1
|
Szodorai E, Hevesi Z, Wagner L, Hökfelt TGM, Harkany T, Schnell R. A hydrophobic groove in secretagogin allows for alternate interactions with SNAP-25 and syntaxin-4 in endocrine tissues. Proc Natl Acad Sci U S A 2024; 121:e2309211121. [PMID: 38593081 PMCID: PMC11032447 DOI: 10.1073/pnas.2309211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Vesicular release of neurotransmitters and hormones relies on the dynamic assembly of the exocytosis/trans-SNARE complex through sequential interactions of synaptobrevins, syntaxins, and SNAP-25. Despite SNARE-mediated release being fundamental for intercellular communication in all excitable tissues, the role of auxiliary proteins modulating the import of reserve vesicles to the active zone, and thus, scaling repetitive exocytosis remains less explored. Secretagogin is a Ca2+-sensor protein with SNAP-25 being its only known interacting partner. SNAP-25 anchors readily releasable vesicles within the active zone, thus being instrumental for 1st phase release. However, genetic deletion of secretagogin impedes 2nd phase release instead, calling for the existence of alternative protein-protein interactions. Here, we screened the secretagogin interactome in the brain and pancreas, and found syntaxin-4 grossly overrepresented. Ca2+-loaded secretagogin interacted with syntaxin-4 at nanomolar affinity and 1:1 stoichiometry. Crystal structures of the protein complexes revealed a hydrophobic groove in secretagogin for the binding of syntaxin-4. This groove was also used to bind SNAP-25. In mixtures of equimolar recombinant proteins, SNAP-25 was sequestered by secretagogin in competition with syntaxin-4. Kd differences suggested that secretagogin could shape unidirectional vesicle movement by sequential interactions, a hypothesis supported by in vitro biological data. This mechanism could facilitate the movement of transport vesicles toward release sites, particularly in the endocrine pancreas where secretagogin, SNAP-25, and syntaxin-4 coexist in both α- and β-cells. Thus, secretagogin could modulate the pace and fidelity of vesicular hormone release by differential protein interactions.
Collapse
Affiliation(s)
- Edit Szodorai
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, ViennaA-1090, Austria
| | - Tomas G. M. Hökfelt
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| | - Tibor Harkany
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Robert Schnell
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| |
Collapse
|
2
|
Mazumder M, Kumar S, Kumar D, Bhattacharya A, Gourinath S. Machine learning-based modulation of Ca 2+-binding affinity in EF-hand proteins and comparative structural insights into site-specific cooperative binding. Int J Biol Macromol 2023; 248:125866. [PMID: 37473887 DOI: 10.1016/j.ijbiomac.2023.125866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Ca2+-binding proteins are present in almost all living organisms and different types display different levels of binding affinities for the cation. Here, we report two new scoring schemes enabling the user to estimate and manipulate the calcium binding affinities in EF hand containing proteins. To validate this, we designed a unique EF-hand loop capable of binding calcium with high affinity by altering five residues. The N-terminal domain of Entamoeba histolytica calcium-binding protein1 (NtEhCaBP1) is used for site-directed mutagenesis to incorporate the designed loop sequence into the second EF-hand motif of this protein, referred as Nt-EhCaBP1-EF2 mutant. The binding isotherms calculated using ITC calorimetry showed that Nt-EhCaBP1-EF2 mutant site binds Ca2+ with higher affinity than Wt-Nt-EhCaBP1, by ∼600 times. The crystal structure of the mutant displayed more compact Ca2+-coordination spheres in both of its EF loops than the structure of the wildtype protein. The compact coordination sphere of EF-2 causes the bend in the helix-3, which leads to the formation of unexpected hexamer of NtEhCaBP1-EF2 mutant structure. Further dynamic correlation analysis revealed that the mutation in the second EF loop changed the entire residue network of the monomer, resulting in stronger coordination of Ca2+ even in another EF-hand loop.
