNE gene variants associated with GNE myopathy. Hum Mutat 2015; 35:915-26. [PMID: 24796702 DOI: 10.1002/humu.22583] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/23/2014] [Indexed: 12/31/2022]
Abstract
The GNE gene encodes the rate-limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult-onset progressive myopathy. GNE myopathy-associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world-wide prevalence of GNE myopathy to be ∼4-21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorder's pathomechanism and for the success of ongoing treatment trials.
Collapse
Affiliation(s)
- Frank V Celeste
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Walters-Sen LC, Hashimoto S, Thrush DL, Reshmi S, Gastier-Foster JM, Astbury C, Pyatt RE. Variability in pathogenicity prediction programs: impact on clinical diagnostics. Mol Genet Genomic Med 2014; 3:99-110. [PMID: 25802880 PMCID: PMC4367082 DOI: 10.1002/mgg3.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 11/19/2022] Open
Abstract
Current practice by clinical diagnostic laboratories is to utilize online prediction programs to help determine the significance of novel variants in a given gene sequence. However, these programs vary widely in their methods and ability to correctly predict the pathogenicity of a given sequence change. The performance of 17 publicly available pathogenicity prediction programs was assayed using a dataset consisting of 122 credibly pathogenic and benign variants in genes associated with the RASopathy family of disorders and limb-girdle muscular dystrophy. Performance metrics were compared between the programs to determine the most accurate program for loss-of-function and gain-of-function mechanisms. No one program correctly predicted the pathogenicity of all variants analyzed. A major hindrance to the analysis was the lack of output from a significant portion of the programs. The best performer was MutPred, which had a weighted accuracy of 82.6% in the full dataset. Surprisingly, combining the results of the top three programs did not increase the ability to predict pathogenicity over the top performer alone. As the increasing number of sequence changes in larger datasets will require interpretation, the current study demonstrates that extreme caution must be taken when reporting pathogenicity based on statistical online protein prediction programs in the absence of functional studies.
Collapse
Affiliation(s)
| | - Sayaka Hashimoto
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital Columbus, Ohio
| | - Devon Lamb Thrush
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University College of Medicine Columbus, Ohio
| | - Shalini Reshmi
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital Columbus, Ohio ; Department of Pathology, The Ohio State University College of Medicine Columbus, Ohio
| | - Julie M Gastier-Foster
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital Columbus, Ohio ; Department of Pediatrics, The Ohio State University College of Medicine Columbus, Ohio ; Department of Pathology, The Ohio State University College of Medicine Columbus, Ohio
| | - Caroline Astbury
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital Columbus, Ohio ; Department of Pathology, The Ohio State University College of Medicine Columbus, Ohio
| | - Robert E Pyatt
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital Columbus, Ohio ; Department of Pathology, The Ohio State University College of Medicine Columbus, Ohio
| |
Collapse
|
37
|
Magesh R, George Priya Doss C. Computational pipeline to identify and characterize functional mutations in ornithine transcarbamylase deficiency. 3 Biotech 2014; 4:621-634. [PMID: 28324312 PMCID: PMC4235886 DOI: 10.1007/s13205-014-0216-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/01/2014] [Indexed: 11/28/2022] Open
Abstract
Ornithine transcarbamylase (OTC) (E.C. 2.1.3.3) is one of the enzymes in the urea cycle, which involves in a sequence of reactions in the liver cells. During protein assimilation in our body surplus nitrogen is made, this open nitrogen is altered into urea and expelled out of the body by kidneys, in this cycle OTC helps in the conversion of free toxic nitrogen into urea. Ornithine transcarbamylase deficiency (OTCD: OMIM#311250) is triggered by mutation in this OTC gene. To date more than 200 mutations have been noted. Mutation in OTC gene indicates alteration in enzyme production, which upsets the ability to carry out the chemical reaction. The computational analysis was initiated to identify the deleterious nsSNPs in OTC gene in causing OTCD using five different computational tools such as SIFT, PolyPhen 2, I-Mutant 3, SNPs&Go, and PhD-SNP. Studies on the molecular basis of OTC gene and OTCD have been done partially till date. Hence, in silico categorization of functional SNPs in OTC gene can provide valuable insight in near future in the diagnosis and treatment of OTCD.
