1
|
Abimbola Salubi C, Abbo HS, Jahed N, Titinchi S. Medicinal chemistry perspectives on the development of piperazine-containing HIV-1 inhibitors. Bioorg Med Chem 2024; 99:117605. [PMID: 38246116 DOI: 10.1016/j.bmc.2024.117605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The Human immunodeficiency virus (HIV) is the causative agent of acquired immunodeficiency syndrome (AIDS), one of the most perilous diseases known to humankind. A 2023 estimate put the number of people living with HIV around 40 million worldwide, with the majority benefiting from various antiretroviral therapies. Consequently, the urgent need for the development of effective drugs to combat this virus cannot be overstated. In the realm of medicinal and organic chemistry, the synthesis and identification of novel compounds capable of inhibiting HIV enzymes at different stages of their life cycle are of paramount importance. Notably, the spotlight is on the progress made in enhancing the potency of HIV inhibitors through the use of piperazine-based compounds. Multiple studies have revealed that the incorporation of a piperazine moiety results in a noteworthy enhancement of anti-HIV activity. The piperazine ring assumes a pivotal role in shaping the pharmacophore responsible for inhibiting HIV-1 at critical stage, including attachment, reverse transcription, integration, and protease activity. This review also sheds light on the various opportunities that can be exploited to develop effective antiretroviral targets and eliminate latent HIV reservoirs. The advancement of highly potent analogues in HIV inhibitor research has been greatly facilitated by contemporary medicinal strategies, including molecular/fragment hybridization, structure-based drug design, and bioisosterism. These techniques have opened up new avenues for the development of compounds with enhanced efficacy in combating the virus.
Collapse
Affiliation(s)
- Christiana Abimbola Salubi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Hanna S Abbo
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Nazeeen Jahed
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Salam Titinchi
- Department of Chemistry, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa.
| |
Collapse
|
2
|
Pancera M, Lai YT, Bylund T, Druz A, Narpala S, O’Dell S, Schön A, Bailer RT, Chuang GY, Geng H, Louder MK, Rawi R, Soumana DI, Finzi A, Herschhorn A, Madani N, Sodroski J, Freire E, Langley DR, Mascola JR, McDermott AB, Kwong PD. Crystal structures of trimeric HIV envelope with entry inhibitors BMS-378806 and BMS-626529. Nat Chem Biol 2017; 13:1115-1122. [PMID: 28825711 PMCID: PMC5676566 DOI: 10.1038/nchembio.2460] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/19/2017] [Indexed: 01/27/2023]
Abstract
The HIV-1 envelope (Env) spike is a conformational machine that transitions between prefusion (closed, CD4- and CCR5-bound) and postfusion states to facilitate HIV-1 entry into cells. Although the prefusion closed conformation is a potential target for inhibition, development of small-molecule leads has been stymied by difficulties in obtaining structural information. Here, we report crystal structures at 3.8-Å resolution of an HIV-1-Env trimer with BMS-378806 and a derivative BMS-626529 for which a prodrug version is currently in Phase III clinical trials. Both lead candidates recognized an induced binding pocket that was mostly excluded from solvent and comprised of Env elements from a conserved helix and the β20-21 hairpin. In both structures, the β20-21 region assumed a conformation distinct from prefusion-closed and CD4-bound states. Together with biophysical and antigenicity characterizations, the structures illuminate the allosteric and competitive mechanisms by which these small-molecule leads inhibit CD4-induced structural changes in Env.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Robert T. Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mark K. Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Djade I. Soumana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Andrés Finzi
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Quebec, Canada
| | - Alon Herschhorn
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Navid Madani
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joseph Sodroski
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - David R. Langley
- Computer Assisted Drug Design, Bristol-Myers Squibb, Research and Development, Wallingford, Connecticut
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
4
|
Boonchawalit S, Harada S, Shirai N, Gatanaga H, Oka S, Matsushita S, Yoshimura K. Impact of the Maraviroc-Resistant Mutation M434I in the C4 Region of HIV-1 gp120 on Sensitivity to Antibody-Mediated Neutralization. Jpn J Infect Dis 2015; 69:236-43. [PMID: 26166507 DOI: 10.7883/yoken.jjid.2015.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported that a maraviroc (MVC)-resistant human immunodeficiency virus type 1variant, generated using in vitro selection, exhibited high sensitivity to several neutralizing monoclonal antibodies (NMAbs) and autologous plasma IgGs. The MVC-resistant variant acquired 4 sequential mutations in gp120: T297I, M434I, V200I, and K305R. In this study, we examined the mutation most responsible for conferring enhanced neutralization sensitivity of the MVC-resistant variant to several NMAbs and autologous plasma IgGs. The virus with the first resistant mutation, T297I, was sensitive to all NMAbs, whereas the passage control virus was not. The neutralization sensitivity of the variant greatly increased following its acquisition of the second mutation, M434I, in the C4 region. The M434I mutation conferred the greatest neutralizing sensitivity among the 4 MVC-resistant mutations. Additionally, the single M434I mutation was sufficient for the enhanced neutralization of the virus by NMAbs, autologous plasma IgGs, and heterologous sera relative to that of the parental virus.