Collapse
Affiliation(s)
- Mohit Mazumder
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Pine Biotech, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Sanjeev Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232-0146, USA
| | - Devbrat Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Ashoka University, Rajiv Gandhi Education City, Sonipat, Haryana 131029, India
| | - S Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Chidananda AH, Khandelwal R, Jhamkhindikar A, Pawar AD, Sharma AK, Sharma Y. Secretagogin is a Ca 2+-dependent stress-responsive chaperone that may also play a role in aggregation-based proteinopathies. J Biol Chem 2022; 298:102285. [PMID: 35870554 PMCID: PMC9425029 DOI: 10.1016/j.jbc.2022.102285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Secretagogin (SCGN) is a three-domain hexa-EF-hand Ca2+-binding protein that plays a regulatory role in the release of several hormones. SCGN is expressed largely in pancreatic β-cells, certain parts of the brain, and also in neuroendocrine tissues. The expression of SCGN is altered in several diseases, such as diabetes, cancers, and neurodegenerative disorders; however, the precise associations that closely link SCGN expression to such pathophysiologies are not known. In this work, we report that SCGN is an early responder to cellular stress, and SCGN expression is temporally upregulated by oxidative stress and heat shock. We show the overexpression of SCGN efficiently prevents cells from heat shock and oxidative damage. We further demonstrate that in the presence of Ca2+, SCGN efficiently prevents the aggregation of a broad range of model proteins in vitro. Small-angle X-ray scattering (BioSAXS) studies further reveal that Ca2+ induces the conversion of a closed compact apo-SCGN conformation into an open extended holo-SCGN conformation via multistate intermediates, consistent with the augmentation of chaperone activity of SCGN. Furthermore, isothermal titration calorimetry establishes that Ca2+ enables SCGN to bind α-synuclein and insulin, two target proteins of SCGN. Altogether, our data not only demonstrate that SCGN is a Ca2+-dependent generic molecular chaperone involved in protein homeostasis with broad substrate specificity but also elucidate the origin of its altered expression in several cancers. We describe a plausible mechanism of how perturbations in Ca2+ homeostasis and/or deregulated SCGN expression would hasten the process of protein misfolding, which is a feature of many aggregation-based proteinopathies.
Collapse
Affiliation(s)
- Amrutha H Chidananda
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aditya Jhamkhindikar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India
| | - Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Indian Institute of Scientific and Education Research (IISER), Berhampur-760010, India
| | - Anand K Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India.
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India; Indian Institute of Scientific and Education Research (IISER), Berhampur-760010, India.
| |
Collapse
|
4
|
Basu S, Mitra S, Singh O, Chandramohan B, Singru PS. Secretagogin in the brain and pituitary of the catfish, Clarias batrachus: Molecular characterization and regulation by insulin. J Comp Neurol 2022; 530:1743-1772. [PMID: 35322425 DOI: 10.1002/cne.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Secretagogin (scgn), is a novel hexa EF-hand, phylogenetically conserved calcium-binding protein. It serves as Ca2+ sensor and participates in Ca2+ -signaling and neuroendocrine regulation in mammals. However, its relevance in the brain of non-mammalian vertebrates has largely remained unexplored. To address this issue, we studied the cDNA encoding scgn, scgn mRNA expression, and distribution of scgn-equipped elements in the brain and pituitary of a teleost, Clarias batrachus (cb). The cbscgn cDNA consists of three transcripts (T) variants: T1 (2185 bp), T2 (2151 bp) and T3 (2060 bp). While 816 bp ORF in T1 and T2 encodes highly conserved six EF-hand 272 aa protein fully capable of Ca2+ -binding, 726-bp ORF in T3 encodes 242 aa protein. The T1 showed >90% and >70% identity with scgn of catfishes, and other teleosts and mammals, respectively. The T1-mRNA was widely expressed in