Collapse
Affiliation(s)
- R Magesh
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra University, Chennai, 600116, India
| | - C George Priya Doss
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, India.
| |
Collapse
|
38
|
Riera C, Lois S, Domínguez C, Fernandez-Cadenas I, Montaner J, Rodríguez-Sureda V, de la Cruz X. Molecular damage in Fabry disease: characterization and prediction of alpha-galactosidase A pathological mutations. Proteins 2014; 83:91-104. [PMID: 25382311 DOI: 10.1002/prot.24708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/25/2014] [Accepted: 10/18/2014] [Indexed: 12/12/2022]
Abstract
Loss-of-function mutations of the enzyme alpha-galactosidase A (GLA) causes Fabry disease (FD), that is a rare and potentially fatal disease. Identification of these pathological mutations by sequencing is important because it allows an early treatment of the disease. However, before taking any treatment decision, if the mutation identified is unknown, we first need to establish if it is pathological or not. General bioinformatic tools (PolyPhen-2, SIFT, Condel, etc.) can be used for this purpose, but their performance is still limited. Here we present a new tool, specifically derived for the assessment of GLA mutations. We first compared mutations of this enzyme known to cause FD with neutral sequence variants, using several structure and sequence properties. Then, we used these properties to develop a family of prediction methods adapted to different quality requirements. Trained and tested on a set of known Fabry mutations, our methods have a performance (Matthews correlation: 0.56-0.72) comparable or better than that of the more complex method, Polyphen-2 (Matthews correlation: 0.61), and better than those of SIFT (Matthews correl.: 0.54) and Condel (Matthews correl.: 0.51). This result is validated in an independent set of 65 pathological mutations, for which our method displayed the best success rate (91.0%, 87.7%, and 73.8%, for our method, PolyPhen-2 and SIFT, respectively). These data confirmed that our specific approach can effectively contribute to the identification of pathological mutations in GLA, and therefore enhance the use of sequence information in the identification of undiagnosed Fabry patients.
Collapse
Affiliation(s)
- Casandra Riera
- Research Unit in Translational Bioinformatics, Institut de Recerca Hospital Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genet Med 2014; 17:651-9. [PMID: 25394172 PMCID: PMC4430466 DOI: 10.1038/gim.2014.166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Congenital hypogonadotropic hypogonadism (CHH) and split hand/foot malformation (SHFM) are two rare genetic conditions. Here we report a clinical entity comprising the two. METHODS We identified patients with CHH and SHFM through international collaboration. Probands and available family members underwent phenotyping and screening for FGFR1 mutations. The impact of identified mutations was assessed by sequence- and structure-based predictions and/or functional assays. RESULTS We identified eight probands with CHH with (n = 3; Kallmann syndrome) or without anosmia (n = 5) and SHFM, seven of whom (88%) harbor FGFR1 mutations. Of these seven, one individual is homozygous for p.V429E and six individuals are heterozygous for p.G348R, p.G485R, p.Q594*, p.E670A, p.V688L, or p.L712P. All mutations were predicted by in silico analysis to cause loss of function. Probands with FGFR1 mutations have severe gonadotropin-releasing hormone deficiency (absent puberty and/or cryptorchidism and/or micropenis). SHFM in both hands and feet was observed only in the patient with the homozygous p.V429E mutation; V429 maps to the fibroblast growth factor receptor substrate 2α binding domain of FGFR1, and functional studies of the p.V429E mutation demonstrated that it decreased recruitment and phosphorylation of fibroblast growth factor receptor substrate 2α to FGFR1, thereby resulting in reduced mitogen-activated protein kinase signaling. CONCLUSION FGFR1 should be prioritized for genetic testing in patients with CHH and SHFM because the likelihood of a mutation increases from 10% in the general CHH population to 88% in these patients.
