1
|
Leishmanicidal Activity of an In Silico-Screened Novel Inhibitor against Ascorbate Peroxidase of Leishmania donovani. Antimicrob Agents Chemother 2020; 64:AAC.01766-19. [PMID: 32366716 DOI: 10.1128/aac.01766-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/27/2020] [Indexed: 01/14/2023] Open
Abstract
Peroxidases are a heterogeneous family of enzymes that have diverse biological functions. Ascorbate peroxidase is a redox enzyme that is reduced by trypanothione, which plays a central role in the redox defense system of Leishmania In view of developing new and novel therapeutics, we performed in silico studies in order to search for a ligand library and identify new drug candidates and their physiological roles against promastigotes and intracellular amastigotes of Leishmania donovani Our results demonstrated that the selected inhibitor ZINC96021026 has significant antileishmanial effect and effectively killed both free and intracellular forms of the parasite. ZINC96021026 was found to be identical to ML-240, a selective inhibitor of valosin-containing protein (VCP), or p97, a member of the AAA-ATPase protein family which was derived from the scaffold of N 2,N 4-dibenzylquinazoline-2,4-diamine (DBeQ), targeting the D2-ATPase domain of the enzyme. ZINC96021026 (ML-240) thus has a broad range of cellular functions, thought to be derived from its ability to unfold proteins or disassemble protein complexes, besides inhibiting the ascorbate peroxidase activity. ML-240 may inhibit the parasite's ascorbate peroxidase, leading to extensive apoptosis and inducing generation of reactive oxygen species. Taken together, our results demonstrated that ML-240 could be an attractive therapeutic option for treatment against leishmaniasis.
Collapse
|
2
|
A Third Shot at EGFR: New Opportunities in Cancer Therapy. Trends Pharmacol Sci 2019; 40:941-955. [DOI: 10.1016/j.tips.2019.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
3
|
Nojima H, Kiyota Y, Terashi G, Takeda-Shitaka M, Matsubara H. Geometrical Conversion of the EGFR Extracellular Domain by Adiabatic Mapping Combining Normal Mode Analysis of the Elastic Network Model and Energy Optimization. Chem Pharm Bull (Tokyo) 2019; 67:1061-1071. [PMID: 31582626 DOI: 10.1248/cpb.c19-00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The activation of epidermal growth factor receptor (EGFR) involves the geometrical conversion of the extracellular domain (ECD) from the tethered to the extended forms with the dynamic rearrangement of the relative positions of four subdomains (SDs); however, this conversion process has not yet been thoroughly understood. We compare the two different forms of the X-ray crystal structures of ECD and simulate the ECD conversion process using adiabatic mapping that combines normal mode analysis of the elastic network model (ENM-NMA) and energy optimization. A comparison of the crystal structures reveals the rigidity of the intradomain geometry of the SD-I and -III backbone regardless of the form. The forward mapping from the tethered to the extended forms retains the intradomain geometry of the SD-I and -III backbone and reveals the trends to rearrange the relative positions of SD-I and -III and to dissociate the C-terminal tail of SD-IV from the hairpin loop in SD-II. The reverse mapping from the extended to the tethered forms complements the promotion of ECD conversion in the presence of epidermal growth factor (EGF).
Collapse
|
4
|
Liu WS, Wang RR, Yue H, Zheng ZH, Lu XH, Wang SQ, Dong WL, Wang RL. Design, synthesis, biological evaluation and molecular dynamics studies of 4-thiazolinone derivatives as protein tyrosine phosphatase 1B (PTP1B) inhibitors. J Biomol Struct Dyn 2019; 38:3814-3824. [PMID: 31490104 DOI: 10.1080/07391102.2019.1664333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of insulin signaling pathway, and more and more studies have shown that it is a potential target for the treatment of type 2 diabetes mellitus (T2DM). In this study, 17 new 4-thiazolinone derivatives were designed and synthesized as novel PTP1B inhibitors, and ADMET prediction confirmed that these compounds were to be drug-like. In vitro enzyme activity experiments were performed on these compounds, and it was found that a plurality of compounds had good inhibitory activity and high selectivity against PTP1B protein. Among them, compound 7p exhibited the best inhibitory activity with an IC50 of 0.92 μM. The binding mode of compound 7p and PTP1B protein was explored, revealing the reason for its high efficiency. In addition, molecular dynamics simulations for the PTP1BWT and PTP1Bcomp#7p systems revealed the effects of compound 7p on PTP1B protein at the molecular level. In summary, the study reported for the first time that 4-thiazolinone derivatives as a novel PTP1B inhibitor had good inhibitory activity and selectivity for the treatment of T2DM, providing more options for the development of PTP1B inhibitors. AbbreviationsBBBblood-brain barrierCDC25Bcell division cycle 25 homolog BCYP2D6Cytochrome P450 2D6 bindingDCCMdynamic cross-correlation mapDSDiscovery StudioH bondhydrogen bondHIAhuman intestinal absorptionLARleukocyte antigen-related phosphataseMDmolecular dynamicsMEG-2maternal-effect germ-cell defective 2MM-PBSAmolecular mechanics Poisson Boltzmann surface area)PCAprincipal component analysisPDBProtein Data BankpNPPp-nitrophenyl phosphatePPBplasma protein bindingPTP1Bprotein tyrosine phosphotase 1BRMSDroot mean square deviationRMSFroot mean square fluctuationSHP-1src homologous phosphatase-1SHP-2src homologous phosphatase-2SPCsingle-point chargeTCPTPT cell protein tyrosine phosphataseT2DMType 2 diabetes mellitusVDWvan der WaalsCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Hai Yue