the brain and pituitary, while the expression of T3 was restricted to the telencephalon. Application of the anti-scgn antiserum revealed a ∼32 kDa scgn-immunoreactive (scgn-i) band (known molecular weight of scgn) in the forebrain tissue, and immunohistochemically labeled neurons in the olfactory epithelium and bulb, telencephalon, preoptic area, hypothalamus, thalamus, and hindbrain. In the pituitary, scgn-i cells were seen in the pars distalis and intermedia. Insulin is reported to regulate scgn mRNA in the mammalian hippocampus, and feeding-related neuropeptides in the telencephalon of teleost. Intracranial injection of insulin significantly increased T1-mRNA expression and scgn-immunoreactivity in the telencephalon. We suggest that scgn may be an important player in the regulation of olfactory, neuroendocrine system, and energy balance functions in C. batrachus.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Bathrachalam Chandramohan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
5
|
Structural and mechanistic insights into secretagogin-mediated exocytosis. Proc Natl Acad Sci U S A 2020; 117:6559-6570. [PMID: 32156735 DOI: 10.1073/pnas.1919698117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Secretagogin (SCGN) is a hexa-EF-hand protein that is highly expressed in the pancreas, brain, and gastrointestinal tract. SCGN is known to modulate regulated exocytosis in multiple cell lines and tissues; however, its exact functions and underlying mechanisms remain unclear. Here, we report that SCGN interacts with the plasma membrane SNARE SNAP-25, but not the assembled SNARE complex, in a Ca2+-dependent manner. The crystal structure of SCGN in complex with a SNAP-25 fragment reveals that SNAP-25 adopts a helical structure and binds to EF-hands 5 and 6 of SCGN. SCGN strongly inhibits SNARE-mediated vesicle fusion in vitro by binding to SNAP-25. SCGN promotes the plasma membrane localization of SNAP-25, but not Syntaxin-1a, in SCGN-expressing cells. Finally, SCGN controls neuronal growth and brain development in zebrafish, likely via interacting with SNAP-25 or its close homolog, SNAP-23. Our results thus provide insights into the regulation of SNAREs and suggest that aberrant synapse functions underlie multiple neurological disorders caused by SCGN deficiency.
Collapse
|
6
|
Mittal M, Hasan M, Balagunaseelan N, Fauland A, Wheelock C, Rådmark O, Haeggström JZ, Rinaldo-Matthis A. Investigation of calcium-dependent activity and conformational dynamics of zebra fish 12-lipoxygenase. Biochim Biophys Acta Gen Subj 2017; 1861:2099-2111. [DOI: 10.1016/j.bbagen.2017.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 11/26/2022]
|
7
|
Lee JJ, Yang SY, Park J, Ferrell JE, Shin DH, Lee KJ. Calcium Ion Induced Structural Changes Promote Dimerization of Secretagogin, Which Is Required for Its Insulin Secretory Function. Sci Rep 2017; 7:6976. [PMID: 28765527 PMCID: PMC5539292 DOI: 10.1038/s41598-017-07072-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/16/2017] [Indexed: 11/29/2022] Open
Abstract
Secretagogin (SCGN), a hexa EF-hand calcium binding protein, plays key roles in insulin secretion in pancreatic β-cells. It is not yet understood how the binding of Ca2+ to human SCGN (hSCGN) promotes secretion. Here we have addressed this question, using mass spectrometry combined with a disulfide searching algorithm DBond. We found that the binding of Ca2+ to hSCGN promotes the dimerization of hSCGN via the formation of a Cys193-Cys193 disulfide bond. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics studies revealed that Ca2+ binding to the EF-hands of hSCGN induces significant structural changes that affect the solvent exposure of N-terminal region, and hence the redox sensitivity of the Cys193 residue. These redox sensitivity changes were confirmed using biotinylated methyl-3-nitro-4-(piperidin-1-ylsulfonyl) benzoate (NPSB-B), a chemical probe that specifically labels reactive cysteine sulfhydryls. Furthermore, we found that wild type hSCGN overexpression promotes insulin secretion in pancreatic β cells, while C193S-hSCGN inhibits it. These findings suggest that insulin secretion in pancreatic cells is regulated by Ca2+ and ROS signaling through Ca2+-induced structural changes promoting dimerization of hSCGN.