Collapse
|
40
|
Dering C, König IR, Ramsey LB, Relling MV, Yang W, Ziegler A. A comprehensive evaluation of collapsing methods using simulated and real data: excellent annotation of functionality and large sample sizes required. Front Genet 2014; 5:323. [PMID: 25309579 PMCID: PMC4164031 DOI: 10.3389/fgene.2014.00323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 01/23/2023] Open
Abstract
The advent of next generation sequencing (NGS) technologies enabled the investigation of the rare variant-common disease hypothesis in unrelated individuals, even on the genome-wide level. Analysis of this hypothesis requires tailored statistical methods as single marker tests fail on rare variants. An entire class of statistical methods collapses rare variants from a genomic region of interest (ROI), thereby aggregating rare variants. In an extensive simulation study using data from the Genetic Analysis Workshop 17 we compared the performance of 15 collapsing methods by means of a variety of pre-defined ROIs regarding minor allele frequency thresholds and functionality. Findings of the simulation study were additionally confirmed by a real data set investigating the association between methotrexate clearance and the SLCO1B1 gene in patients with acute lymphoblastic leukemia. Our analyses showed substantially inflated type I error levels for many of the proposed collapsing methods. Only four approaches yielded valid type I errors in all considered scenarios. None of the statistical tests was able to detect true associations over a substantial proportion of replicates in the simulated data. Detailed annotation of functionality of variants is crucial to detect true associations. These findings were confirmed in the analysis of the real data. Recent theoretical work showed that large power is achieved in gene-based analyses only if large sample sizes are available and a substantial proportion of causing rare variants is present in the gene-based analysis. Many of the investigated statistical approaches use permutation requiring high computational cost. There is a clear need for valid, powerful and fast to calculate test statistics for studies investigating rare variants.
Collapse
Affiliation(s)
- Carmen Dering
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Lübeck, Germany
| | - Inke R König
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Lübeck, Germany
| | - Laura B Ramsey
- Pharmaceutical Department, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Mary V Relling
- Pharmaceutical Department, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Wenjian Yang
- Pharmaceutical Department, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Andreas Ziegler
- Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein Lübeck, Germany ; Zentrum für Klinische Studien, Universität zu Lübeck Lübeck, Germany ; School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal Durban, South Africa
| |
Collapse
|
41
|
Delaveri A, Rapti A, Poulou M, Fylaktou E, Tsipi M, Roussos C, Makrythanasis P, Kanavakis E, Tzetis M. BTNL2 gene SNPs as a contributing factor to sarcoidosis pathogenesis in a cohort of Greek patients. Meta Gene 2014; 2:619-30. [PMID: 25606445 PMCID: PMC4287805 DOI: 10.1016/j.mgene.2014.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/13/2022] Open
Abstract
Sarcoidosis is a multisystemic granulomatous disease of unknown etiology that primarily affects adults between the ages of 20 and 40 years old. It is characterized by the activation of Th1 lymphocytes resulting in the production of inflammatory cytokines and the formation of noncaseating epithelioid cell granulomas in affected tissues. The lungs and lymphatic system are the ones most frequently affected. The disease usually presents spontaneous remission in the first two years and, in a few patients, the disease progresses to pulmonary fibrosis or other fatal complications depending on the affected organ. The pathogenesis of sarcoidosis is still not clearly defined, and is considered an interaction between the environment and risk alleles in many genes. The present case control study consisted of 146 Greek patients with sarcoidosis and 90 healthy volunteers from the same ethnic group. The coding and neighboring intronic regions of the BTNL2 gene were sequenced and risk alleles were compared amongst the two groups. Thirty-seven different variants were detected from which 12 were synonymous substitutions and 25 non-synonymous. With the help of in silico tools (SIFT, PolyPhen, PROVEAN, PMut and EX_SKIP), 13 variants were classified as possible pathological risk variants including 4 novel ones. The most common risk variants contributing to phenotypic modulation of sarcoidosis were p.S360G and p.S334L, with the latter contributing to a more severe disease stage with extra-pulmonary manifestations such as skin granulomas and relapses being more common. Thirteen pathological risk variants were discovered in BTNL2 gene in sarcoidosis patients. The common risk variant p.S360G was found in cases (37.67%) and controls (30%). The 2nd most common variant p.S334L was found in cases (16.43%) and controls (12.22%). Six novel variants were detected with 4 deemed pathological. Coinheritance of common and novel variants affected the final clinical phenotype.