Collapse
|
5
|
Langley DR, Kimura SR, Sivaprakasam P, Zhou N, Dicker I, McAuliffe B, Wang T, Kadow JF, Meanwell NA, Krystal M. Homology models of the HIV-1 attachment inhibitor BMS-626529 bound to gp120 suggest a unique mechanism of action. Proteins 2014; 83:331-50. [PMID: 25401969 PMCID: PMC4681349 DOI: 10.1002/prot.24726] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
HIV-1 gp120 undergoes multiple conformational changes both before and after binding to the host CD4 receptor. BMS-626529 is an attachment inhibitor (AI) in clinical development (administered as prodrug BMS-663068) that binds to HIV-1 gp120. To investigate the mechanism of action of this new class of antiretroviral compounds, we constructed homology models of unliganded HIV-1 gp120 (UNLIG), a pre-CD4 binding-intermediate conformation (pCD4), a CD4 bound-intermediate conformation (bCD4), and a CD4/co-receptor-bound gp120 (LIG) from a series of partial structures. We also describe a simple pathway illustrating the transition between these four states. Guided by the positions of BMS-626529 resistance substitutions and structure-activity relationship data for the AI series, putative binding sites for BMS-626529 were identified, supported by biochemical and biophysical data. BMS-626529 was docked into the UNLIG model and molecular dynamics simulations were used to demonstrate the thermodynamic stability of the different gp120 UNLIG/BMS-626529 models. We propose that BMS-626529 binds to the UNLIG conformation of gp120 within the structurally conserved outer domain, under the antiparallel β20-β21 sheet, and adjacent to the CD4 binding loop. Through this binding mode, BMS-626529 can inhibit both CD4-induced and CD4-independent formation of the "open state" four-stranded gp120 bridging sheet, and the subsequent formation and exposure of the chemokine co-receptor binding site. This unique mechanism of action prevents the initial interaction of HIV-1 with the host CD4+ T cell, and subsequent HIV-1 binding and entry. Our findings clarify the novel mechanism of BMS-626529, supporting its ongoing clinical development.
Collapse
Affiliation(s)
- David R Langley
- Computer Assisted Drug Design, Bristol-Myers Squibb, Research and Development, Wallingford, Connecticut
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Parker CG, Dahlgren MK, Tao RN, Li DT, Douglass EF, Shoda T, Jawanda N, Spasov KA, Lee S, Zhou N, Domaoal RA, Sutton RE, Anderson KS, Jorgensen WL, Krystal M, Spiegel DA. Illuminating HIV gp120-Ligand Recognition through Computationally-Driven Optimization of Antibody-Recruiting Molecules. Chem Sci 2014; 5:2311-2317. [PMID: 25379167 PMCID: PMC4217211 DOI: 10.1039/c4sc00484a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here we report on the structure-based optimization of antibody-recruiting molecules targeting HIV gp120 (ARM-H). These studies have leveraged a combination of medicinal chemistry, biochemical and cellular assay analysis, and computation. Our findings have afforded an optimized analog of ARM-H, which is ~1000 fold more potent in gp120-binding and MT-2 antiviral assays than our previously reported derivative. Furthermore, computational analysis, taken together with experimental data, provides evidence that azaindole- and indole-based attachment inhibitors bind gp120 at an accessory hydrophobic pocket beneath the CD4-binding site and can also adopt multiple unique binding modes in interacting with gp120. These results are likely to prove highly enabling in the development of novel HIV attachment inhibitors, and more broadly, they suggest novel applications for ARMs as probes of conformationally flexible systems.
Collapse
Affiliation(s)
| | - Markus K Dahlgren
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Ran N Tao
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Don T Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Eugene F Douglass
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Takuji Shoda
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Navneet Jawanda
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520
| | - Krasimir A Spasov
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510
| | - Sangil Lee
- Bristol-Myers Squibb, Research and Development, Wallingford, CT 06492
| | - Nannan Zhou
- Bristol-Myers Squibb, Research and Development, Wallingford, CT 06492
| | - Robert A Domaoal
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510
| | - Richard E Sutton
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520
| | - Karen S Anderson
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510 ; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06510
| | | | - Mark Krystal
- Bristol-Myers Squibb, Research and Development, Wallingford, CT 06492
| | - David A Spiegel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520 ; Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
7
|
Zhou N, Nowicka-Sans B, McAuliffe B, Ray N, Eggers B, Fang H, Fan L, Healy M, Langley DR, Hwang C, Lataillade M, Hanna GJ, Krystal M. Genotypic correlates of susceptibility to HIV-1 attachment inhibitor BMS-626529, the active agent of the prodrug BMS-663068. J Antimicrob Chemother 2013; 69:573-81. [DOI: 10.1093/jac/dkt412] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Activity of the HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068, against CD4-independent viruses and HIV-1 envelopes resistant to other entry inhibitors. Antimicrob Agents Chemother 2013; 57:4172-80. [PMID: 23774428 DOI: 10.1128/aac.00513-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4(-) cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.