Collapse
Affiliation(s)
- Jae-Jin Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Seo-Yun Yang
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Jimin Park
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - James E Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5174, USA
| | - Dong-Hae Shin
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
8
|
Malenczyk K, Girach F, Szodorai E, Storm P, Segerstolpe Å, Tortoriello G, Schnell R, Mulder J, Romanov RA, Borók E, Piscitelli F, Di Marzo V, Szabó G, Sandberg R, Kubicek S, Lubec G, Hökfelt T, Wagner L, Groop L, Harkany T. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J 2017; 36:2107-2125. [PMID: 28637794 PMCID: PMC5510001 DOI: 10.15252/embj.201695347] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 04/27/2017] [Accepted: 05/09/2017] [Indexed: 12/20/2022] Open
Abstract
Ca2+-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in β-cells from diabetic donors. Amongst these, pharmacological probing identifies Ca2+-permeable transient receptor potential vanilloid type 1 channels (TRPV1) as potent inducers of secretagogin expression through recruitment of Sp1 transcription factors. Accordingly, agonist stimulation of TRPV1s fails to rescue insulin release from pancreatic islets of glucose intolerant secretagogin knock-out(-/-) mice. However, instead of merely impinging on the SNARE machinery, reduced insulin availability in secretagogin-/- mice is due to β-cell loss, which is underpinned by the collapse of protein folding and deregulation of secretagogin-dependent USP9X deubiquitinase activity. Therefore, and considering the desensitization of TRPV1s in diabetic pancreata, a TRPV1-to-secretagogin regulatory axis seems critical to maintain the structural integrity and signal competence of β-cells.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fatima Girach
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Petter Storm
- Department of Clinical Sciences, Diabetes and Endocrinology CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Åsa Segerstolpe
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | | | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Roman A Romanov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erzsébet Borók
- Department of Cognitive Neurobiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli Naples, Italy
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Rickard Sandberg
- Integrated Cardio Metabolic Centre, Karolinska Institutet, Huddinge, Sweden
| | - Stefan Kubicek
- CeMM Research Centre for Molecular Medicine, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ludwig Wagner
- University Clinic for Internal Medicine III, General Hospital Vienna, Vienna, Austria
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology CRC, Skåne University Hospital Malmö, Malmö, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Khandelwal R, Sharma AK, Chadalawada S, Sharma Y. Secretagogin Is a Redox-Responsive Ca2+ Sensor. Biochemistry 2017; 56:411-420. [DOI: 10.1021/acs.biochem.6b00761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Swathi Chadalawada
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
10
|
Sanagavarapu K, Weiffert T, Ní Mhurchú N, O'Connell D, Linse S. Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation. PLoS One 2016; 11:e0165709. [PMID: 27812162 PMCID: PMC5094748 DOI: 10.1371/journal.pone.0165709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Secretagogin is a calcium-sensor protein with six EF-hands. It is widely expressed in neurons and neuro-endocrine cells of a broad range of vertebrates including mammals, fishes and amphibia. The protein plays a role in secretion and interacts with several vesicle-associated proteins. In this work, we have studied the contribution of calcium binding and disulfide-bond formation to the stability of the secretagogin structure towards thermal and urea denaturation. SDS-PAGE analysis of secretagogin in reducing and non-reducing conditions identified a tendency of the protein to form dimers in a redox-dependent manner. The denaturation of apo and Calcium-loaded secretagogin was studied by circular dichroism and fluorescence spectroscopy under conditions favoring monomer or dimer or a 1:1 monomer: dimer ratio. This analysis reveals significantly higher stability towards urea denaturation of Calcium-loaded secretagogin compared to the apo protein. The secondary and tertiary structure of the Calcium-loaded form is not completely denatured in the presence of 10 M urea. Reduced and Calcium-loaded secretagogin is found to refold reversibly after heating to 95°C, while both oxidized and reduced apo secretagogin is irreversibly denatured at this temperature. Thus, calcium binding greatly stabilizes the structure of secretagogin towards chemical and heat denaturation.