Collapse
Affiliation(s)
- Aikaterini Delaveri
- Department of Medical Genetics, Medical School, University of Athens, Greece
| | - Aggeliki Rapti
- 2nd Department of Respiratory Medicine, Sotiria Chest Diseases Hospital, Athens, Greece
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, University of Athens, Greece
| | - Eirini Fylaktou
- Department of Medical Genetics, Medical School, University of Athens, Greece
| | - Maria Tsipi
- Department of Medical Genetics, Medical School, University of Athens, Greece
| | - Charis Roussos
- 2nd Department of Respiratory Medicine, Sotiria Chest Diseases Hospital, Athens, Greece
| | - Periklis Makrythanasis
- Department of Medical Genetics, Medical School, University of Athens, Greece ; Department of Genetic Medicine and Development, University of Geneva, Switzerland
| | - Emmanuel Kanavakis
- Department of Medical Genetics, Medical School, University of Athens, Greece ; Research Institute for the Study of Genetic and Malignant Disorders in Childhood, "Aghia Sophia, Children's Hospital," Athens, Greece
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, University of Athens, Greece
| |
Collapse
|
42
|
Handt M, Epplen A, Hoffjan S, Mese K, Epplen JT, Dekomien G. Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening. Mol Cell Probes 2014; 28:279-83. [PMID: 25171808 DOI: 10.1016/j.mcp.2014.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 01/05/2023]
Abstract
Fragile X syndrome (FXS) is a common cause of intellectual disability, developmental delay and autism spectrum disorders. This syndrome is due to a functional loss of the FMR1 gene product FMRP, and, in most cases, it is caused by CGG repeat expansion in the FMR1 promoter. Yet, also other FMR1 mutations may cause a FXS-like phenotype. Since standard molecular testing does not include the analysis of the FMR1 coding region, the prevalence of point mutations causing FXS is not well known. Here, high resolution melting (HRM) was used to screen for FMR1 gene mutations in 508 males with clinical signs of mental retardation and developmental delay, but without CGG and GCC repeat expansions in the FMR1 gene and AFF2 genes, respectively. Sequence variations were identified by HRM analysis and verified by direct DNA sequencing. Two novel missense mutations (p.Gly482Ser in one patient and p.Arg534His in two unrelated patients), one intronic and two 3'-untranslated region (UTR) variations were identified in the FMR1 gene. Missense mutations in the FMR1 gene might account for a considerable proportion of cases in male patients with FXS-related symptoms, such as those linked to mental retardation and developmental delay.
Collapse
Affiliation(s)
- Maximilian Handt
- Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - Andrea Epplen
- Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Sabine Hoffjan
- Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Kemal Mese
- Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - Jörg T Epplen
- Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany; Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany
| | - Gabriele Dekomien
- Human Genetics, Ruhr-University, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
43
|
Jia M, Yang B, Li Z, Shen H, Song X, Gu W. Computational analysis of functional single nucleotide polymorphisms associated with the CYP11B2 gene. PLoS One 2014; 9:e104311. [PMID: 25102047 PMCID: PMC4125216 DOI: 10.1371/journal.pone.0104311] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/07/2014] [Indexed: 12/17/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variations in humans and play a major role in the genetics of human phenotype variation and the genetic basis of human complex diseases. Recently, there is considerable interest in understanding the possible role of the CYP11B2 gene with corticosterone methyl oxidase deficiency, primary aldosteronism, and cardio-cerebro-vascular diseases. Hence, the elucidation of the function and molecular dynamic behavior of CYP11B2 mutations is crucial in current genomics. In this study, we investigated the pathogenic effect of 51 nsSNPs and 26 UTR SNPs in the CYP11B2 gene through computational platforms. Using a combination of SIFT, PolyPhen, I-Mutant Suite, and ConSurf server, four nsSNPs (F487V, V129M, T498A, and V403E) were identified to potentially affect the structure, function, and activity of the CYP11B2 protein. Furthermore, molecular dynamics simulation and structure analyses also confirmed the impact of these nsSNPs on the stability and secondary properties of the CYP11B2 protein. Additionally, utilizing the UTRscan, MirSNP, PolymiRTS and miRNASNP, three SNPs in the 3'UTR region were predicted to exhibit a pattern change in the upstream open reading frames (uORF), and eight microRNA binding sites were found to be highly affected due to 3'UTR SNPs. This cataloguing of deleterious SNPs is essential for narrowing down the number of CYP11B2 mutations to be screened in genetic association studies and for a better understanding of the functional and structural aspects of the CYP11B2 protein.