- Inner Mongolia Institute for Drug Control, Huhhot, Inner Mongolia, China
| | - Zhi-Hui Zheng
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Li Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
5
|
Gocheva G, Ivanova A. A Look at Receptor–Ligand Pairs for Active-Targeting Drug Delivery from Crystallographic and Molecular Dynamics Perspectives. Mol Pharm 2019; 16:3293-3321. [DOI: 10.1021/acs.molpharmaceut.9b00250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gergana Gocheva
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Anela Ivanova
- Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
6
|
Mehrabi M, Mahdiuni H, Rasouli H, Mansouri K, Shahlaei M, Khodarahmi R. Comparative experimental/theoretical studies on the EGFR dimerization under the effect of EGF/EGF analogues binding: Highlighting the importance of EGF/EGFR interactions at site III interface. Int J Biol Macromol 2018; 115:401-417. [DOI: 10.1016/j.ijbiomac.2018.04.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
|
7
|
Ndagi U, Mhlongo NN, Soliman ME. Re-emergence of an orphan therapeutic target for the treatment of resistant prostate cancer - a thorough conformational and binding analysis for ROR-γ protein. J Biomol Struct Dyn 2018; 36:335-350. [PMID: 28027708 DOI: 10.1080/07391102.2016.1277555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023]
Abstract
Recent studies have linked a deadly form of prostate cancer known as metastatic castration-resistant prostate cancer to retinoic acid-related orphan-receptor gamma (ROR-γ). Most of these studies continued to place ROR-γ as orphan because of unidentifiable inhibitor. Recently identified inhibitors of ROR-γ and their therapeutic potential were evaluated, among which inhibitor XY018 was the potent. However, molecular understanding of the conformational features of XY018-ROR-γ complex is still elusive. Herein, molecular dynamics simulations were conducted on HC9-ROR-γ and XY018-ROR-γ complexes to understand their conformational features at molecular level and the influence of XY018 binding on the dynamics of ROR-γ with the aid of post-dynamic analytical tools. These include; principal component analysis, radius of gyration, binding free energy calculation (MM/GBSA), per-residue fluctuation and hydrogen bond occupancy. Findings from this study revealed that (1) hydrophobic packing contributes significantly to binding free energy, (2) Ile136 and Leu60 exhibited high hydrogen-bond occupancy in XY018-ROR-γ and HC9-ROR-γ, respectively, (3) XY018-ROR-γ displayed a relatively high loop region residue fluctuation compared to HC9-ROR-γ, (4) electrostatic interactions are a potential binding force in XY018-ROR-γ complex compared to HC9-ROR-γ, (5) XY018-ROR-γ assumes a rigid conformation which is highlighted by a decrease in residual fluctuation, (6) XY018 could potentially induce pseudoporphyria, nephritis and interstitial nephritis but potentially safe in renal failure. This study could serve as a base line for the design of new potential ROR-γ inhibitors.
Collapse
Affiliation(s)
- Umar Ndagi
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban 4000 , South Africa
| | - Ndumiso N Mhlongo
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban 4000 , South Africa
| | - Mahmoud E Soliman
- a Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal , Westville , Durban 4000 , South Africa
| |
Collapse
|
8
|
Agoni C, Ramharack P, Soliman MES. Allosteric inhibition induces an open WPD-loop: a new avenue towards glioblastoma therapy. RSC Adv 2018; 8:40187-40197. [PMID: 35558220 PMCID: PMC9091281 DOI: 10.1039/c8ra08427k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/25/2018] [Indexed: 01/06/2023] Open
Abstract
Structural mechanism of inhibition of NAZ2329 at the allosteric site of PTPRZ, with particular emphasis on the dynamics of the WPD-loop.
Collapse
Affiliation(s)
- Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Pritika Ramharack
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. S. Soliman
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
9
|
Emergence of a Promising Lead Compound in the Treatment of Triple Negative Breast Cancer: An Insight into Conformational Features and Ligand Binding Landscape of c-Src Protein with UM-164. Appl Biochem Biotechnol 2017; 185:655-675. [DOI: 10.1007/s12010-017-2677-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/11/2017] [Indexed: 02/02/2023]
|
10
|
Mehrabi M, Khodarahmi R, Shahlaei M. Critical effects on binding of epidermal growth factor produced by amino acid substitutions. J Biomol Struct Dyn 2016; 35:1085-1101. [DOI: 10.1080/07391102.2016.1171799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Masomeh Mehrabi
- Medical Biology Research Center, Kermanshah University of Medical Sciences , Kermanshah, Iran
| | - Reza Khodarahmi
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences , Kermanshah, Iran
| | - Mohsen Shahlaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences , Kermanshah, Iran
| |
Collapse
|
11
|
pH dependence of ligand-induced human epidermal growth factor receptor activation investigated by molecular dynamics simulations. J Mol Model 2016; 22:131. [DOI: 10.1007/s00894-016-3000-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 04/24/2016] [Indexed: 01/29/2023]
|
12
|
Poger D, Mark AE. Activation of the Epidermal Growth Factor Receptor: A Series of Twists and Turns. Biochemistry 2014; 53:2710-21. [DOI: 10.1021/bi401632z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute
for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|