Collapse
Affiliation(s)
- Kalyani Sanagavarapu
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Tanja Weiffert
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Niamh Ní Mhurchú
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - David O'Connell
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Abstract
Human calumenin (hCALU) is a six EF-hand protein belonging to the CREC family. As other members of the family, it is localized in the secretory pathway and regulates the activity of SERCA2a and of the ryanodine receptor in the endoplasmic reticulum (ER). We have studied the effects of Ca2+ binding to the protein and found it to attain a more compact structure upon ion binding. Circular Dichroism (CD) measurements suggest a major rearrangement of the protein secondary structure, which reversibly switches from disordered at low Ca2+ concentrations to predominantly alpha-helical when Ca2+ is added. SAXS experiments confirm the transition from an unfolded to a compact structure, which matches the structural prediction of a trilobal fold. Overall our experiments suggest that calumenin is a Ca2+ sensor, which folds into a compact structure, capable of interacting with its molecular partners, when Ca2+ concentration within the ER reaches the millimolar range.
Collapse
|
12
|
Sharma AK, Khandelwal R, Sharma Y, Rajanikanth V. Secretagogin, a hexa EF-hand calcium-binding protein: high level bacterial overexpression, one-step purification and properties. Protein Expr Purif 2015; 109:113-9. [PMID: 25703053 DOI: 10.1016/j.pep.2015.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 12/22/2014] [Accepted: 02/11/2015] [Indexed: 12/20/2022]
Abstract
Secretagogin (SCGN), a hexa EF-hand calcium-binding protein, is highly expressed in the endocrine cells (especially in pancreatic islets) and in restricted neuronal sub-populations, albeit at comparatively low level. Since SCGN is predicted to be a potential neuroendocrine marker in carcinoid tumors of lung and gastrointestinal tract, it is of paramount importance to understand the features of this protein in different environment for assigning its crucial functions in different tissues and under pathophysiological conditions. To score out the limitation of protein for in vitro studies, we report a one-step, high purity and high level bacterial purification of secretagogin by refolding from the inclusion bodies yielding about 40mg protein per litre of bacterial culture. We also report previously undocumented Ca(2+)/Mg(2+) binding and hydrodynamic properties of secretagogin.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
13
|
Arendt O, Schwaller B, Brown EB, Eilers J, Schmidt H. Restricted diffusion of calretinin in cerebellar granule cell dendrites implies Ca²⁺-dependent interactions via its EF-hand 5 domain. J Physiol 2013; 591:3887-99. [PMID: 23732647 DOI: 10.1113/jphysiol.2013.256628] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ca²⁺-binding proteins (CaBPs) are important regulators of neuronal Ca²⁺ signalling, acting either as buffers that shape Ca²⁺ transients and Ca²⁺ diffusion and/or as Ca²⁺ sensors. The diffusional mobility represents a crucial functional parameter of CaBPs, describing their range-of-action and possible interactions with binding partners. Calretinin (CR) is a CaBP widely expressed in the nervous system with strong expression in cerebellar granule cells. It is involved in regulating excitability and synaptic transmission of granule cells, and its absence leads to impaired motor control. We quantified the diffusional mobility of dye-labelled CR in mouse granule cells using two-photon fluorescence recovery after photobleaching. We found that movement of macromolecules in granule cell dendrites was not well described by free Brownian diffusion and that CR diffused unexpectedly slow compared to fluorescein dextrans of comparable size. During bursts of action potentials, which were associated with dendritic Ca²⁺ transients, the mobility of CR was further reduced. Diffusion was significantly accelerated by a peptide embracing EF-hand 5 of CR. Our results suggest long-lasting, Ca²⁺-dependent interactions of CR with large and/or immobile binding partners. These interactions render CR a poorly mobile Ca²⁺ buffer and point towards a Ca²⁺ sensor function of CR.