Collapse
Affiliation(s)
- Minyue Jia
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Boyun Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyi Li
- Department of Urology, the Second Affiliated Hospital (Binjiang Branch) Zhejiang University School of Medicine, Hangzhou Binjiang Hospital, Hangzhou, China
| | - Huiling Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Song
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Gu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Fechter K, Porollo A. MutaCYP: Classification of missense mutations in human cytochromes P450. BMC Med Genomics 2014; 7:47. [PMID: 25073475 PMCID: PMC4119178 DOI: 10.1186/1755-8794-7-47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytochrome P450 monooxygenases (CYPs) represent a large and diverse family of enzymes involved in various biological processes in humans. Individual genome sequencing has revealed multiple mutations in human CYPs, and many missense mutations have been associated with variety of diseases. Since 3D structures are not resolved for most human CYPs, there is a need for a reliable sequence-based prediction that discriminates benign and disease causing mutations. METHODS A new prediction method (MutaCYP) has been developed for scoring de novo missense mutations to have a deleterious effect. The method utilizes only five features, all of which are sequence-based: predicted relative solvent accessibility (RSA), variance of predicted RSA among the residues in close sequence proximity, Z-score of Shannon entropy for a given position, difference in similarity scores and weighted difference in size between wild type and new amino acids. The method is based on a single neural network. RESULTS MutaCYP achieves MCC = 0.70, Q2 = 88.52%, Recall = 93.40% with Precision = 91.09%, and AUC = 0.909. Comparative evaluation with other existing methods indicates that MutaCYP outperforms SIFT and PolyPhen-2. Predictions by MutaCYP appear to be orthogonal to predictions by the evaluated methods. Potential issues on reliability of annotations of mutations in the existing databases are discussed. CONCLUSIONS A new accurate method, MutaCYP, for classification of missense mutations in human CYPs is presented. The prediction model consists of only five sequence-based features, including a real-valued predicted relative solvent accessibility. The method is publicly available at http://research.cchmc.org/MutaSense/.
Collapse
Affiliation(s)
| | - Aleksey Porollo
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
45
|
Pousada G, Baloira A, Vilariño C, Cifrian JM, Valverde D. Novel mutations in BMPR2, ACVRL1 and KCNA5 genes and hemodynamic parameters in patients with pulmonary arterial hypertension. PLoS One 2014; 9:e100261. [PMID: 24936649 PMCID: PMC4061078 DOI: 10.1371/journal.pone.0100261] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/23/2014] [Indexed: 12/02/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare and progressive vascular disorder characterized by increased pulmonary vascular resistance and right heart failure. The aim of this study was to analyze the Bone Morphogenetic Protein Receptor 2 (BMPR2), Activin A type II receptor like kinase 1 (ALK1/ACVRL1) and potassium voltage-gated channel, shakerrelated subfamily, member 5 (KCNA5) genes in patients with idiopathic and associated PAH. Correlation among pathogenic mutations and clinical and functional parameters was further analyzed. Methods and Results Forty one patients and fifty controls were included in this study. Analysis of BMPR2, ACVRL1 and KCNA5 genes was performed by polymerase chain reaction (PCR) and direct sequencing. Fifty one nucleotide changes were detected in these genes in 40 of the 41 patients; only 22 of these changes, which were classified as pathogenic, have been detected in 21 patients (51.2%). Ten patients (62.5%) with idiopathic PAH and 10 (40%) with associated PAH showed pathogenic mutations in some of the three genes. Several clinical and hemodynamics parameters showed significant differences between carriers and non-carriers of mutations, being more severe in carriers: mean pulmonary artery pressure (p = 0.043), pulmonary vascular resistence (p = 0.043), cardiac index (p = 0.04) and 6 minute walking test (p = 0.02). This differences remained unchanged after adjusting for PAH type (idiopathic vs non idiopathic). Conclusions Pathogenic mutations in BMPR2 gene are frequent in patients with idiopathic and associated PAH group I. Mutations in ACVRL1 and KCNA5 are less frequent. The presence of these mutations seems to increase the severity of the disease.