Collapse
|
9
|
Peterson CW, Younan P, Jerome KR, Kiem HP. Combinatorial anti-HIV gene therapy: using a multipronged approach to reach beyond HAART. Gene Ther 2013; 20:695-702. [PMID: 23364313 DOI: 10.1038/gt.2012.98] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 12/11/2022]
Abstract
The 'Berlin Patient', who maintains suppressed levels of HIV viremia in the absence of antiretroviral therapy, continues to be a standard bearer in HIV eradication research. However, the unique circumstances surrounding his functional cure are not applicable to most HIV(+) patients. To achieve a functional or sterilizing cure in a greater number of infected individuals worldwide, combinatorial treatments, targeting multiple stages of the viral life cycle, will be essential. Several anti-HIV gene therapy approaches have been explored recently, including disruption of the C-C chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) coreceptor loci in CD4(+) T cells and CD34(+) hematopoietic stem cells. However, less is known about the efficacy of these strategies in patients and more relevant HIV model systems such as non-human primates (NHPs). Combinatorial approaches, including genetic disruption of integrated provirus, functional enhancement of endogenous restriction factors and/or the use of pharmacological adjuvants, could amplify the anti-HIV effects of CCR5/CXCR4 gene disruption. Importantly, delivering gene disruption molecules to genetic sites of interest will likely require optimization on a cell type-by-cell type basis. In this review, we highlight the most promising gene therapy approaches to combat HIV infection, methods to deliver these therapies to hematopoietic cells and emphasize the need to target viral replication pre- and post-entry to mount a suitably robust defense against spreading infection.
Collapse
Affiliation(s)
- C W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
10
|
Li L, Chen H, Zhao RN, Han JG. The investigations on HIV-1 gp120 bound with BMS-488043 by using docking and molecular dynamics simulations. J Mol Model 2012; 19:905-17. [PMID: 23086459 DOI: 10.1007/s00894-012-1619-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 09/30/2012] [Indexed: 11/30/2022]
Abstract
BMS-488043, like its predecessor BMS-378806, is a small molecule that can block the interactions between gp120 and CD4, and has shown good clinical efficacy. However, the crystal structure of drug-gp120 complexes or the full-length gp120 free of bound ligand is unpublished until now. Docking combined with molecular dynamics simulation is used to investigate the binding mode between BMS-488043 and gp120. On the basis of the analysis of the simulated results, the plausible binding mode is acquired, such as the changes of binding mode in the trajectory and the calculated binding free energy. Subsequently, a number of residues which make contacts with the small molecule are studied by binding free energy decomposition to understand the mutation experiments, such as Trp427, Ser375, and Thr257 residues with the help of the acquired binding mode above. Especially, the importance of the hydrophobic groove formed by residues Ile371 and Gly472 which bind BMS-488043 is elaborated, which has not been explored much. In addition, theoretical investigations on the dynamics behavior of the gp120 associated with BMS-488043 enhanced binding are performed; the results indicate that the BMS-488043 may be more deeply inserted into the Phe43 cavity compared with the previous binding mode acquired by docking.
Collapse
Affiliation(s)
- Liang Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China
| | | | | | | |
Collapse
|
11
|
HIV gp120 H375 is unique to HIV-1 subtype CRF01_AE and confers strong resistance to the entry inhibitor BMS-599793, a candidate microbicide drug. Antimicrob Agents Chemother 2012; 56:4257-67. [PMID: 22615295 DOI: 10.1128/aac.00639-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-599793 is a small molecule entry inhibitor that binds to human immunodeficiency virus type 1 (HIV-1) gp120, resulting in the inhibition of CD4-dependent entry into cells. Since BMS-599793 is currently considered a candidate microbicide drug, we evaluated its efficacy against a number of primary patient HIV isolates from different subtypes and circulating recombinant forms (CRFs) and showed that activity varied between ∼3 ρM and 7 μM at 50% effective concentrations (EC(50)s). Interestingly, CRF01_AE HIV-1 isolates consistently demonstrated natural resistance against this compound. Genotypic analysis of >1,600 sequences (Los Alamos HIV sequence database) indicated that a single amino acid polymorphism in Env, H375, may account for the observed BMS-599793 resistance in CRF01_AE HIV-1. Results of site-directed mutagenesis experiments confirmed this hypothesis, and in silico drug docking simulations identified a drug resistance mechanism at the molecular level. In addition, CRF01_AE viruses were shown to be resistant to multiple broadly neutralizing monoclonal antibodies. Thus, our results not only provide insight into how Env polymorphisms may contribute to entry inhibitor resistance but also may help to elucidate how HIV can evade some broadly neutralizing antibodies. Furthermore, the high frequency of H375 in CRF01_AE HIV-1, and its apparent nonoccurrence in other subtypes, could serve as a means for rapid identification of CRF01_AE infections.
Collapse
|