Collapse
Affiliation(s)
- Oliver Arendt
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University Leipzig, Germany
| | | | | | | | | |
Collapse
|
14
|
Maj M, Milenkovic I, Bauer J, Berggård T, Veit M, Ilhan-Mutlu A, Wagner L, Tretter V. Novel insights into the distribution and functional aspects of the calcium binding protein secretagogin from studies on rat brain and primary neuronal cell culture. Front Mol Neurosci 2012; 5:84. [PMID: 22888312 PMCID: PMC3412267 DOI: 10.3389/fnmol.2012.00084] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/17/2012] [Indexed: 11/13/2022] Open
Abstract
Secretagogin is a calcium binding protein (CBP) highly expressed in neuroendocrine cells. It has been shown to be involved in insulin secretion from pancreatic beta cells and is a strong candidate as a biomarker for endocrine tumors, stroke, and eventually psychiatric conditions. Secretagogin has been hypothesized to exert a neuroprotective role in neurodegenerative diseases like Alzheimer's disease. The expression pattern of Secretagogin is not conserved from rodents to humans. We used brain tissue and primary neuronal cell cultures from rat to further characterize this CBP in rodents and to perform a few functional assays in vitro. Immunohistochemistry on rat brain slices revealed a high density of Secretagogin-positive cells in distinct brain regions. Secretagogin was found in the cytosol or associated with subcellular compartments. We tested primary neuronal cultures for their suitability as model systems to further investigate functional properties of Secretagogin. These cultures can easily be manipulated by treatment with drugs or by transfection with test constructs interfering with signaling cascades that might be linked to the cellular function of Secretagogin. We show that, like in pancreatic beta cells and insulinoma cell lines, also in neurons the expression level of Secretagogin is dependent on extracellular insulin and glucose. Further, we show also for rat brain neuronal tissue that Secretagogin interacts with the microtubule-associated protein Tau and that this interaction is dependent on Ca(2+). Future studies should aim to study in further detail the molecular properties and function of Secretagogin in individual neuronal cell types, in particular the subcellular localization and trafficking of this protein and a possible active secretion by neurons.
Collapse
Affiliation(s)
- Magdalena Maj
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medizinische Universität Wien Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Alpár A, Attems J, Mulder J, Hökfelt T, Harkany T. The renaissance of Ca2+-binding proteins in the nervous system: secretagogin takes center stage. Cell Signal 2012; 24:378-387. [PMID: 21982882 PMCID: PMC3237847 DOI: 10.1016/j.cellsig.2011.09.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 02/03/2023]
Abstract
Effective control of the Ca(2+) homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca(2+) concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca(2+)signaling at subcellular resolution. Members of the superfamily of EF-hand Ca(2+)-binding proteins are effective to either attenuate intracellular Ca(2+) transients as stochiometric buffers or function as Ca(2+) sensors whose conformational change upon Ca(2+) binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca(2+)-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca(2+)-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca(2+)-binding proteins whose expression precedes that of many other Ca(2+)-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca(2+) sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca(2+)-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca(2+)signaling under physiological and disease conditions in the nervous system and beyond.
Collapse
Affiliation(s)
- Alán Alpár
- European Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Johannes Attems
- Institute for Ageing and Health, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, United Kingdom
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, Tomtebodavägen 23A, S-17165 Solna, Sweden
| | - Tomas Hökfelt
- Department of Neuroscience, Retzius väg 8, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Tibor Harkany
- European Neuroscience Institute at Aberdeen, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom; Division of Molecular Neurobiology, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden.