Collapse
Affiliation(s)
- Guillermo Pousada
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
| | - Adolfo Baloira
- Respiratory Division, Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
| | - Carlos Vilariño
- Respiratory Division, Complejo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Jose Manuel Cifrian
- Respiratory Division, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Instituto de Investigación Biomédica de Vigo (IBIV), Vigo, Spain
- * E-mail:
| |
Collapse
|
46
|
Application of Massively Parallel Sequencing in the Clinical Diagnostic Testing of Inherited Cardiac Conditions. Med Sci (Basel) 2014. [DOI: 10.3390/medsci2020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
47
|
Panda R, P.K. S. Computational identification and analysis of functional polymorphisms involved in the activation and detoxification genes implicated in endometriosis. Gene 2014; 542:89-97. [DOI: 10.1016/j.gene.2014.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/28/2014] [Accepted: 03/29/2014] [Indexed: 02/09/2023]
|
48
|
Computational and experimental approaches to reveal the effects of single nucleotide polymorphisms with respect to disease diagnostics. Int J Mol Sci 2014; 15:9670-717. [PMID: 24886813 PMCID: PMC4100115 DOI: 10.3390/ijms15069670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 12/25/2022] Open
Abstract
DNA mutations are the cause of many human diseases and they are the reason for natural differences among individuals by affecting the structure, function, interactions, and other properties of DNA and expressed proteins. The ability to predict whether a given mutation is disease-causing or harmless is of great importance for the early detection of patients with a high risk of developing a particular disease and would pave the way for personalized medicine and diagnostics. Here we review existing methods and techniques to study and predict the effects of DNA mutations from three different perspectives: in silico, in vitro and in vivo. It is emphasized that the problem is complicated and successful detection of a pathogenic mutation frequently requires a combination of several methods and a knowledge of the biological phenomena associated with the corresponding macromolecules.
Collapse
|
49
|
Wu Y, Jing R, Jiang L, Jiang Y, Kuang Q, Ye L, Yang L, Li Y, Li M. Combination use of protein–protein interaction network topological features improves the predictive scores of deleterious non-synonymous single-nucleotide polymorphisms. Amino Acids 2014; 46:2025-35. [PMID: 24849655 DOI: 10.1007/s00726-014-1760-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 05/03/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Yiming Wu
- College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dominguez-Valentin M, Drost M, Therkildsen C, Rambech E, Ehrencrona H, Angleys M, Lau Hansen T, de Wind N, Nilbert M, Juel Rasmussen L. Functional implications of the p.Cys680Arg mutation in the MLH1 mismatch repair protein. Mol Genet Genomic Med 2014; 2:352-5. [PMID: 25077178 PMCID: PMC4113276 DOI: 10.1002/mgg3.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 12/15/2022] Open
Abstract
In clinical genetic diagnostics, it is difficult to predict whether genetic mutations that do not greatly alter the primary sequence of the encoded protein causing unknown functional effects on cognate proteins lead to development of disease. Here, we report the clinical identification of c.2038 T>C missense mutation in exon 18 of the human MLH1 gene and biochemically characterization of the p.Cys680Arg mutant MLH1 protein to implicate it in the pathogenicity of the Lynch syndrome (LS). We show that the mutation is deficient in DNA mismatch repair and, therefore, contributing to LS in the carriers.
Collapse
Affiliation(s)
- Mev Dominguez-Valentin
- Department of Oncology, Institute for Clinical Sciences, Lund University 22185, Lund, Sweden ; The Danish HNPCC-register, Clinical Research Centre, Hvidovre University Hospital, Copenhagen University Hvidovre, Denmark
| | - Mark Drost
- Department of Toxicogenetics, Leiden University Medical Center Leiden, The Netherlands
| | - Christina Therkildsen
- The Danish HNPCC-register, Clinical Research Centre, Hvidovre University Hospital, Copenhagen University Hvidovre, Denmark
| | - Eva Rambech
- Department of Oncology, Institute for Clinical Sciences, Lund University 22185, Lund, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University Lund, Sweden
| | - Maria Angleys
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen DK-2200, Copenhagen N, Denmark
| | - Thomas Lau Hansen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen DK-2200, Copenhagen N, Denmark
| | - Niels de Wind
- Department of Toxicogenetics, Leiden University Medical Center Leiden, The Netherlands
| | - Mef Nilbert
- Department of Oncology, Institute for Clinical Sciences, Lund University 22185, Lund, Sweden ; The Danish HNPCC-register, Clinical Research Centre, Hvidovre University Hospital, Copenhagen University Hvidovre, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen DK-2200, Copenhagen N, Denmark
| |
Collapse
|