1
|
Xu ER, Lafita A, Bateman A, Hyvönen M. The thrombospondin module 1 domain of the matricellular protein CCN3 shows an atypical disulfide pattern and incomplete CWR layers. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2020; 76:124-134. [PMID: 32038043 DOI: 10.1107/s2059798319016747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/14/2019] [Indexed: 05/04/2023]
Abstract
The members of the CCN (Cyr61/CTGF/Nov) family are a group of matricellular regulatory proteins that are essential to a wide range of functional pathways in cell signalling. Through interacting with extracellular matrix components and growth factors via one of their four domains, the CCN proteins are involved in critical biological processes such as angiogenesis, cell proliferation, bone development, fibrogenesis and tumorigenesis. Here, the crystal structure of the thrombospondin module 1 (TSP1) domain of CCN3 (previously known as Nov) is presented, which shares a similar three-stranded fold with the thrombospondin type 1 repeats of thrombospondin-1 and spondin-1, but with variations in the disulfide connectivity. Moreover, the CCN3 TSP1 domain lacks the typical π-stacked ladder of charged and aromatic residues on one side of the domain that is seen in other TSP1 domains. Using conservation analysis among orthologous domains, it is shown that a charged cluster in the centre of the domain is the most conserved site and this cluster is predicted to be a potential functional epitope for heparan sulfate binding. This variant TSP1 domain has also been used to revise the sequence determinants of TSP1 domains and to derive improved Pfam sequence profiles for the identification of novel TSP1 domains in more than 10 000 proteins across diverse phyla.
Collapse
Affiliation(s)
- Emma Ruoqi Xu
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, England
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, England
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, England
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, England
| |
Collapse
|
2
|
Jariyapong P, Pudgerd A, Cheloh N, Hirono I, Kondo H, Vanichviriyakit R, Weerachatyanukul W, Chotwiwatthanakun C. Hematopoietic tissue of Macrobrachium rosenbergii plays dual roles as a source of hemocyte hematopoiesis and as a defensive mechanism against Macrobrachium rosenbergii nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2019; 86:756-763. [PMID: 30553890 DOI: 10.1016/j.fsi.2018.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
White tail disease caused by Macrobrachium rosenbergii nodavirus (MrNV) infection takes place only in nauplii, not adults, of M. rosenbergii prawn. Hemocyte homeostasis and immune-related functions derived from the hematopoietic tissue (Hpt) in adult prawn are presumed to play roles in resisting viral infection. To elucidate the role of the Hpt cell response to MrNV, a comparative transcriptome analysis was performed with MrNV-infected prawn at various time intervals. The results showed that there were 462 unigenes that were differentially expressed between mock and infected samples. BlastX sequence analysis revealed that two proteins, crustacean hematopoietic factor (CHF) and cell growth-regulating zinc finger protein (Lyar), are involved in hemocyte hematopoiesis and are up-regulated during MrNV infection. In fact, genes involved in cell growth regulation and immunity were highly expressed at 6 h and decreased within 24 h post-infection. Localization studies in the Hpt tissue revealed the presence of anti-lipopolysaccharide factor (ALF) and CHF mRNAs in Hpt cells. Considering these findings, we concluded that resistance to MrNV infection in adult prawn is due to an increase in humoral immune factors and the acceleration of hemocyte homeostasis by the dual roles of the Hpt organ in M. rosenbergii.
Collapse
Affiliation(s)
- Pitchanee Jariyapong
- School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand; Research Center of Excellence on Shrimp, Walailak University, Thasala District, Nakhonsrithammarat, 80161, Thailand
| | - Arnon Pudgerd
- Division of Anatomy, School of Medical Science, University of Phayao, Muang, Phayao, 56000, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Nifareesa Cheloh
- Faculty of Agriculture, Princess of Naradhiwas University, Mueang Narathiwat District, Narathiwat, 96000, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo, 108-8477, Japan
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand; Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charoonroj Chotwiwatthanakun
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand; Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
3
|
Chandler JC, Aizen J, Elizur A, Hollander-Cohen L, Battaglene SC, Ventura T. Discovery of a novel insulin-like peptide and insulin binding proteins in the Eastern rock lobster Sagmariasus verreauxi. Gen Comp Endocrinol 2015; 215:76-87. [PMID: 25218129 DOI: 10.1016/j.ygcen.2014.08.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
This study reports, for the first time in any of the commercially important decapod species, the identification of an insulin-like peptide (ILP), distinct from the androgenic gland hormone. Bioinformatics analysis of the de novo assembled spiny lobster, (Sagmariasus verreauxi) transcriptome, allowed identification of Sv-ILP1 as well as eight binding proteins. Binding proteins were termed as Sv-IGFBP, due to homology with the vertebrate insulin-like growth-factor binding protein and Sv-SIBD1-7, single insulin-binding domain protein (SIBD), similar to those identified in other invertebrate species. Sv-ILP1 was found to be expressed in the eyestalk, gonads and antennal gland of both sexes and to a lesser extent in male muscle, androgenic gland and hepatopancreas. The expression profiles of each binding protein were found to vary across tissues, with Sv-SIBD5, 6 and 7 showing higher expression in the gonad, demonstrated by PCR and digital gene expression. Further spatial investigations, using in-situ hybridisation, found Sv-ILP1 to be expressed in the neurosecretory cells of the thoracic ganglia, in keeping with the tissue expression of Drosophila ILP7 (DILP7). This correlative tissue expression, considered with the phylogenetic clustering of Sv-ILP1 and DILP7, suggests Sv-ILP1 to be a DILP7 orthologue. The broad expression of Sv-ILP1 strongly suggests that ILPs have a role beyond that of masculinisation in decapods. The function of these novel peptides may have application in enhancing aquaculture practices in the commercially important decapod species.
Collapse
Affiliation(s)
- Jennifer C Chandler
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Joseph Aizen
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Abigail Elizur
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia
| | - Lian Hollander-Cohen
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Stephen C Battaglene
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tasmania 7001, Australia
| | - Tomer Ventura
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland 4558, Australia.
| |
Collapse
|
4
|
Yang Y, Zeng XC, Zhang L, Nie Y, Shi W, Liu Y. Androcin, a novel type of cysteine-rich venom peptide fromAndroctonus bicolor, induces akinesia and anxiety-like symptoms in mice. IUBMB Life 2014; 66:277-85. [DOI: 10.1002/iub.1261] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| | - Yichen Liu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology; School of Environmental Studies, China University of Geosciences (Wuhan); Wuhan 430074 People's Republic of China
| |
Collapse
|