| |
Collapse
|
16
|
Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol Biotechnol 2011; 91:1203-13. [DOI: 10.1007/s00253-011-3407-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
|
17
|
Bauer MC, O'Connell DJ, Maj M, Wagner L, Cahill DJ, Linse S. Identification of a high-affinity network of secretagogin-binding proteins involved in vesicle secretion. MOLECULAR BIOSYSTEMS 2011; 7:2196-204. [PMID: 21528130 DOI: 10.1039/c0mb00349b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Secretagogin is a hexa EF-hand Ca(2+)-binding protein expressed in neuroendocrine, pancreatic endocrine and retinal cells. The protein has been noted for its expression in specific neuronal subtypes in the support of hierarchical organizing principles in the mammalian brain. Secretagogin has previously been found to interact with SNAP25 involved in Ca(2+)-induced exocytosis. Here, the cellular interaction network of secretagogin has been expanded with nine proteins: SNAP-23, DOC2alpha, ARFGAP2, rootletin, KIF5B, β-tubulin, DDAH-2, ATP-synthase and myeloid leukemia factor 2, based on screening of a high content protein array and validation and quantification of binding with surface plasmon resonance and GST pulldown assays. All targets have association rate constants in the range 10(4)-10(6) M(-1) s(-1), dissociation rate constants in the range 10(-3)-10(-5) s(-1) and equilibrium dissociation constants in the 100 pM to 10 nM range. The novel target SNAP23 is an essential component of the high affinity receptor for the general membrane fusion machinery and an important regulator of transport vesicle docking and fusion. Complementary roles in vesicle trafficking are known for ARFGAP2 and DOC2alpha in regulating fusion of vesicles to membranes, kinesin 5B and tubulin for transport of vesicles in the cell, while rootletin builds up the rootlet believed to function as a scaffold for vesicles. The identification of a discrete network of interacting proteins that mediate secretion and vesicle trafficking suggests a regulatory role for secretagogin in these processes.
Collapse
Affiliation(s)
- Mikael C Bauer
- Departments of Biophysical Chemistry and Biochemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Protein networks involved in vesicle fusion, transport, and storage revealed by array-based proteomics. Methods Mol Biol 2011; 781:47-58. [PMID: 21877276 DOI: 10.1007/978-1-61779-276-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Secretagogin is a calcium-binding protein whose expression is characterised in neuroendocrine, pancreatic, and retinal cells. We have used an array-based proteomic approach with the prokaryotically expressed human protein array (hEx1) and the eukaryotically expressed human protein array (Protoarray) to identify novel calcium-regulated interaction networks of secretagogin. Screening of these arrays with fluorophore-labelled secretagogin in the presence of Ca(2+) ions led to the identification of 12 (hEx1) and 6 (Protoarray) putative targets. A number of targets were identified in both array screens. The putative targets from the hEx1 array were expressed, purified, and subjected to binding analysis using surface plasmon resonance. This identified binding affinities for nine novel secretagogin targets with equilibrium dissociation constants in the 100 pM to 10 nM range. Six of the novel target proteins have important roles in vesicle trafficking; SNAP-23, ARFGAP2, and DOC2alpha are involved in regulating fusion of vesicles to membranes, kinesin 5B and tubulin are essential for transport of vesicles in the cell, and rootletin builds up the rootlet, which is believed to function as scaffold for vesicles. Among the targets are two enzymes, DDAH-2 and ATP-synthase, and one oncoprotein, myeloid leukaemia factor 2. This screening method identifies a role for secretagogin in secretion and vesicle trafficking interacting with several proteins integral to these processes.
Collapse
|
19
|
Choi S, Jeong J, Na S, Lee HS, Kim HY, Lee KJ, Paek E. New Algorithm for the Identification of Intact Disulfide Linkages Based on Fragmentation Characteristics in Tandem Mass Spectra. J Proteome Res 2009; 9:626-35. [DOI: 10.1021/pr900771r] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Seonhwa Choi
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Jaeho Jeong
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Seungjin Na
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Hyo Sun Lee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Hwa-Young Kim
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Kong-Joo Lee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| | - Eunok Paek
- Department of Mechanical and Information Engineering, University of Seoul, Seoul, Korea 130-743, The Center for Cell Signaling & Drug Discovery Research, College of Pharmacy and Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea 120-750, and Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Korea 705-717
| |
Collapse
|